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Abstract: In this paper we introduce the notions like Morita context, Normal
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1. Introduction

In this paper we introduce the notion of Morita context, Normal radicals and

characterize the same. In the second section we give the definition of Morita

context, Normal radical and some examples of Normal radicals and some prop-

erties of Normal radical and Morita context.

In the third section we introduce the notion of primitive semiring and es-

tablish some characterizations of Jacobson radical and primitive semirings.

Throughout this paper there are many open questions in Section 2 and 3.
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We are very much sure that one can enhance the classical structure theory for
non-commutative semirings after answering these questions.

Proposition 1. Every semiring R can be embedded as an ideal into a

semiring R∗ with unity element. The semiring R∗ is referred to as Dorroh

extension R.

Proof. On the set

R∗ = {(a, n) | a ∈ R,n ∈ Z}.

Define addition (a1, n1) + (a2, n2) = (a1 + a2, n1 + n2) and (a, n)(b,m) = (ab +
ma + nb,mn).

Then it is easy to verify that R∗ is a semiring and

(a, n)(0, 1) = (0 + a + 0, n · 1)

= (a, n), for all (a, n) ∈ R∗,

it means R∗ is a semiring with unity element (0, 1).
Define θ : R → (R, 0) given by θ(a) = (a, 0). Then clearly θ is a one-one

and onto homomorphism. So R ∼= (R, 0) ⊳ R∗. Hence R ⊳ R∗, where R∗ is a
semiring with unity element (0, 1).

2. Normal Radicals

Let R and S be semirings V = RVS and W = SWR an R − S bisemimodule
and an S−R bisemimodule respectively. The quadruple (R,V,W,S) is called a

Morita context if the set

(

R V

W S

)

of matrices forms a semiring under matrix

addition and multiplication, where.

(

R V

W S

)

= {

(

r v

w s

)

| r ∈ R, s ∈ S, v ∈ V,w ∈ W}.

This definition will make sense, if we assume the existence of mappings

V × W → R and W × V → S

given by

(v,w) →֒ vw and (w, v) →֒ wv for all v ∈ V and w ∈ W
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such that for any v, v1, v2 ∈ V,w,w1, w2 ∈ W, r ∈ R, s ∈ S the following
identities are satisfied

(v1 + v2)w = v1w + v2w

r(vw) = (rv)w

(vs)w = v(sw)

v(w1 + w2) = vw1 + vw2

(vw)r = v(wr)

(v1w)v2 = v1(wv2).

and their duals

(w1 + w2)v = w1v + w2v

s(uv) = (su)v

(ur)v = u(rv)

w(v1 + v2) = wv1 + wv2

(uv)s = u(vs)

(w1v)w2 = w1(vw2).

A radical R is said to be normal if V R(S)W ⊆ R(R) for every Morita
context (R,V,W,S). Also (S,W, V,R) is a Morita context, therefore the nor-
mality of R can be defined as WR(R)V ⊆ R(S) along with the Morita context
(S,W, V,R). The Morita context (S,W, V,R) is called dual to (R,V,W,S).

Theorem 2. (see [9]) Let R be a radical class of a universal class U of

semirings and ρ = ρR the corresponding radical operator. Then, for each ideal

I of a semiring R ∈ U the radical ρ(I) of I is an ideal of R, which in particular

yields ρ(I) ⊆ ρ(R) ∩ I.

Example 3. Levitzki radical L, Jacobson radical J are the Normal radi-
cals.

If A,B,C,D are subsets of R,V,W,S respectively, then we should denote

by

(

A B

C D

)

the subset of

(

R V

W S

)

consisting of elements

(

a b

c d

)

, where

a ∈ A, b ∈ B, c ∈ C, d ∈ D.
Applying the A-D-S-Theorem 2 to Morita context we have the following.

Lemma 4. If

(

R V

W S

)

is a Morita context and R is any radical, then

R

(

R V

W S

)

=

(

A B

C D

)
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with appropriate ideals A,D of R and S respectively and sub-bisemimodules

B,C of V,W respectively.

