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ROCCO CHIRIVÌ , CORRADO DECONCINI AND ANDREA MAFFEI

(Received May 25, 2005, revised April 24, 2006)

Abstract. Let G be a simply connected semisimple algebraic group and letK be the
subgroup of points fixed by an involution ofG. For certain representations containing a line
r preserved byK, we study the normality of the closure of the set of vectors which areG

conjugate to a vector inr. Some applications of our result to the normality of certain classical
varieties are given.

Introduction. Let G be a simply connected semisimple algebraic group, letσ an invo-
lution of G and letH be the normalizer of the subgroupGσ of fixed points. Denoting byX
the wonderful compactification ofG/H and byL a line bundle generated by global sections,
we know that the ringA(L) = ⊕

n≥0 Γ (X,Ln) is generated in degree one by [3]. So it can
be identified with the projective coordinate ring of the variety which is the image ofX into
P(Γ (X,L)∗). The varietyX is smooth, so the corresponding cone inP(Γ (X,L)∗) is normal.

On the other hand, if we consider an irreducible moduleV with a (necessarily unique)
eigenvectorh for Gσ , then one knows that the map fromG/H to P(V ) defined bygH �→
[g · h] extends to a morphismπ from X to P(V ). SetL = π∗(OP(V )(1)) and denote byB(L)

the projective coordinate ring ofπ(X). We prove thatA(L) is the integral closure ofB(L) in
its quotient field. In particular, we obtain that the cone overπ(X) is normal if and only if the
highest weight ofV is a minuscule weight for the restricted root system of the involutionσ .
In the special case of the compactification of the group this has already appeared in [5].

The paper is organized as follows. In Section 1 we give a short description of the con-
struction and the basic properties of complete symmetric varieties. Our result reported above
aboutA(λ) andB(λ) is proved in Section 2.

In Section 3 we give a slight generalization of our result about normality considering a
sort of parabolic induction of a symmetric variety. In the last Section we remark that our result
can be applied to proving the normality and non normality of some rather concrete rings. For
example, we give a proof of the normality of the subring of the ring of polynomial functions
on the symmetric (respectively antisymmetric) matrices of rank less than or equal to a given
integer, generated by the minors (respectively pfaffians) of a fixed order. In the last example
we apply our result to proving that the closure of a spherical nilpotent orbit of height less or
equal to 2 is a normal variety.

We would like to thank Michel Brion for explaning to us his simple proof of Proposition
2.1 and Domingo Luna for suggesting Example 4.4.
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1. Description of complete symmetric varieties. In this Section we collect some
preliminary results for the sequel, setting up our notation. We review the construction of the
wonderful compactification ofG/H , for details one can see [7, 8].

Let g be a semisimple Lie algebra over an algebraically closed fieldk of characteristic
zero, and letσ be an order 2 automorphism ofg. Denote byh the subalgebra of fixed points of
σ in g. If t is aσ -stable toral subalgebra ofg, we can decomposet ast0 ⊕ t1 with t0 the(+1)-
eigenspace ofσ andt1 the(−1)-eigenspace. We recall that anyσ -stable toral subalgebra ofg

is contained in a maximal one which is itselfσ -stable. We fix such aσ -stable maximal toral
subalgebrat for which dimt1 is maximal and denote this dimension byl; we call it therank
of σ .

Let Φ ⊂ t∗ be the root system ofg and letg = t ⊕ ⊕
α∈Φ gα be the root space decom-

position with respect to the action oft. Observe thatσ acts also ont∗ and that it preservesΦ
and the Killing form(·, ·) on t andt∗. Let Φ0 = {α ∈ Φ | σ(α) = α} andΦ1 = Φ � Φ0.
The choice of aσ -stable toral subalgebra for which dimt1 is maximal is equivalent to the
conditionσ |�α = id|�α for all α ∈ Φ0. Moreover, we can choose the setΦ+ of positive roots
in such a way thatσ(α) ∈ Φ− for all rootsα ∈ Φ+ ∩ Φ1. Let ∆ be the base defined byΦ+
and put∆0 = ∆ ∩ Φ0, ∆1 = ∆ ∩ Φ1. Denote byΛ ⊂ t∗ the set of integral weights ofΦ and
observe thatσ preservesΛ. Let Λ+ be the set of dominant weights with respect toΦ+ and
let ωα be the fundamental weight dual to the simple corootα∨ for α ∈ ∆. For λ ∈ Λ+ let
alsoVλ be the irreducible representation ofg of highest weightλ.

We say thatλ ∈ Λ+ is spherical if there existsh ∈ Vλ � {0} fixed byh (i.e.,h ·h = 0): in
this case the vectorh is also unique up to scalar and we denote it byhλ. It is called aspherical
vector and theG-moduleVλ is called aspherical module. We denote the set of spherical
weights byΩ+ and the lattice they generate byΩ .

For a rootα defineα̃
.= α − σ(α) and letΦ̃ = {α̃ | α ∈ Φ1}. This is a (not necessarily

reduced) root system of rankl with base∆̃ = {α̃ | α ∈ ∆1}; it is called therestricted root sys-
tem. As a consequence of a result of Helgason (see also [14] or [9] for an algebraic approach),
Ω ∩ Λ+ = Ω+ andΩ can be identified with the lattice of integral weights of the root system
(Φ̃,Ω ⊗Z R). We denote byR̃ the root lattice ofΦ̃ and byR̃+ the monoid generated by the
base∆̃.

