# On normality of a noetherian ring 

By<br>Tomoharu Akiba and Masayoshi Nagata

(Received, March 8, 1977)

In the present article, we understand by a ring a commutative ring with identity; any local or semi-local rings are assumed to be noetherian. A ring is called quasi-normal ${ }^{1)}$ if it is integrally closed in its total quotient ring. If such a ring has no nilpotent elements (except zero), then it is the direct sum of some normal domains under certain finiteness condition, and several results are known in such a case.

Our main result is a characterization of a quasi-normal noetherian ring, which asserts as follows: ${ }^{2)}$

A noetherian ring $R$ is quasi-normal if and only if the following two conditions are satisfied:
(1) If $P$ is a prime ideal of height one in $R$, and if $P$ contains a non-zerodivisor, then $R_{P}$ is a discrete valuation ring.
(2) If a non-unit $a$ of $R$ is not a zero-divisor, then $a R$ has no imbedded prime divisor.

As for normal rings (under any one of the definitions in foot-note l), the normality is carried over to its rings of quotients. But quasi-normality may not be carried over to rings of quotients. The present article deals also with some topics related to this fact.

For a ring $R, Q(R)$ denotes the total quotient ring of $R$.

## 1. Rings of quotients with respect to prime ideals.

It is well known that if $R$ is a local quasi-normal ring, then either $R=Q(R)$ or $R$ has no nilpotent elements (except zero). More generally we have:

## Proposition 1.1. Let $P$ be a prime ideal of a quasi-normal noetherian ring $R$. If $P$ contains a non-zero-divisor $p$, then $R_{P}$ has no nilpotent elements. ${ }^{3)}$

Proof. Let $\phi: R \rightarrow R_{P}$ be the natural homomorphism. If $a / r(a, r \in R$;

[^0]$r \notin P)$ is a nilpotent element of $R_{P}$, then $\phi a$ is nilpotent and $s a^{m}=0$ with a natural number $m$ and $s \notin P(s \in R)$. Then $s a$ is nilpotent and $s a / p^{n}(\in Q(R))$ is integral over $R$ for any natural number $n$. By the quasi-normality, we have $s a \in p^{n} R$. Thus $\phi a \in \cap(\phi p)^{n} R_{P}=0$.
Q.E.D.

It is obvious that the direct sum of rings $R_{1}, \cdots, R_{n}$ is quasi-normal if and only if every $R_{i}$ is quasi-normal. This fact and Proposition 1.1 give us:

Corollary 1.2. Any quasi-normal noetherian ring $R$ is the direct sum of a finite number of quasi-normal noetherian rings $R_{i}$ so that each $R_{i}$ has no proper idempotent elements. Each $R_{i}$ is either an integral domain or a ring in which every maximal prime divisor of zero is a maximal ideal. ${ }^{4)}$

Proof. The first assertion is obvious, and we assume that $R=R_{1}$ has no proper idempotent elements and that $R$ is not an integral domain. Let $P$ be a maximal prime divisor of zero and let $M$ be a maximal ideal containing $P$. If $M \neq P$, then $M$ contains a non-zero-divisor and $R_{M}$ has no nilpotent elements. Thus $P$ must be a primary component of the zero ideal. Let $I$ be the intersection of other primary components of zero. Since $P$ is a primary component of zero, it follows that $I \nsubseteq P$. Since $P$ is a maximal prime divisor of zero, there are elements $p, q$ of $P ; I$, respectively, such that $p+q$ is not a zero-divisor. Then $e=p /(p+q)$ is a proper idempotent element of $Q(R) ; e$ is obviously integral over $R$, a contradiction.
Q.E.D.

Corollary 1.3. Let $R$ be a ring in which every maximal ideal contains some non-zero-divisors. If the integral closure of $R$ in $Q(R)$ is noetherian, then $R$ has no nilpotent elements (except zero).

Corollary 1.4. Let $R$ be a Macaulay ring (in the sense of [5]) of Krull dimension $\geq 1$. Then, either $R$ has no nilpotent elements or the integral closure of $R$ in $Q(R)$ is not noetherian.

## 2. Key lemmata.

Lemma 2.1. Let $P$ be a prime ideal of height one in a quasi-normal ring $R$ such that the set of zero-divisors is a finite union of prime ideals. If $P$ contains a non-zero-divisor $p$, then $R_{P}$ is also quasi-normal. Therefore, if furthermore $R$ is noetherian, then $R_{P}$ is a discrete valuation ring.