Proof. Let

(

R V
W S

)

be Morita context and let R∗, S∗ denote usual over-

semirings with unity element of R and S respectively. V,W are unitary R∗ and

S∗-semimodules in the obvious way and

(

R∗ V
W S∗

)

is a Morita context which

contains an ideal the context

(

R V
W S

)

.

It is clear that for any radical R,

R

(

R V
W S

)

⊳

(

R V
W S

)

⊳

(

R∗ V
W S∗

)

.

So by A-D-S-Theorem 2

R

(

R V
W S

)

⊳

(

R∗ V
W S∗

)

.

Now it is easy to verify that

(

1 0
0 0

)

R

(

R V
W S

)

and

(

0 0
0 1

)

R

(

R V
W S

)

are

of the type

(

A B
C D

)

. Similarly R

(

R V
W S

)(

1 0
0 0

)

and R

(

R V
W S

)(

0 0
0 1

)

are of the type

(

A B
C D

)

. Hence the lemma.

Definition 5. A radical R which satisfies the condition L ∈ R ⇒ L ⊆

R(R), for all L ⊳l R is said to be left strong. Right strong radical defined
correspondingly.

Proposition 6. A radical R is left strong if and only if 0 6= L ⊳l R ∈ SR,

implies that and L /∈ R.

Proof. If part is immediate, Only if part follows if L /∈ R ⇔ R(L) " R.

Lemma 7. If R is a normal radical, then R is left and right strong.

Proof. Let L⊳lR ∈ SR and L ∈ R. Consider the Morita context (R,L,R∗, L)
with the naturally defined multiplication. SinceR is normal, therefore LR(L)R∗

⊆ R(R) = 0, since R ∈ SR. But L ∈ R ⇒ R(L) = L ⇒ L2 ⊆ L2R∗ = 0.
Hence L ⊳ L + LR ∈ SR. So L ∈ SR ∩ R ⇒ L = 0, a contradiction, as
0 6= L ∈ R ∈ SR ⇒ L /∈ R.
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Definition 8. A radical which contains all zero-semirings (or equivalently
nilpotent semirings) is called a Hypernilpotent radical.

Proposition 9. For a radical R the following conditions are equivalent;

1. R is Hypernilpotent.

2. If I ⊳ R and In = 0, then I ⊆ R(R).

3. If I ⊳l R ∈ SR and Ln = 0, then L = 0.

Lemma 10. If R is a Hypernilpotent normal radical, then R is left and
right hereditary.

Proof. Let L ⊳l R ∈ R and let us consider the Morita context (L,R,L,R).
Then we have RR(R)L ⊆ R(L). Since R ∈ R ⇒ R(R) = R. Hence R2L ⊆

R(L). But L3 ⊆ R2L ⊆ R(L) ⇒ L2/R(L) = 0 ⇒ L/R(L) ⊆ R(L/R(L)) =
0 ⇒ L = R(L) ∈ R ⇒ R is (left) hereditary. Hence R(R) = R(R) ∩ R.

The infinite cyclic semigroup C(∞) and the zero-semiring Z(∞) (includes 0)
built on C(∞). Remember the convention that Z and Z(∞) denote the semiring
of non-negative integers and that with zero multiplication on the infinite cyclic
semigroup.

Theorem 11. If R is a radical in a class of associative semirings, then
the following conditions are equivalent.

1. R is a normal radical.

2. (a) If a semiring R is an ideal of a semiring R such that the factor semiring
R/R is isomorphic with the semiring of non negative integers, then

R(R) = R(R) ∩ R.

(b) If e = e2 is an idempotent of some semiring R, then

R(eRe) = eR(R)e.

3. For every Morita context we have R

(

R V
W S

)

=

(

R(R) B
C R(S)

)

where

B,C are the subsemimodules of V,W respectively.
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Proof. 2) ⇒ 3) Let

(

R V

W S

)

be a Morita context and let R∗, S∗ be as in

Lemma 4. It is easy to verify that
(

R∗ V

W S∗

)

⊳

(

R∗ V

W S

)

⊳

(

R V

W S

)

.

Also by 2(a)

(

R V

W S

)

�

(

R∗ V

W S

)

∼= Z

and

(

R∗ V

W S

)

�

(

R∗ V

W S∗

)

∼= Z.