Now we come to the construction of complete symmetric varieties following De Concini
and Procesi [7]. LetG be a connected algebraic group overk whose Lie algebra is isomorphic
to g. The action ofσ on g lifts to an automorphism ofG, still denoted byσ . Let H be the
normalizer inG of the Lie algebrah ⊂ g. As explained in [7],H is the maximal subgroup
havingh as Lie algebra; ifG is an adjoint group,H coincides with the fixed point set ofσ in
G. The quotientG/H is called asymmetric variety. However, sinceG/H does not depend on
the choice of the groupG overg, we prefer to chooseG simply connected, so for the rest of
the paperG is a simply connected algebraic group with Lie algebrag unless otherwise stated.
We introduce also the torusT (resp.,T0 andT1) whose Lie algebra ist (resp.,t0 andt1), and
the parabolic subgroupP of G associated to∆0.
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Consider now a (dominant) spherical weightλ with the property(λ, α̃) �= 0 for all
α̃ ∈ ∆̃, such a weight is calledregular, and letx0 = [hλ] ∈ P(Vλ). We define the variety
X = X(σ) as the closureG · x0 ⊂ P(Vλ). One can show thatx0 is the unique point fixed
by H in X and that the mapg �→ gx0 induces an embeddingG/H ↪→ X which is called
the “minimal compactification” ofG/H . Moreover the varietyX constructed in this way is
independent of the regular weightλ up to isomorphism ofG-variety.

The following Proposition describes the structure of the compactification.

PROPOSITION 1.1 (Theorem 3.1 in [7]). Let X = X(σ) be the compactification of
G/H described above, then the following hold.

(1) X is a smooth projective G-variety;
(2) X � G · x0 is a divisor with normal crossings and smooth irreducible components

S1, . . . , Sl ;
(3) the G-orbits of X correspond to the subsets of the indices 1, 2, . . . , l so that the

orbit closures are the intersections Si1 ∩ Si2 ∩ · · · ∩ Sik , with 1 ≤ i1 < i2 < · · · < ik−1 <

ik ≤ l;
(4) the unique closed orbit Y

.= ⋂
l
i=1Si is isomorphic to the partial flag variety G/P .

Fix now a dominant weightλ ∈ Λ+ such that there exists a pointr ∈ P(Vλ) fixed byH .
By [8] we know that a point with this property is unique, so we define the varietyXλ to be the
closureG · r in P(Vλ) and defineCλ as the cone overXλ in Vλ. By [7] it is known that the
mapG/H  gH �→ g · r ∈ P(Vλ) extends to a morphism

πλ : X → Xλ .

In particular,πλ is an isomorphism in the case of a regular weightλ.
We use such a morphism to construct some line bundles onX by settingLλ correspond-

ing to λ in the identification of Pic(G/P) with a sublattice of the weight latticeΛ. One can
see the following

PROPOSITION 1.2 (Proposition 8.1 in [7]). The map Pic(X) → Pic(Y ) induced by
the inclusion is injective.

So we can identify Pic(X) with a sublattice of the weight lattice. Furthermore, the line
bundles constructed above account for all line bundles, since we have

PROPOSITION 1.3 (Lemma 4.6 in [8]). Under the described identification Pic(X) is
the lattice generated by the dominant weights λ such that P(Vλ)

H is not empty.

Notice that the latticeΩ generated by the spherical weights is contained in the Pic(X)

by definition. Further this lattice is the Picard group “almost always", i.e., except in few
situations. Indeed, one can define an involutionσ̄ on ∆1 such that for allα ∈ ∆1 we have
σ(α) = −σ̄ (α)−β for a suitable non-negative linear combinationβ of roots in∆0. We call a
rootα ∈ ∆1 exceptional if σ̄ (α) �= α and(α, σ̄ (α)) �= 0. Then the Picard group Pic(X) is the
lattice generated byΩ and by the fundamental weights associated to the (simple) exceptional
roots.
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By construction every line bundle has a naturalG-linearization. Moreover, ifλ is not
dominant, thenΓ (Y,Lλ|Y ) = IndG

P (k−λ) = 0 and henceLλ is generated by global sections if
and only ifλ is dominant.

Now we describe the sections of a line bundleL as aG-module. The first useful re-
mark is that any irreducibleG-module appears inΓ (X,L) with multiplicity at most one (see
Lemma 8.2 in [7]). We analyze first the case of the divisorsSi , 1 ≤ i ≤ l. Let α̃1, . . . , α̃l be
the elements of∆̃. Then, up to reindexing theG-stable divisors, we have

PROPOSITION 1.4 (Corollary 8.2 in [7]). There exists a unique up to scalar G-in
variant section si ∈ Γ (X,Lα̃i

) whose divisor is Si .

For an elementν = ∑
l
i=1ni α̃i ∈ R̃+, the multiplication bysν .= ∏

i s
ni

i gives a linear
map

Γ (X,Lλ−ν) → Γ (X,Lλ) .

If µ ∈ Pic(X) is dominant, then by construction ofLµ we certainly have a submodule of
Γ (X,Lµ) isomorphic toV ∗

µ , obtained by the pull back of the homogeneous coordinates of
P(Vµ) to X.