Remark. For our main result (Theorem 3.1), we need noetherian case only, which follows from (12.5) in [5].5)

Proof. Considering $R_{S}$ with the set $S$ of non-zero-divisors not contained in $P$, we may assume that $P$ is the unique prime ideal containing non-zero-

[^1]divisors. Then $Q(R)$ coincides with $R\left[p^{-1}\right]$. Let $N$ be the kernel of the natural homomorphism $R \rightarrow R_{P}$ and set $R^{*}=R / N$. Let $x^{*}$ be an element of $Q\left(R^{*}\right)\left(=Q\left(R_{P}\right)\right)$ integral over $R_{P}$. Then there are a natural number $m$ and an element $c$ of $R-P$ such that $c x^{*}$ is integral over $R^{*}$ and $p^{m} c x^{*}$ is in $R^{*}$. Let $b$ be a representative of $p^{m} c x^{*}$ in $R$. We want to show that $b / p^{m}$ is in $R$. Since $c x^{*}$ is integral over $R^{*}$, there is an element $c^{\prime}$ of $R-P$ such that $b c^{\prime} \mid p^{m}$ is integral over $R$. This implies that $b c^{\prime} \mid p^{m}$ is in $R$. Suppose that $b \mid p^{m}$ is not in $R$. Then $c^{\prime} \in p^{m} R: b \subseteq P$, which is a contradiction. Thus $b \mid p^{m}$ is contained in $R$, and therefore $c x^{*}$ is in $R^{*}$. Since $c$ is not in $P$, it follows that $x^{*}$ is in $R_{P}$.
Q.E.D.

The proof above can be adapted to the following case:
$P$ is a prime ideal of a quasi-normal ring $R$ and $p$ a non-zero-divisor. $S$ is the set of non-zero-divisors not contained in $P . \quad \phi$ is the natural homomorphism $R_{S} \rightarrow R_{P} . \quad R^{*}=\phi\left(R_{S}\right)$. We extend $\phi$ to a homomorphism of $Q\left(R_{P}\right)$ into $Q\left(R_{P}\right)$.

Lemma 2.2. Under the circumstances, if $x \in Q(R)$ and if $\phi x$ is integral. over $R^{*}$, then $x \in R_{S}$ and $\phi x \in R^{*}$.

In particular, we have:
Lemma 2.3. With $R, p, S, R^{*}$ as above, if $y^{*}$ is an element of $Q\left(R^{*}\right)$ integral over $R^{*}$ and if there is a natural number $n$ so that $p^{n} y^{*} \in R^{*}$ then, $y^{*} \in R^{*}$.

## 3. The main theorem.

Theorem 3.1. A noetherian ring $R$ is quasi-normal if and only if the following two conditions are satisfied:
(1) If $P$ is a prime ideal of height one and if $P$ contains a non-zerodivisor, then $R_{P}$ is a discrete valuation ring.
(2) If a non-unit a of $R$ is not a zero-divisor, then a $R$ has no imbedded prime divisor.

Proof. Assume that $R$ is quasi-normal. Lemma 2.1 shows the validity of (1). As for (2), we assume that $Q$ is an imbedded prime divisor of $a R$. Then $Q R_{Q}$ is an imbedded prime divisor of $a R_{Q}$. It follows that there is a proper integral extension of $R_{Q}$ having $Q R_{Q}$ as a conductor (see [5]); a contradiction by Lemma 2.3. Thus (2) holds good. Conversely, assume that (1) and (2) hold. Assume that $a \mid b(a, b \in R ; b$ non-zero-divisor) is integral over $R$. Consider the shortest representation of $b R$ as an intersection of primary ideals: $b R=Q_{1} \cap \cdots \cap Q_{s}$. Condition (2) implies that $P_{i}=\sqrt{Q_{i}}$ are of height one, and hence $R_{P_{i}}$ are discrete valuation rings (by (l)). Consider the natural homomorphism $\phi_{i}: R \rightarrow R_{P_{i}} . \quad \phi_{i}(a \mid b)$ is integral over $\phi_{i} R \subseteq R_{P_{i}}$ and $\phi_{i}(a \mid b) \in R_{P_{i}}$. Thus $\phi_{i} a \in b R_{P_{i}}$ and $a \in \phi_{i}^{-1}\left(\phi_{i} R \cap Q_{i} R_{P_{i}}\right)=Q_{i}$ for every $i$. Therefore $a \in$ $\cap Q_{i}=b R$ and $a \mid b \in R$.
Q.E.D.

## 4. Additional remarks.

We first consider the polynomial ring $F$ in variables $X, Y, Z$ over an arbitrary field $K$. Set $M=X F+Y F+Z F$ and $I=X Y Z M$. Consider the ring $R=F / I$. Let $\psi$ be the natural homomorphism of $F$ onto $R$ and set $x=\psi X$, $y=\psi Y, z=\psi Z$. We want to show:

Proposition 4.1. $R$ is a quasi-normal noetherian ring, in which $P^{*}=$ $x R+y R+(1-z) R$ is a prime ideal of height two and contains a non-zero-divisor. But $R_{P^{*}}$ is not an integral domain, and consequently $R_{P^{*}}$ is not quasi-normal.