This shows that R

(

R∗ V

W S

)

= R

(

R V

W S

)

∩

(

R∗ V

W S

)

and

(

A B

C D

)

=

R

(

R∗ V

W S∗

)

= R

(

R∗ V

W S

)

∩

(

R∗ V

W S∗

)

, where A,B,C,D are as in Lemma

4. Let e = e2 =

(

1 0
0 0

)

be a matrix from

(

R∗ V

W S∗

)

. Hence by 2(b) and 2(a)

(

A 0
0 0

)

= eR

(

R V

W S

)

e

= e(R

(

R∗ V

W S∗

)

∩

(

R V

W S

)

)e

= eR

(

R∗ V

W S∗

)

e ∩

(

R 0
0 0

)

= R

(

R∗ 0
0 0

)

∩

(

R 0
0 0

)

=

(

R(R∗) 0
0 0

)

∩

(

R 0
0 0

)

=

(

R(R∗) ∩ R 0
0 0

)

=

(

R(R) 0
0 0

)

.

This gives us A = R(R). Similarly B = R(S). Hence

R

(

R V

W S

)

=

(

R(R) B

C R(S)

)

,

where B,C are subsemimodule of RVS and SWR respectively.
3) ⇒ 1) Let R a be radical such that for every Morita context (R,V,W,S) we
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have

R

(

R V
W S

)

=

(

R(R) ∗

∗ R(S)

)

where the ∗ are for suitable bisemimodule. Since

R

(

R V
W S

)

⊳

(

R V
W S

)

,

we have
(

0 V
0 0

)

R

(

R V
W S

)(

0 0
W 0

)

=

(

0 V
0 0

)(

R(R) ∗

∗ R(S)

)(

0 0
W 0

)

=

(

V V R(S)
0 0

)(

0 0
W 0

)

=

(

V R(S)W 0
0 0

)

⊂

(

R(R) ∗

∗ R(S)

)

.

This shows that V (R(S))W ⊆ R(R). Hence R is a normal radical.
Without involving much technicalities and rest of the things are similar to

rings as in [8], we have the following.
1) ⇒ 2) If Z(∞) ∈ R, then it is to verify that R is Hypernilpotent, implies that
R is (left) hereditary, hence R(R) = R(R) ∩ R.

Consider R(Z) = (n) of Z. If n 6= 0, then clearly R(Z) = 0, a contradiction.
Therefore n = 0 and Z ∈ SR. By R/R ∼= Z ∈ SR, implies that R(R/R) = 0.
This shows that by A-D-S Theorem R(R) = R(R). Hence 2(a).

2(b) Let us consider the Morita context (R, Re, eR, eRe). Since R is
normal ReR(eRe)eR ⊆ R(R) and eRR(R)Re ⊆ R(eRe). Since e is unity
element in eRe, R(eRe) = e3R(eRe)e3 ⊆ eReR(eRe)eRe ⊆ eR(R)e and
eR(R)e = e2R(R)e2 ⊆ eRR(R)Re ⊆ R(eRe) ⇒ R(eRe) = eR(R)e.

3. The Jacobson Radical

Definition 12. (see [1]) An element a ∈ R of a semiring R is said to be
left quasiregular if there exists an element b ∈ R such that b◦a = b+a+ba = 0.

In this case the element b is called a left quasi-inverse of the element R.

A right quasiregular and right quasi-inverse are defined correspondingly.
A semiring R is called quasiregular if each of its elements are left quasireg-

ular.
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Note 1. R is quasiregular if and only if (R, ◦) is a semigroup with identity
element 0.

Proposition 13. (R, ◦) is a monoid for any semiring R and 0 is the unity
element of the circle operation ◦, that is,

(a ◦ b) ◦ c = a ◦ (b ◦ c), ∀ a, b, c ∈ R,

0 ◦ a = a ◦ 0 = a, ∀ a ∈ R.

Proof. Proof is straightforward

Proposition 14. Every nilpotent element of a semiring is left quasiregular
but not conversely.

