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In the present article, we understand by a ring a commutative ring with
identity; any local or semi-local rings are assumed to be noetherian. A ring is
called guasi-normal® if it is integrally closed in its total quotient ring. If such
a ring has no nilpotent elements (except zero), then it is the direct sum of some
normal domains under certain finiteness condition, and several results are
known in such a case.

Our main result is a characterization of a quasi-normal noetherian ring,
which asserts as follows:%

A noetherian ring R is quasi-normal if and only if the following two con-
ditions are satisfied:

(1) If Pis a prime ideal of height one in &, and if P contains a non-zero-
divisor, then R is a discrete valuation ring.

(2) If a non-unit @ of R is not a zero-divisor, then R has no imbedded
prime divisor.

As for normal rings (under any one of the definitions in foot-note 1), the
normality is carried over to its rings of quotients. But quasi-normality may
not be carried over to rings of quotients. The present article deals also with
some topics related to this fact.

For a ring R, Q(R) denotes the total quotient ring of R.

1. Rings of quotients with respect to prime ideals.
It is well known that if & is a local quasi-normal ring, then either R=Q(R)
or R has no nilpotent elements (except zero). More generally we have:

Proposition 1.1. Let P be a prime ideal of a quasi-normal noetherian
ring R. If P contains a non-zero-divisor p, them Rp has no nilpotent
elements.®

Proof. Let ¢: R—Rp be the natural homomorphism. If a/» (e, rER;

1) As far as the writers know, there are two definitions of normality. In one definition, a normal
ring means a normal domain (and this is rather common). In the other definition, a normal ring is the
direct sum of a finite number of normal domains.

2) This result was announced in [6] as an exercise (without proof).

3) This result was obtained while the writers made discussion with Professor Satoshi Suzuki.
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7€ P) is a nilpotent element of Rp, then ¢a is nilpotent and sa™=0 with a
natural number 7 and s& P (s&€ R). Then sa is nilpotent and sa/p" (€ Q(R))
is integral over R for any natural number #. By the quasi-normality, we have
sa€p"R. Thus ¢ae N (¢p)"R»=0. Q.E.D.

It is obvious that the direct sum of rings Ry, «-+, R, is quasi-normal if and
only if every R;is quasi-normal. This fact and Proposition 1.1 give us:

Corollary 1.2. Any quasi-normal noetherian ving R is the divect sum
of a finite number of quasi-normal noetherian rings Ry so that each R; has no
proper idempotent elements. Each Ry is either an integral domain or a ring
in which every maximal prime divisor of zero is a maximal ideal D

Proof. The first assertion is obvious, and we assume that =R, has no
proper idempotent elements and that R is not an integral domain. Let P be
a maximal prime divisor of zero and let 47 be a maximal ideal containing P.
If M+~P, then M contains a non-zero-divisor and R, has no nilpotent clements.
Thus 2 must be a primary component of the zero ideal. Let 7 be the intersec-
tion of other primary components of zero. Since P is a primary component
of zero, it follows that /& P. Since P is a maximal prime divisor of zero,
there are elements p, ¢ of P, 7, respectively, such that p-¢ is not a zero-divisor.
Then e=p/(p+¢) is a proper idempotent element of Q(K); ¢ is obviously integral
over R, a contradiction. Q.E.D.

Corollary 1.3. Let R be a ring in which every maximal ideal contains
some non-zero-divisors. If the integral closure of R in Q(R) is noetherian,
then R has no nilpotent elements (except zero).

Corollary 1.4. Let R be a Macaulay ring (in the sense of [5]) of Krull

dimension > 1. Then, either R has no nilpotent elements ov the integral
closure of R in Q(R) is not noetherian.

2. Key lemmata.

Lemma 2.1. Let P be a prime ideal of height one in a quasi-normal
ring R such that the set of zero-divisors is a finite union of prime ideals. If
P contains a non-zero-divisor p, then Rp is also quasi-normal. Therefore, if
Surthermore R is noetherian, then Rp is a discrete valuation ring.

Remark. For our main result (Theorem 3.1), we need noetherian case
only, which follows from (12.5) in [5].9

Proof. Considering R with the set S of non-zero-divisors not contained
in P, we may assume that 2 is the unique prime ideal containing non-zero-

4) This result was announced in [5] as an exercise, but there was an error so that a kind of con-
verse was claimed (which is false as is easily seen by our example in §4 below).

5) This was announced in [6] as an exercise, where the condition that ht =1 is missing by an
error.
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divisors. Then Q(R) coincides with R[p~!]. Let N be the kernel of the
natural homomorphism R—R, and set R*=R|N. Let x* be an element of
Q(R*) (=Q(Rp)) integral over Rp. Then there are a natural number » and
an element ¢ of R— P such that cx* is integral over R* and p™cx™ is in R*.
Let 4 be a representative of p™cx* in R. We want to show that 6/p™ isin R.
Since ¢x* is integral over R*, there is an element ¢’ of R— P such that éc'[p™
is integral over R. This implies that 6c’/p™ is in R. Suppose that &/p™ is not
in R. Then /'€ p™R:6= P, which is a contradiction. Thus 4/p™ is con-
tained in R, and therefore cx* is in R*. Since ¢ is not in P, it follows that x*
is in Rp. Q.E.D.