If λ ∈ Pic(X) is any element such thatλ − µ ∈ R̃+, we can consider the image ofV ∗
µ

under the multiplication bysλ−µ from Γ (X,Lµ) to Γ (X,Lλ). We call this imagesλ−µV ∗
µ .

We order Pic(X) by settingµ ≤σ λ if λ − µ is a non-negative integer combination of∆̃ (i.e.,
if λ − µ ∈ R̃+).

PROPOSITION 1.5 (Theorem 5.10 in [7]). Let λ ∈ Pic(X). Then

Γ (X,Lλ) =
⊕

µ≤σ λ andµ∈Λ+
sλ−µV ∗

µ .

2. The normalization. LetX be the complete symmetric variety associated to(G, σ),
and letλ be a dominant weight in the Picard group ofX. Let An(λ) = Γ (X,Lnλ), and con-
sider the graded ringA(λ) = ⊕

n∈N An(λ). Let B(λ) be the subring ofA(λ) generated by the
moduleV ∗

λ ⊂ A1(λ); also denote byBn(λ) = B(λ) ∩ An(λ) the homogeneous components
of B(λ). In this Section we prove that the ringA(λ) is the normalization of the ringB(λ).

On the geometric side, let̃Xλ ⊂ P(Γ (X,Lλ)
∗) be the image ofX under the morphism

π̃λ of X defined by the line bundleLλ generated by its global sections. Since by [3] the ring
A(λ) is generated in degree 1, it is the coordinate ring of the coneC̃λ overX̃λ. By construction
B(λ) is the coordinate ring of the coneCλ overXλ, and we have the following commutative
diagram:

X

π̃λ

����
��

��
�

πλ

���
��

��
��

�

X̃λ

ηλ �� Xλ

Notice also that, sinceX is smooth, the ringA(λ) is integrally closed (see for example [10]
Exercise II.5.14). Hence to prove thatA(λ) is the normalization ofB(λ), it is enough to prove
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thatηλ is birational (which clearly implies that the two cones are birational) and thatA(λ) is
integral overB(λ).

Our original proof of the following proposition was by far too complicated. We thank
Michel Brion who explained us the following proof.

PROPOSITION 2.1. Let λ be a dominant weight in Pic(X). Then A(λ) is integral over
B(λ).

PROOF. Let S(Lλ) be the symmetric algebra sheaf constructed overLλ, and letL =
Spec(S(Lλ)) be the total space of the dual ofLλ. Further, denote byM the total space of the
dual ofOP(Vλ)(1). By construction we have the following pull back diagram

L
π̄ ��

��
PB

M

��
X

πλ �� P(Vλ)

By definition A(λ) = Γ (L,OL) = Γ (M, π̄∗OL) and the image of the natural morphism
Γ (M,OM) → Γ (M, π̄∗OL) is the subringB(λ). Now observe that̄π is projective, sōπ∗OL

is a coherent sheaf onM. HenceA(λ) is finite as aΓ (M,OM)-module, or equivalently, as a
B(λ)-module. �

We now prove thatA(λ) andB(λ) have the same quotient field by proving that the map
ηλ : X̃λ → Xλ is birational. We need the following simple lemma on the dominant order;
only for its statementΦ is an arbitrary irreducible root system.

LEMMA 2.2. Let Φ be an irreducible root system and ∆ ⊂ Φ a set of simple roots. If
λ ∈ Λ�{0} is a dominant weight, then there exists a positive integer m and a dominant weight
µ such that 〈µ, α∨〉 > 0 for all simple roots α and mλ ≥ µ with respect to the dominant order.

PROOF. Set supp(λ)
.= {α ∈ ∆ | 〈λ, α∨〉 �= 0}. If supp(λ) = ∆, there is nothing

to prove. So suppose the contrary. Letγ ∈ ∆ be such that there existsα ∈ supp(λ) with
〈γ, α∨〉 < 0. Takingm to be any integer greater than 2, we have supp(mλ − α) ⊃ supp(λ) ∪
{γ }. Using this remark and the irreducibility ofΦ, the claim follows by an easy induction.�

We recall that an involutionσ is said to besimple if g has noσ -stable proper ideal. It
is known (Lemma 15.5.6 in [14]) that for a simple involutioñΦ is irreducible and eitherg is
simple org � g1 × g1 with g1 simple andσ(x, y) = (y, x).

LEMMA 2.3. Let σ be a simple involution. Let λ be a dominant weight in Pic(X)

which is not a multiple of the fundamental weight corresponding to an exceptional root, and
let xλ ∈ P(Vλ) be the point fixed by H . Then the stabilizer in G of xλ is H .

PROOF. By hypothesis we haveH ⊂ StabG(xλ) and by [7, §1] we know thatH is
a maximal subgroup havingh as Lie algebra. So it suffices to show that dim StabG(xλ) =
dimH , or, equivalently, dimXλ = dimX.
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By Proposition 2.1 we also have that dimXλ = dim ProjA(λ). Hence we need to verify
that the dimension ofΓ (X,Lnλ), whenn goes to infinity, grows with the same order of infinity
of the polynomialn �→ ndimX+1. More precisely, since we already know that dimXλ ≤
dimX, it is enough to show that the dimension ofΓ (X,Lnλ) grows at least with this order of
infinity. Observe that to verify this property we can substituteλ by any multiplemλ, with m

a positive integer.
Now, if λ is spherical, using the previous lemma 2.2 applied toΦ̃, we can choosem such

that there exists a regular weightµ with the propertiesµ ≤σ mλ. Then, by Proposition 1.5
we have

dimΓ (X,Lnmλ) ≥ dimΓ (X,Lnµ) .