Definition 15. The element r of the semiring R is said to be right semireg-
ular if there exist elements r1, r2 ∈ R such that r + r1 + rr1 = r2 + rr2.

Definition 16. The right ideal I is said to be right semiregular if for
every pair of elements r1, r2 ∈ I there exist elements s1, s2 ∈ I such that
r1 + s1 + r1s1 + r2s2 = r2 + s2 + r2s1 + r1s2.

Lemma 17. (see [3]) If I and I∗ are right semiregular ideals then I + I∗

is a right semiregular ideal.

Theorem 18. (see [3]) The sum S of all the right semiregular ideals of a
semiring R is a right semiregular two-sided ideal.

Definition 19. The right Jacobson radical S of a semiring R is the sum
of all right semiregular ideals of R.

In a corresponding manner, we obtain the left Jacobson radical S∗ of R as
the sum of all left semiregular ideals of R. An ideal of R is said to be semiregular
if it is both right and left semiregular.

Theorem 20. (see [3]) The right Jacobson radical S of a semiring R is a
left semiregular ideal.

We may now refer the Jacobson radical J (R) of a semiring R.

Proposition 21. For any semiring R, J (R) is a subtractive ideal (k-ideal).

Proposition 22. Let R be a cancellative and semisubtractive semiring.
If m is a maximal ideal in Re, then mc is a maximal ideal in R.

Proposition 23. If R is a cancellative and semisubtractive semiring, then
J (R) is the intersection of maximal k-ideals of R.
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The semiregularity in a semiring is equivalent to the quasiregularity in a
ring, i.e., either a + b − ab = 0 or a + b + ab = 0. But the later part is used as
a definition for the quasiregularity in [1]. Therefore we have the following.

1. The Jacobson radical class J is the class of all quasi-regular semirings.

2. The Jacobson radical class J of a semiring R is the sum of all quasi-regular
ideals of R equivalently the sum of semiregular ideals of a semiring R.

3. Jacobson radical J is hereditary.

4. The J contains properly Köthes nil radical class N .

Definition 24. A left R-semimodule is said to be simple if it has no
non-zero proper subsemimodules.

Definition 25. A semiring R 6= 0 is called left primitive (primitive) if R
contains a maximal left k-ideal L such that xR ⊆ L, implies that x = 0.

Definition 26. An ideal P of a semiring R is said to be semiprimitive if P
is the annihilator of the factor semimodule of some semimodular semimaximal
left ideal L of the given semiring.

Remark 27. Every semiprimitive ideal is a k-ideal.

It clear from the definition of primitivity that if the maximal left k-ideal
L happens to be a two-sided ideal, then necessarily L = 0, and the primitive
semiring is a division semiring. In particular, a commutative semiring is primi-
tive if and only if it is a semifield. The primitive semirings are non-commutative
generalizations of semifield.

Reformulating the definition of a primitive semiring. A semiring R is said
to be primitive if and only if R possesses a maximal left k-ideal L such that

(L : R)R = {x ∈ R | xR ⊆ L} = 0

if and only if the annihilator (0 : R/L)R of the simple R-semimodule R/L is 0.
To see this,

(0 : R/L)R = {x ∈ R | x(R/L) = 0}

= {x ∈ R | xR/L = L}

= {x ∈ R | xR ⊆ L}

= (L : R)R}.
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So, if

(L : R)R = 0 ⇒ (0 : R/L)R = 0

⇒ (0 : R/L)R = 0

⇒ R/L is simple,

and conversely.

Proposition 28. The factor semiring R/m is simple if and only if m is the
maximal k-ideal in R.

Proposition 29. Let R be an additively cancellative and semisubtractive
semiring. R is primitive if and only if there exists an additively cancellative
simple faithful R-semimodule.

Proof. Suppose that R is a primitive semiring. Therefore R/L is a faithful
simple R-semimodule where L is a maximal left k-ideal of R as required in the
definition.

Let M be an additively cancellative and faithful simple R-semimodule. For
any fixed m ∈ M,m 6= 0, the mapping f : R → M given by f(a) = am, for all
a ∈ R is an onto steady morphism. Therefore R/kerf ∼= M . Since M is simple,
kerf = L is a maximal k-ideal in R.

