On normality of a noetherian ring

By

Tomoharu AKIBA and Masayoshi NAGATA

(Received, March 8, 1977)

In the present article, we understand by a ring a commutative ring with identity; any local or semi-local rings are assumed to be noetherian. A ring is called *quasi-normal*¹⁾ if it is integrally closed in its total quotient ring. If such a ring has no nilpotent elements (except zero), then it is the direct sum of some normal domains under certain finiteness condition, and several results are known in such a case.

Our main result is a characterization of a quasi-normal noetherian ring, which asserts as follows:²

A noetherian ring R is quasi-normal if and only if the following two conditions are satisfied:

(1) If P is a prime ideal of height one in R, and if P contains a non-zerodivisor, then R_P is a discrete valuation ring.

(2) If a non-unit a of R is not a zero-divisor, then aR has no imbedded prime divisor.

As for normal rings (under any one of the definitions in foot-note 1), the normality is carried over to its rings of quotients. But quasi-normality may not be carried over to rings of quotients. The present article deals also with some topics related to this fact.

For a ring R, Q(R) denotes the total quotient ring of R.

1. Rings of quotients with respect to prime ideals.

It is well known that if R is a local quasi-normal ring, then either R = Q(R) or R has no nilpotent elements (except zero). More generally we have:

Proposition 1.1. Let P be a prime ideal of a quasi-normal noetherian ring R. If P contains a non-zero-divisor p, then R_P has no nilpotent elements.³⁾

Proof. Let $\phi: R \rightarrow R_P$ be the natural homomorphism. If a/r ($a, r \in R$;

¹⁾ As far as the writers know, there are two definitions of normality. In one definition, a normal ring means a normal domain (and this is rather common). In the other definition, a normal ring is the direct sum of a finite number of normal domains.

²⁾ This result was announced in [6] as an exercise (without proof).

³⁾ This result was obtained while the writers made discussion with Professor Satoshi Suzuki.

 $r \notin P$ is a nilpotent element of R_p , then ϕa is nilpotent and $sa^m = 0$ with a natural number m and $s \notin P$ ($s \in R$). Then sa is nilpotent and sa/p^n ($\in Q(R)$) is integral over R for any natural number n. By the quasi-normality, we have $sa \in p^n R$. Thus $\phi a \in \bigcap (\phi p)^n R_p = 0$. Q.E.D.

It is obvious that the direct sum of rings R_1, \dots, R_n is quasi-normal if and only if every R_i is quasi-normal. This fact and Proposition 1.1 give us:

Corollary 1.2. Any quasi-normal noetherian ring R is the direct sum of a finite number of quasi-normal noetherian rings R_i so that each R_i has no proper idempotent elements. Each R_i is either an integral domain or a ring in which every maximal prime divisor of zero is a maximal ideal.⁴)

Proof. The first assertion is obvious, and we assume that $R=R_1$ has no proper idempotent elements and that R is not an integral domain. Let P be a maximal prime divisor of zero and let M be a maximal ideal containing P. If $M \neq P$, then M contains a non-zero-divisor and R_M has no nilpotent elements. Thus P must be a primary component of the zero ideal. Let I be the intersection of other primary components of zero. Since P is a primary component of zero, it follows that $I \notin P$. Since P is a maximal prime divisor of zero, there are elements p, q of P, I, respectively, such that p+q is not a zero-divisor. Then e=p/(p+q) is a proper idempotent element of Q(R); e is obviously integral over R, a contradiction. Q.E.D.

Corollary 1.3. Let R be a ring in which every maximal ideal contains some non-zero-divisors. If the integral closure of R in Q(R) is noetherian, then R has no nilpotent elements (except zero).

Corollary 1.4. Let R be a Macaulay ring (in the sense of [5]) of Krull dimension ≥ 1 . Then, either R has no nilpotent elements or the integral closure of R in Q(R) is not noetherian.

2. Key lemmata.

Lemma 2.1. Let P be a prime ideal of height one in a quasi-normal ring R such that the set of zero-divisors is a finite union of prime ideals. If P contains a non-zero-divisor p, then R_p is also quasi-normal. Therefore, if furthermore R is noetherian, then R_p is a discrete valuation ring.