Sinceµ is regular,Lµ is an ample line bundle onX. Hence the dimension of the right-hand
side has the desired order of growth, by a standard property of the Hilbert polynomial (see
Theorem 7.5 in [10]).

Let us now assume that we are in the exceptional case and thatλ is not a multiple of one
of the two exceptional fundamental weights. Writeλ = λ0 + nω with λ0 spherical (different
from 0 by hypothesis),n positive andω an exceptional fundamental weight. In particular, by
what we have proved for spherical weights, we can assume the lemma proved forλ0.

Consider the projective morphism̃π = π̃λ0 × π̃nω : X → X̃λ0 × X̃nω. It is now clearπ̃
factors throughX̃λ and this proves our claim. �

In the caseλ = mωβ with β an exceptional root, we observe thatX is not birational to
Xλ. Nevertheless,Γ (X,Lλ) = V ∗

λ in this case, sõXλ is equal toXλ and in particularηλ is
birational.

THEOREM 2.4. If λ is a dominant weight in Pic(X), then A(λ) is the normalization of
B(λ).

PROOF. We have already observed thatA(λ) is integrally closed and in Proposition 2.1
have proved thatA(λ) is integral overB(λ). Finally, Lemma 2.3 and the remark above imply
thatηλ is birational, and we see thatA(λ) andB(λ) have the same quotient field. �

3. Parabolic induction. In this Section we introduce a family of varieties related to
the complete symmetric varieties; one can think of these varieties as a parabolic induction.
They share most properties with the complete symmetric varieties; also the proofs of such
properties are almost similar. More details can be found in [5] for the case of the group
compactification; here we simply generalize theframework of [5], reporting the main results.

As in the previous sections,G will denote a semisimple simply connected algebraic
group,T ⊂ G a maximal torus andB ⊂ G a Borel subgroup containingT . Also,σ : G → G

is an involution with the fixed point setH . Furthermore,̄G is the adjoint quotient ofG andH̄

is the fixed point set of the induced involutionσ : Ḡ → Ḡ.
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Now we take another semisimple simply connected groupG, a maximal torusT in G
and a Borel subgroupB ⊃ T in G. We shall denote the character group ofT by ΛG and the
monoid of dominant weights with respect toB by Λ+

G .
We shall assume thatG contains a parabolic subgroupP ⊂ B having the following

property. IfS ⊂ P denotes the solvable radical ofP , we have a surjective homomorphism
π : P/S → Ḡ with finite kernel. Composingπ with the quotient homomorphismP → P/S,
we get a surjectionπ ′ : P → Ḡ. Equivalently, we can assume that we have an isogeny from
G to a semisimple Levi factor ofP . In particular, we have an action ofG onS and a surjective
homomorphismγ : S � G → P with finite kernel. Usingγ , we can consider anyP-module,
and hence anyG-module, as aS � G-module.

Furthermore, we can clearly assume that the homomorphismπ ′ : P → Ḡ takes the
Borel subgroupB to the Borel subgroup̄B, which is the image inḠ of B and the maximal
torusT to the maximal torus̄T , which is the image in̄G of T . We can also assume that under
the homomorphismγ : S � G → P , T is mapped toT . So we can identify the chosen base
∆ of the root system ofG with a subset of∆G .

We setH equal to the preimage underπ ′ of the subgroupH̄ of Ḡ.
Let us consider now the wonderful compactificationX of G/H and define

X .= G ×P X .

We want to make a study of some of the properties ofX . This study is in fact essentially
identical to that ofX. First of all, notice that, since we have an obviousG-equivariant fibration

p : X → G/P
with fiberX, we immediately deduce that allG-orbits inX are of the formG ×P Z, Z being
a G-orbit in X. This gives a codimension preserving bijection betweenG-orbits inX and
G-orbits in X with the property that, sinceG/P is projective, ifZ is a G-orbit in X, then
G ×P Z = G ×P Z̄. In particular, each orbit closure inX is smooth. The complement of
the open orbit, which is isomorphic toG/H, is a divisorD with normal crossings and smooth
irreducible componentsDi , i = 1, . . . , l, each of which is the closure of aG-orbit.

Furthermore, each orbit closure inX is the transversal intersection of those among the
Di ’s which contain it. Finally,X contains a unique closed orbit

⋂
l
i=1Di which is isomorphic

to G ×P G/P � G/Q, whereQ is the minimal parabolic subgroup ofG containingB such
thatQ ∩ G = P .

We are now going to determine the Picard group ofX . Recall that, by Proposition 1.2,
the homomorphismi∗ : Pic(X) → Pic(G/P) induced by the inclusioni : G/P ↪→ X as the
closed orbit, is injective. Consider now the inclusionj : G/Q ↪→ X as the closed orbit and
the inclusionh : G/P ↪→ G/Q as the fiber onP of the fibrationG/Q → G/P . We have

PROPOSITION 3.1. The homomorphism j∗ : Pic(X ) → Pic(G/Q) is injective and has
the lattice (h∗)−1

(
i∗(Pic(X))

)
as image.