Proof. By our construction, prime divisors of zero in $R$ are $x R, y R, z R$ and $M \mid I(=x R+y R+z R)$. We show first the validity of (1) and (2) in Theorem 3.1. Assume that $P$ is a prime ideal of height one containing a non-zero-divisor. $\quad \bar{P}=\psi^{-1}(P)$ is a prime ideal of $F$ containing $X Y Z M$, and therefore $\bar{P}$ contains one of $X, Y, Z$. Because of symmetry, we may assume that $\bar{P}$ contains $X$. Since $P$ contains a non-zero-divisor, $\bar{P}$ contains a polynomial $f(X, Y, Z)$ such that $f(0,0,0) \neq 0$. Set $J=x F+f F$. Since ht $\bar{P}=2, \bar{P}$ must be a minimal prime divisor of $J$. Since $J$ contains $X F$ and since $F / X F$ is a $U F D$, we see that $P=X F+g F$ with a polynomial $g$ such that $g(0,0,0) \neq 0$. Now, $R_{P} \cong F_{\bar{P}} / X F_{\bar{P}}$ (because $Y, Z$ are not in $\bar{P}$ and therefore $I F_{\bar{P}}=X F_{\bar{P}}$ ) and $R_{P}$ is a discrete valuation ring. Thus (1) is proved. Let $a$ be a non-zerodivisor as in (2). Take $h \in F$ such that $\psi h=a$. Then $h(0,0,0) \neq 0$. Consider $J^{\prime}=h F+X Y Z M . \quad J^{\prime}$ is not contained in $M$ and therefore $J^{\prime}=h F+X Y Z F$. $J_{X}^{\prime}=h F+X F, J_{Y}^{\prime}=h F+Y F, J_{Z}^{\prime}=h F+Z F$ are intersections of primary ideals of height 2 containing $X, Y, Z$, respectively. $J^{\prime}=J_{X}^{\prime} \cap J_{Y} \cap \cap J_{Z}^{\prime}$ and therefore $J^{\prime}$ has no imbedded prime divisor. Thus (2) holds good and $R$ is quasi-normal by Theorem 3.1. Now we consider $P^{*}$. Set $\bar{P}^{*}=\psi^{-1}\left(P^{*}\right)$. Then $\bar{P}^{*}=X F+Y F+(1-Z) F$ and we see that $P^{*}$ is a prime ideal of height 2. $R_{P^{*}} \cong F_{\bar{P}^{*}} / I F_{\bar{P}^{*}}=F_{\bar{P}^{*}} \mid X Y F_{\bar{P}^{*}}$ and therefore $R_{P^{*}}$ is not an integral domain. Q.E.D.

In closing this article, we add the following remarks.
Proposition 4.2. Let $R$ be a quasi-normal noetherian ring. If zero has no imbedded prime divisor, then $R$ is the direct sum of a finite number of quasi-normal noetherian rings $R_{i}$ so that each $R_{i}$ is either a normal domain or an Artin local ring.

Proof is easy because idempotent elements of $Q(R)$ are integral over $R$.
Note also that if $R$ is a quasi-normal ring (not necessary to be noetherian) in which zero has no imbedded prime divisor, then any ring of quotients of $R$ is quasi-normal. In the noetherian case, we have furthermore:

Corollary 4.3. For a noetherian ring $R$ such that zero has no imbedded prime divisor, $R$ is quasi-normal if and only if $R_{M}$ is quasi-normal for every maximal ideal $M$.

## References

[1] S. Abhyankar, Local Analytic Geometry, Academic Press, New York, 1964.
[2] S. Abhyankar, A remark on the nonnormal locus of an analytic space, Proc. Amer. Math. Soc. 15 (1964); Errata, ibid.
[ 3 ] N. Bourbaki, Algèbre Commutative, Hermann, Paris, 1961.
[ 4 ] J. Dieudonné, Topics in Local Algebra, Notre Dame Math. Lect. 10, Notre Dame, 1967.
[5] M. Nagata, Local Rings, John Wiley, New York, 1962; reprint ed. Krieger, Huntington, 1974.
[6] M. Nagata, Commutative Rings, Kinokuniya, Tokyo, 1974 (in Japanese).


[^0]:    1) As far as the writers know, there are two definitions of normality. In one definition, a normal ring means a normal domain (and this is rather common). In the other definition, a normal ring is the direct sum of a finite number of normal domains.
    2) This result was announced in [6] as an exercise (without proof).
    3) This result was obtained while the writers made discussion with Professor Satoshi Suzuki.
[^1]:    4) This result was announced in [5] as an exercise, but there was an error so that a kind of converse was claimed (which is false as is easily seen by our example in $\S 4$ below).
    5) This was announced in [6] as an exercise, where the condition that ht $P=1$ is missing by an error.