Remark. For our main result (Theorem 3.1), we need noetherian case only, which follows from (12.5) in [5].⁵⁾

Proof. Considering R_S with the set S of non-zero-divisors not contained in P, we may assume that P is the unique prime ideal containing non-zero-

⁴⁾ This result was announced in [5] as an exercise, but there was an error so that a kind of converse was claimed (which is false as is easily seen by our example in §4 below).

⁵⁾ This was announced in [6] as an exercise, where the condition that ht P=1 is missing by an error.

divisors. Then Q(R) coincides with $R[p^{-1}]$. Let N be the kernel of the natural homomorphism $R \to R_p$ and set $R^* = R/N$. Let x^* be an element of $Q(R^*) (=Q(R_p))$ integral over R_p . Then there are a natural number m and an element c of R-P such that cx^* is integral over R^* and $p^m cx^*$ is in R^* . Let b be a representative of $p^m cx^*$ in R. We want to show that b/p^m is in R. Since cx^* is integral over R^* , there is an element c' of R-P such that bc'/p^m is integral over R. This implies that bc'/p^m is in R. Suppose that b/p^m is not in R. Then $c' \in p^m R: b \subseteq P$, which is a contradiction. Thus b/p^m is contained in R, and therefore cx^* is in R^* . Since c is not in P, it follows that x^* is in R_p .

The proof above can be adapted to the following case:

P is a prime ideal of a quasi-normal ring *R* and p a non-zero-divisor. *S* is the set of non-zero-divisors not contained in *P*. ϕ is the natural homomorphism $R_S \rightarrow R_P$. $R^* = \phi(R_S)$. We extend ϕ to a homomorphism of $Q(R_P)$ into $Q(R_P)$.

Lemma 2.2. Under the circumstances, if $x \in Q(R)$ and if ϕx is integral over R^* , then $x \in R_s$ and $\phi x \in R^*$.

In particular, we have:

Lemma 2.3. With R, p, S, R^* as above, if y^* is an element of $Q(R^*)$ integral over R^* and if there is a natural number n so that $p^n y^* \in R^*$ then, $y^* \in R^*$.

3. The main theorem.

Theorem 3.1. A noetherian ring R is quasi-normal if and only if the following two conditions are satisfied:

(1) If P is a prime ideal of height one and if P contains a non-zerodivisor, then R_P is a discrete valuation ring.

(2) If a non-unit a of R is not a zero-divisor, then aR has no imbedded prime divisor.

Proof. Assume that R is quasi-normal. Lemma 2.1 shows the validity of (1). As for (2), we assume that Q is an imbedded prime divisor of aR. Then QR_Q is an imbedded prime divisor of aR_Q . It follows that there is a proper integral extension of R_Q having QR_Q as a conductor (see [5]); a contradiction by Lemma 2.3. Thus (2) holds good. Conversely, assume that (1) and (2) hold. Assume that a/b ($a, b \in R$; b non-zero-divisor) is integral over R. Consider the shortest representation of bR as an intersection of primary ideals: $bR=Q_1\cap\cdots\cap Q_s$. Condition (2) implies that $P_i=\sqrt{Q_i}$ are of height one, and hence R_{P_i} are discrete valuation rings (by (1)). Consider the natural homomorphism $\phi_i: R \to R_{P_i}$. $\phi_i(a/b)$ is integral over $\phi_i R \subseteq R_{P_i}$ and $\phi_i(a/b) \in R_{P_i}$. Thus $\phi_i a \in bR_{P_i}$ and $a \in \phi_i^{-1}(\phi_i R \cap Q_i R_{P_i}) = Q_i$ for every i. Therefore $a \in$ $\cap Q_i = bR$ and $a/b \in R$.