Now, having computed the Picard group ofX , we can pass to analyze the space of sections
of a line bundle onX . Notice that we have an injective mapk : Λ → ΛG corresponding
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to the inclusion∆ ⊂ ∆G and a surjective mapr : ΛG → Λ defined by the restriction of
the characters ofT to T . Using this last map, we can express the Picard group as Pic(X ) =
r−1(Pic(X)), identifying Pic(X) with a subset ofΛ. We can further define the elementsβ̃i =
k(α̃i ) for i = 1, . . . , l.

PROPOSITION 3.2. Let λ ∈ Pic(X ) and Lλ the corresponding line bundle on X . Then
the restriction map

Γ (X , Lλ) → Γ (G/Q, Lλ)

is surjective.

Once the above result has been established, the following properties ofX are proven
exactly as in [7]. The first one is

PROPOSITION 3.3. We can order the divisors Di , i = 1, . . . , l in such a way that,
under the above identification, the class in Pic(X ) of O(Di ) is β̃i .

Let us now choose for eachi = 1, . . . , l, a non zero sectionti ∈ Γ (X , Lβ̃i
) whose set

of zeros isDi . Consider the ring

A =
⊕

λ∈Pic(X )

Γ (X , Lλ) .

Given sequencesh = (h1, . . . , hl) andk = (k1, . . . , kl) of non negative integers, we shall say
thatk ≥ h if ki ≥ hi for eachi = 1, . . . , l and set|h| = h1 + · · · + hl . If we now fix such a
sequenceh, we setAh(λ) equal to the image of the map

Γ (X , Lλ−∑
hi β̃i

) → Γ (X , Lλ)

given by multiplication byth1
1 · · · thl

l . Clearly,Ak(λ) ⊂ Ah(λ) if and only if k ≥ h and⊕
λ∈Pic(X ) Ah(λ) is the ideal generated byth1

1 · · · thl

l .

THEOREM 3.4. (1) For each λ ∈ Pic(X ),

Ah(λ)/
∑
k>h

Ak(λ)

is isomorphic, as a G-module, to Γ (G/B, Lλ−∑
i hi β̃i

). In particular, as a G-module, we have
an isomorphism

Γ (X , Lλ) �
⊕

(h1,...,hl )

Γ (G/B, Lλ−∑
i hi β̃i

) .

(2) If we set

C =
⊕

λ∈Pic(X )

Γ (G/B, Lλ)

and

Ai =
⊕

|h|=i,λ∈Pic(X )

Ah(λ) =
∑
|h|=i

t
h1
1 · · · thl

l A ,
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then the associated graded ring

GrA =
⊕
i≥0

Ai/Ai+1

is isomorphic to the polynomial ring C[x1, . . . , xl], where for j = 1, . . . , l, xj is the image of
the tj in A1/A2.

(3) Let λ ∈ Pic(X ) be a dominant weight. Then the ring

Aλ
.=

⊕
n≥0

Γ (X , Lnλ)

is normal with rational singularities.

As a consequence of the surjectivity of the multiplication maps ofX we have

PROPOSITION 3.5. Let λ,µ ∈ Pic(X ) ∩ Λ+
G . Then the multiplication map

Γ (X , Lλ) ⊗ Γ (X , Lµ) → Γ (X , Lλ+µ)

is surjective.

We are now going to use the properties ofX to study certain orbit closures. Let us take
a representationM of G and a non zero vectorv ∈ M which, as we can suppose without loss
of generality, spansM as aG-module. The assumptions we are going to make onv are

ASSUMPTIONS 3.6. (1) There is a characterχ : H → k∗ such thathv = χ(h)v for
all h ∈ H.

(2) LetW ⊂ M be theG-module spanned byv. ThenW has a highest weight vector.

Let us now make some considerations. By assumption (1) the subgroupH in G fixes[v], so
that the orbit mapg → g · [v] factors through the mapG → G/H . Moreover, since in an
irreducible representation the line fixed byH is unique, the decomposition ofW in irreducible
modules is multiplicity free. Thus, we get anG-equivariant inclusion of the vector spaceW

into the coordinate ringk[G/H ]. In particular, using assumption (2), we deduce that there is
a dominantλ′ ∈ Pic(X) and a subsetΘ ′ ⊂ Σ̃(λ′) containingλ′, such that, as aG-module,

W �
⊕

µ′∈Θ ′
Vµ′ .

Also, by Assumption (1), we have thatH preserves the line spanned byv, so thatW is stable
under the action ofP andW ⊂ MU , whereU is the unipotent radical inP . Sincev spans
M as aG-module, we deduce that indeedW = MU . Since theG-moduleM is irreducible if
and only if theG-moduleMU is irreducible, using our description of Pic(X ), we deduce that
there is a subsetΘ ⊂ Pic(X ) mapped bijectively ontoΘ ′ by the mapr : Pic(X ) → Pic(X)

such that, as aG-module,
M �

⊕
µ∈Θ

Mµ .

Let λ ∈ Θ be the unique element mapped toλ′ by r. Given a dominantµ′ = λ′ − ∑
aiα̃i , we

setρ(µ′) = λ − ∑
aiβ̃i . Notice that the setΘ(λ) of all ρ(µ′) for µ′ as above, coincides with

the set of highest weights of the irreducible components of theG-moduleΓ (X , Lλ).
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DEFINITION 3.7. The varietyX (Θ) is the cone over the orbitG · v, i.e., lettingGm

act onM by homotheties, we define

X (Θ) = (G × Gm) · v .