Moreover M is faithful therefore (0: R/L)R = 0. Hence R is primitive.

Theorem 30. (see [3]) Semiradical of a semiring contains a Jacobson
radical J (R) of R.

Theorem 31. (see [3]) Semiradical of a semiring is the intersection of
semimodular semimaximal (maximal) ideals in R.

Theorem 32. (see [3]) Semiradical of a semiring is the intersection of
semiprimitive (primitive) ideals in R.

Theorem 33. For an additively cancellative and semisubtractive semiring
R, the J (R) is the intersection of semimodular semimaximal (maximal) ideals
in R

Theorem 34. For an additively cancellative and semisubtractive semiring
R, the J (R) is the intersection of semiprimitive (primitive) ideals in R.

The Jacobson radical of a semiring has many further useful characteriza-
tions.

Definition 35. A semiring R is said to be semiprimitive if the intersection
of all primitive ideals of R is 0.
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In a view of Theorem 33-34 semiprimitivity is just an another name of
semisimplicity for an additively cancellative and semisubtractive semiring R.

Theorem 36. The J (R) of a semiring R is given as the intersection

J (R) = ∩{a ∈ R/ aM = 0, for any irreducible R − semimodule M}.

Theorem 37. Every primitive semiring is a prime semiring.

Proof. Suppose that R is a primitive semiring, and M is a faithful irre-
ducible R-semimodule. Claim that R is prime.

Let I 6= 0 and K 6= 0 be ideals in R such that IK = 0. Since M is
faithful irreducible, therefore KM 6= 0, implies that KM = M . Also IM 6= 0,
⇒ IM = M. But M = IM = IKM = 0, a contradiction. Hence R is a prime
semiring.

Definition 38. A semiring R with unity is said to be a division semiring
if every non-zero element of it has multiplicative inverse.

Lemma 39. If M and N are simple R-semimodules, then a non-zero

steady R-homomorphism f : M → N is an isomorphism.

Proof. Clearly kerf and Imf are subsemimodules of M and N respectively.
Since M is simple, kerf = 0, shows that f is one-one. Now Imf = N , since N
is simple and f 6= 0, implies that f is onto. Hence f is an isomorphism.

Let R be a primitive semiring and let M be a faithful irreducible R-
semimodule. Since M is simple, therefore a steady R-semimodule homomor-
phism is either zero or an automorphism.

Lemma 40. If M ∈ R-smod is simple, then the set of all steady R-

homomorphisms #EndR(M) is a division semiring.

Proof. If M = N , then proof follows immediately by lemma 39.

It should be noted that the endomorphism semiring of an additively can-
cellative, semisubtractive, irreducible and faithful R-semimodule M is a division
semiring D, D = End(M).

Henceforth we are assuming all semirings (semimodules ) are additively
cancellative and semisubtractive.

Thus the endomorphism semiring of an irreducible and faithful R-semimodule
M is a division semiring D, D = End(M).
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Consider the endomorphism of the additive semigroup M+, that is, End(M+).
We have clearly D ⊆ End(M+) and any element a ∈ R, the left multiplication
fa(x) = ax, for all x ∈ M , is in End(M+) and

fa(x) = fb(x) ⇒ ax = bx

⇒ [ax, bx] = 0

⇒ [a, b][x, 0] = 0

⇒ [a, b] = 0

⇒ a = b.

Remark 41. Note that in this case if M is R-faithful, then Me is Re

faithful.

Thus R can be embedded into End(M+) under the map defined by a →֒ fa.

Moreover for all elements d ∈ D and a ∈ R, we have dfa = fad, implies that
d ∈ ZR(M+), the center of R in End(M+). In fact D = ZR(M+). Thus an
irreducible R-semimodule may be viewed as semivector space over the division
semiring D = ZR(M+) and the semiring R as a subsemiring of linear transfor-
mations of the semivector space M. Therefore in a view of proposition 28 we
have the following.

Theorem 42. Every primitive semiring R is isomorphic to a subsemiring

of all linear transformations of semivector space over a division semiring.
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