4. Additional remarks.

We first consider the polynomial ring F in variables X, Y, Z over an arbitrary field K. Set M = XF + YF + ZF and I = XYZM. Consider the ring R = F/I. Let ψ be the natural homomorphism of F onto R and set $x = \psi X$, $y = \psi Y$, $z = \psi Z$. We want to show:

Proposition 4.1. R is a quasi-normal noetherian ring, in which $P^* = xR + yR + (1-z)R$ is a prime ideal of height two and contains a non-zero-divisor. But R_{P^*} is not an integral domain, and consequently R_{P^*} is not quasi-normal.

Proof. By our construction, prime divisors of zero in R are xR, yR, zRand M/I (=xR+yR+zR). We show first the validity of (1) and (2) in Theorem 3.1. Assume that P is a prime ideal of height one containing a nonzero-divisor. $\bar{P} = \psi^{-1}(P)$ is a prime ideal of F containing XYZM, and therefore \overline{P} contains one of X, Y, Z. Because of symmetry, we may assume that \overline{P} contains X. Since P contains a non-zero-divisor, \overline{P} contains a polynomial f(X, Y, Z) such that $f(0, 0, 0) \neq 0$. Set J = xF + fF. Since ht $\overline{P} = 2$, \overline{P} must be a minimal prime divisor of J. Since J contains XF and since F|XF is a UFD, we see that P = XF + gF with a polynomial g such that $g(0,0,0) \neq 0$. Now, $R_{\bar{P}} \cong F_{\bar{P}}/XF_{\bar{P}}$ (because Y, Z are not in \bar{P} and therefore $IF_{\bar{P}} = XF_{\bar{P}}$) and R_{P} is a discrete valuation ring. Thus (1) is proved. Let a be a non-zerodivisor as in (2). Take $h \in F$ such that $\psi h = a$. Then $h(0, 0, 0) \neq 0$. Consider J'=hF+XYZM. J' is not contained in M and therefore J'=hF+XYZF. $J_{X}'=hF+XF$, $J_{Y}'=hF+YF$, $J_{Z}'=hF+ZF$ are intersections of primary ideals of height 2 containing X, Y, Z, respectively. $J' = J_X \cap J_Y \cap J_Z$ and therefore I' has no imbedded prime divisor. Thus (2) holds good and R is quasi-normal by Theorem 3.1. Now we consider P^* . Set $\bar{P}^* = \psi^{-1}(P^*)$. Then $\overline{P}^* = XF + YF + (1-Z)F$ and we see that P^* is a prime ideal of height 2. $R_{P^*} \cong F_{\bar{P}^*}/IF_{\bar{P}^*} = F_{\bar{P}^*}/XYF_{\bar{P}^*}$ and therefore R_{P^*} is not an integral domain. Q.E.D.

In closing this article, we add the following remarks.

Proposition 4.2. Let R be a quasi-normal noetherian ring. If zero has no imbedded prime divisor, then R is the direct sum of a finite number of quasi-normal noetherian rings R_i so that each R_i is either a normal domain or an Artin local ring.

Proof is easy because idempotent elements of Q(R) are integral over R.

Note also that if R is a quasi-normal ring (not necessary to be noetherian) in which zero has no imbedded prime divisor, then any ring of quotients of R is quasi-normal. In the noetherian case, we have furthermore:

Corollary 4.3. For a noetherian ring R such that zero has no imbedded prime divisor, R is quasi-normal if and only if R_M is quasi-normal for every maximal ideal M.

KYOTO UNIVERSITY

608

References

- [1] S. Abhyankar, Local Analytic Geometry, Academic Press, New York, 1964.
- [2] S. Abhyankar, A remark on the nonnormal locus of an analytic space, Proc. Amer. Math. Soc. 15 (1964); Errata, ibid.
- [3] N. Bourbaki, Algèbre Commutative, Hermann, Paris, 1961.
- [4] J. Dieudonné, Topics in Local Algebra, Notre Dame Math. Lect. 10, Notre Dame, 1967.
- [5] M. Nagata, Local Rings, John Wiley, New York, 1962; reprint ed. Krieger, Huntington, 1974.
- [6] M. Nagata, Commutative Rings, Kinokuniya, Tokyo, 1974 (in Japanese).