In the following theorem we summarize the properties of the varietiesX (Θ).

THEOREM 3.8. (1) Θ = ρ(Θ ′). In particular, Θ ⊂ Θ(λ).
(2) The variety X (Θ) depends, up to isomorphism of G-varieties, only on Θ and not

on the choice of a specific vector v satisfying Assumptions 3.6.
(3) The variety X (Θ) is normal with rational singularities if and only if Θ = Θ(λ).
(4) For a general Θ ⊂ Θ(λ), X (Θ(λ)) is the normalization of X (Θ). In particular,

X ({λ}) is normal if and only if λ′ is minuscule for the restricted root system.

The theorem above can be extended as follows. SupposeG = G1 × G2 × · · · × Gn,
with involution σ = σ1 × σ2 × · · · × σn. Let M1, . . . ,Mn beG-modules and letv1, . . . , vn

be vectors withvi ∈ Mi each of which satisfying Assumptions 3.6. Assume further that for
eachi = 1, . . . , n andj �= i, Gj fixesvi . By what we have already seen, for eachi, Mi is a
highest weight module of highest weightλi , and we get a subsetλi ∈ Θi ⊂ Pic(X ) such that
Mi � ⊕

µ∈Θi
Mµi . Denote byV the subspace inM = M1⊕· · ·⊕Mn spanned by the vectors

v1, . . . , vn. We now defineX (Θ1, . . . ,Θn) as the closure ofG · V ⊂ M. One then obtains

THEOREM 3.9. (1) The variety X (Θ1, . . . ,Θn) is normal with rational singularities
if and only if Θi = Θ(λi) for each i = 1, . . . , n.

(2) For a general sequence Θ1, . . . ,Θn with Θi ⊂ Θ(λi), the normalization of the
variety X (Θ1, . . . ,Θn) is given by X (Θ(λ1), . . . ,Θ(λn)). In particular the variety
X ({λ1}, . . . , {λn}) is normal if and only if λ′

i is minuscule for the restricted root system of
(Gi, σi) for each i = 1, . . . , n.

4. Examples. In this Section we are going to illustrate a number of examples of vari-
eties of the formX (Θ).

EXAMPLE 4.1. Let 0< h ≤ n be integers, takeG = SL(n) and letP be the parabolic
of G whose Levi factor has semisimple partG = SL(h)× SL(n−h). Consider the involution
σ(A, B) = (tA−1, B) onG, whose fixed point subgroupH in G is clearly SO(h)×SL(n−h).
In theG moduleV2ω1 of n × n symmetric matrices, take the matrix

M =
(

Ih 0
0 0

)
.

Denote byOh the orbit ofM under the action ofG × Gm (with Gm acting by homotheties).
Consider theG equivariant morphism

∧r : V2ω1 → V2ωr mapping each matrix to itsr-
exterior power.

Remark that the closure of
∧r

(Oh) is the varietyX ({2ωr}). We can now apply our
Theorem 3.8 and conclude that this variety is normal, since 2ωr is minuscule for the restricted
root system ofσ .
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Now let X = (xi,j )1≤i,j≤n with xi,j = xj,i be a symmetric matrix of indeterminate. In
the polynomial ringS = K[xi,j ]i,j consider the subringSr generated by the determinants of
ther×r minors ofX. LetIh+1 be the ideal generated by the determinants of the(h+1)×(h+1)

minors ofX and denote bySr,h the image ofSr moduloIh+1. Our construction clearly implies
thatSr,h is the coordinate ring ofX ({2ωr}), hence it is an integrally closed domain (recall that
the idealIh+1 is prime [6]) with rational singularities. A similar statement holds for non
symmetric matrices (see [2]).

In particular, if r = 1, we obtain a (very complicated) proof of the normality of the
determinantal varieties for symmetric matrices.

EXAMPLE 4.2. In a similar fashion, using the symplectic involution instead of the
orthogonal involution, we get the following result, the details of whose proof we leave to the
reader.

Let X = (xi,j )1≤i,j≤n with xi,j = −xj,i be a antisymmetric matrix of indeterminates.
In the polynomial ringS = K[xi,j ]i,j consider the subringSr generated by the pfaffians of
sizes 2r × 2r of principal minors ofX. Let Ih+1 be the ideal generated by the pfaffians of the
2(h + 1) × 2(h + 1) principal minors ofX and denote bySr,h the image ofSr moduloIh+1.
Then the ringSr,h is an integrally closed domain (also in this case whereIh+1 is a prime ideal
[6]) with rational singularities.

In particular, forr = 1 we get the normality of the pfaffian varieties for antisymmetric
matrices.

EXAMPLE 4.3. Consider the vector space ofn×n symmetric matrices of trace 0. This
is the representation ofSO(n) = {A | AtA = I, detA = 1} of highest weight 2ω1. Take the
matrix

Mh =
(

(n − h)Ih 0
0 −hIn−h

)
.

The stabilizerH of this matrix is isogenous toSO(h) × SO(n − h). It follows thatH is the
subgroup fixed by the involution given by conjugation with the matrix

g =
(

Ih 0
0 −In−h

)
.

The closureYh of the orbit of the matrixMh under the action ofG × Gm is our variety
X ({2ω1}).