The proof above can be adapted to the following case:

P is a prime ideal of a quasi-normal ring R and p a non-zero-divisor. S
is the set of non-zero-divisors not contained in P. ¢ is the natural homomor-
phism R¢—>R,. R*=¢(R;). We extend ¢ to a homomorphism of Q(X,)

into Q(Rp).

Lemma 2.2. Under the circumstances, if x€ Q(R) and if ¢x is integral
over R*, then x&€ Rs and ¢x= R*.
In particular, we have:

Lemma 2.3. With R, p, S, R* as above, if y* is an element of Q(R*)
integral over R* and if there is a natural number n so that p"y*& R* then,
y*eR*.

3. The main theorem.

Theorem 3.1. A noetherian ring R is quasi-normal if and only if the
following two conditions are satisfied:

(1) If P is a prime ideal of height one and if P contains a non-zero-
divisor, then Rp is a discrete valuation ring.

(2) If a non-unit a of R is not a zero-divisor, then aR has no imbedded
prime divisor.

Proof. Assume that R is quasi-normal. Lemma 2.1 shows the validity
of (1). As for (2), we assume that @ is an imbedded prime divisor of aR.
Then QR is an imbedded prime divisor of aRp. It follows that there is a
proper integral extension of Rp having QRp as a conductor (see [5]); a con-
tradiction by Lemma 2.3. Thus (2) holds good. Conversely, assume that (1)
and (2) hold. Assume that a/é (@, € R; b non-zero-divisor) is integral over R.
Consider the shortest representation of 4K as an intersection of primary ideals:
bR=01N--N Qs Condition (2) implies that P;=+Q; are of height one, and
hence Rp; are discrete valuation rings (by (1)). Consider the natural
homomorphism ¢;: R—Rp,. ¢yalb) is integral over $; RS R p; and ¢y(a/b)E R p,.
Thus $a€bRp; and acd, U RN QiRp)=Q; for every 7. Therefore ac
N Qi=46R and a/b=R. Q.E.D.
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4. Additional remarks.

We first consider the polynomial ring # in variables X, ¥, Z over an
arbitrary field XK. Set M=XF+YF+ZF and I=XYZM. Consider the
ring R=F[I. Let i be the natural homomorphism of #onto R and set x=4.X,
y=y¢ YV, z=4Z. We want to show:

Proposition 4.1. R is a quasi-normal noethevian ring, in which P*=
xR+yR+(1—2)R is a prime ideal of height two and contains a non-zero-divisor.
But Rp. is not an integral domain, and consequently Rp. is not quasi-normal.

Proof. By our construction, prime divisors of zero in R are xR, yR, zR
and M|I (=xR+yR+2R). We show first the validity of (1) and (2) in
Theorem 3.1.  Assume that P is a prime ideal of height one containing a non-
zero-divisor. P=y1(P) is a prime ideal of F containing X YZM, and there-
fore P contains one of X, ¥, Z. Because of symmetry, we may assume that P
contains X. Since P contains a non-zero-divisor, 2 contains a polynomial
AX, ¥, Z) such that A0, 0, 0)40. Set /=xF+fF. Since ht P=2, P must
be a minimal prime divisor of /. Since / contains X# and since F/XF is a
UFD, we see that P=XF-+gF with a polynomial g such that g(0,0,0)50.
Now, Rp=Fp/XFp (because V, Z are not in P and therefore //3=XF3) and
Rp is a discrete valuation ring. Thus (1) is proved. Let @ be a non-zero-
divisor as in (2). Take Z& F such that hA=a. Then £(0, 0, 0)540. Consider
J'=hF4+XYZM. ]’ is not contained in M and therefore /'=iF{+XYZF.
Jx'=hF+XF, [y =hF+YF, [;/=hF4ZF are intersections of primary
ideals of height 2 containing X, ¥, Z, respectively. J'=/x'N /' N/, and
therefore /' has no imbedded prime divisor. Thus (2) holds good and R is
quasi-normal by Theorem 3.1. Now we consider P*. Set P*=iy1(P*).
Then P*=XF+ YF+(1—Z)F and we see that P* is a prime ideal of height
2. Rp=Fp.|lFs.=Fp.|]XVFp. and therefore Rp. is not an integral domain.

Q.E.D.
In closing this article, we add the following remarks.

Proposition 4.2. Let R be a gquasi-normal noetherian ring. If zero
has no imbedded prime divisor, then R is the divect sum of a finite number of
quasi-normal noetherian rings Ry so that each Ry is either a normal domain
or an Artin local ring.

Proof is easy because idempotent elements of Q(R) are integral over R.

Note also that if R is a quasi-normal ring (not necessary to be noetherian)
in which zero has no imbedded prime divisor, then any ring of quotients of &
is quasi-normal. In the noetherian case, we have furthermore:

Corollary 4.3. For a noetherian ving R such that zevo has no imbedded
prime divisor, R is quasi-normal if and only if R, is quasi-normal for every
maximal ideal M.
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