If h = 1, the restricted root system is of typeA1 and the Picard group is generated byω1

so that 2ω1 is not minuscule. HenceY1 is not normal.
If 1 < h < �n/2�, the restricted root system is of typeBh andω̃1 = 2ω1 but ω̃1 is not

minuscule for the restricted root system. Hence also in this caseYh is not normal.
If h = n/2 (son is even), the restricted root system is of typeDn, ω̃1 = 2ω1 andω̃1 is

minuscule for the restricted root system. HenceYn/2 is normal.

EXAMPLE 4.4. We can apply our theory to the study of the normality of the closure
of nilpotent orbits of height equal to 2 as Domingo Luna pointed out to us.
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LetG be a simple algebraic group over an algebraically closed field of characteristic zero
and letG be its Lie algebra. LetO be a nilpotent adjoint orbit, lete ∈ O be a non zero element
and consider ansl(2)-triple (e, h, f ). Choose a maximal toral subalgebraT of G containing
h and a Borel subalgebraB containingT ande. Let α1, α2, . . . be the simple roots defined
by the choice ofT andB.

The numbersα1(h), α2(h), . . . uniquely determine the orbitO, moreover they are non-
negative integer numbers less or equal to 2. Letθ be the highest root for the chosen simple
system and define the height ofO as height(O)

.= θ(h). The height does not depend on the
various choices we have made (see [4]); furthermore,O is spherical (i.e., it has a dense orbit
under a Borel subgroup ofG) if and only if height(O) ≤ 3 (see [13]). (Notice that this last
condition is equivalent to say thatO is {0} or it has height equal to 2 or to 3, see again [4].)

Assume for now on that height(O) = 2. Forn ∈ Z let Gn = {x ∈ G | [h, x] = nx}
and notice that, beingh semisimple andθ(h) = 2, we haveG = ⊕

−2≤n≤2 Gn. Let P
be the parabolic subalgebra

⊕
0≤n≤2 Gn and notice thatL = G0 is a Levi factor ofP and

U = G1 ⊕ G2 is the nilpotent radical ofP. Call P,L andU the subgroups ofG whose Lie
algebras are respectivelyP,L andU. Let Ḡ = L/Z(L) and letG be the simply connected
cover ofḠ: we have a morphism from̄G onto the derived subgroupL′ of L. In particular, we
regard each representation ofG as a representation ofG and we identify the Lie algebrag of
G with L′ through this morphism.

Consider the morphismSL(2) → G induced by thesl(2)-triple (e, h, f ) and the image
w in G of the element

(
0 1−1 0

) ∈ SL(2). Observe thatw defines an involution ofL and this
induces an involutionσ of Ḡ and ofG. We denote byH the normalizer inG of the subgroup
of σ -fixed points. We want to apply the discussion of Section 3 to deduce the following result
originallly proved in [12],

PROPOSITION 4.5. If O is a nilpotent adjoint orbit of height 2, then the closure of O
is normal.

PROOF. We want to apply Theorem 3.8 to the groupG, the parabolicP , the module
M = G and the vectorv = e (using the notation of the previous Section 3). As in the
preliminary discussion of that Theorem we must check that Assumptions 3.6 are verified for
such choices. Next we will show thatX ({θ}) = Ō and thatθ is a sphericalσ -minuscule
weight and conclude the proof.

In order to show that Assumptions 3.6 are verified, we denote byr the line spanned bye
and claim that:

(i) G2 is an irreducible representation ofG of highest weightθ ;
(ii) [U, e] = 0;
(iii) Z(L) · r = r;
(iv) H · r = r.

Indeed, (ii), (iii) and (iv) imply Assumption 3.6 (1), while (i) implies Assumption 3.6 (2).
We begin provingZ�(e) = Lσ . The decomposition of theSL(2)-moduleG−2 ⊕L⊕G2

into isotypical components is given by(V ⊗ G2) ⊕ Z�(e), whereV is the three-dimensional
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SL(2)-module, andG2 andZ�(e) are considered as trivialSL(2)-module. Now letV0 be the
zero weight space ofV and notice thatw acts by multiplication by−1 onV0. So we have a
σ -equivariant morphismL � (V0 ⊗ G2) ⊕ Z�(e). Hence we concludeLσ = Z�(e) proving
our claim.

So, in particular, the Lie algebrah
.= [L,L]σ of H commutes withe.

Now notice that[Gi ,Gj ] ⊂ Gi+j . From this we derive at once (ii) and also that any
highest weight vector forG in G2 is also a highest weight vector forG. This shows that
G2 hasxθ (the root vector of weightθ ) as its unique highest weight vector. HenceG2 is a
spherical (irreducible)G-representation, and (i) and (iv) follow.

Now also (iii) follows, since the vector fixed byh is unique up to scalar (G2 being
irreducible) andZ(L) commutes withh. This finishes the proof that the Assumptions 3.6 are
fulfilled.

Notice that the orbitO = G · e is already a cone, since[h, e] = 2e, and it is now
clear that its closure isX ({θ}), using the notation of the previous Section. So we are now
in a position to apply Theorem 3.8, and the normality ofO follows once we show that the
sphericalG-representationG2 is σ -minuscule.

We choose the set of positive roots forg with torusT ∩ g according to the BorelB of G.
Suppose now thatG2 has a vector, not multiple ofxθ , which is also a dominant weight

vector with respect tog. We can assume that it is a root vectorxβ . Notice that, sincexβ ∈ G2,
we have obtainedβ by subtracting fromθ simple roots in the root system ofg. So β is
dominant also forG.

In particular, ifg is simply laced, this is not possible, and henceG2 is minuscule as a
g-module, which is alsoσ -minuscule.

If g is not simply laced, then this forcesβ = θ̄ the highest short root forG0. Also,
the support ofθ − θ̄ (i.e., the set of simple roots appearing with nonzero coefficient in the
expression ofθ − θ̄ as a sum of simple roots) is contained in the root system ofg. We
conclude now by analyzing the remaining possibilities (we use the numbering convention as
in Bourbaki [1]):

Case Bl , l ≥ 3: We haveθ − θ̄ = α2 + · · · + αl , andθ = ω1. Sog is the semisimple
part of the Levi factor whose root system is generated byα2, . . . , αl andG2 is the trivial
representation.

Case Cl, l ≥ 2: We haveθ − θ̄ = α1 andθ = 2ω1. In this caseg is the semisimple
part of a Levi factor whose root system containsα1. In particular,g need not to be simple but
certainly the rootα1 is contained in a factorg1 of typeA of the Lie algebrag: i.e.,g = g1⊕g2

with g1 simple and of typeA. Notice now that, being the highest weight ofG2 equal to 2ω1, g2

acts trivially onG2. In particular, sinceZ�(e) = gσ , the involution leaves this part fixed and
G2 is a spherical representation of weight 2ω1 of g1. Finally, for groups of typeA there is only
one involution that has the representation of highest weight 2ω1 has a spherical representation
and this is the orthogonal involution for which 2ω1 is aσ -minuscule spherical weight.

Case F4: We haveθ − θ̄ = α1 + α2 + α3 andθ = ω1. Sog is the semisimple part of
the Levi factor whose root system is generated byα1, α2, α3. HenceG2 is the representation
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of highest weightω1 of a groups of typeB3: a minuscule representation and in particular a
σ -minuscule representation.

Case G2: We would haveθ − θ̄ = α1 + α2 and sog = G, which is not possible. �

REMARK 4.6. We can complete the analysis of the proof given above by describing
for each nilpotent orbit of height 2 the associated involution.

This is easily done as follows. From the Dynkin-Kostant diagram we deduce the Levi
factorL and from the expression ofθ we deduce which representation is the spherical repre-
sentationG2. Now from the classification of the involutions, it is easy to see that in each case
there is only one involution that has the representationG2 as a faithful spherical representa-
tion. (With being faithful here we mean that the stabilizer of the spherical vectore in G2 is
exactlyh and not bigger.) We have to make this remark because the Levi factor is in general
not simple.

We list in the table below the result of this analysis. For each nilpotent orbit of height 2
we report the Lie algebraG, the moduleG2 and two diagrams: the first is the Dynkin-Kostant
diagram and the second one is the Satake diagram of the involutionσ ong. For the classical
cases we give also the partition related to the nilpotent orbit.

(1.1) ��(2r + l), l ≥ 1 : �2 � End(kr ), π = 1l2r

0
1

· · · 0 1
r

0 · · · 0 1
r+l

0 · · · 0
2r+l−1

◦
1�� ��

· · · ◦
r−1�� ��

•
r+1

· · · •
r+l−1

◦
r+l+1

· · · ◦
2r+l−1

(1.2) ��(2r) : �2 � End(kr ), π = 2r

0
1

· · · 0 2
r

0 · · · 0
2r−1

◦
1		 



· · · ◦
r−1�� ��

◦
r+1

· · · ◦
2r−1

(2.1) ��(2(r + l)), l ≥ 1 : �2 � S2(kr ), π = 12l2r

0
1

· · · 0 1
r

0 · · · 0 0
r+l

◦
1

· · · ◦
r−1

•
r+1

· · · • •
r+l

(2.2) ��(2r) : �2 � S2(kr ), π = 2r

0
1

· · · 0 2
r

◦
1

· · · ◦
r−1
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(3.1) ��(2l + 3), l ≥ 2 : �2 � k2l+1, π = 12l31

2
1

0 0 · · · 0 �� 0
l+1

◦
2

• · · · • �� •
l+1

(3.2) ��(4r + 2l + 1) : �2 � Λ2k2r , π = 12l+122r

0
1

0 0 · · · 0 0 0 1
2r

0 · · · 0 �� 0
2r+l

•
1

◦ • · · · • ◦ •
2r−1

•
2r+1

· · · • �� •
2r+l

(4.1) ��(2l + 4) : �2 � k2l+2, π = 12l+131

0

2
1

0 0 0 · · · 0 0

•
◦
1

• • · · · • •

(4.2) ��(4r + 2l), l ≥ 2 : �2 � Λ2k2r , π = 12l22r

0

0
1

0 0 · · · 0 0 1
2r

0 · · · 0 0

•
•
1

◦ • · · · ◦ •
2r−1

•
2r+1

· · · • •

(4.3) ��(4r + 2) : �2 � Λ2k2r , π = 1222r

1

0 0 0 · · · 0 0 1

• ◦ • · · · ◦ •
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(4.4) ��(4r) : �2 � Λ2k2r , π = (22r )I

2

0 0 0 · · · 0 0 0

• ◦ • · · · • ◦ •

(4.5) ��(4r) : �2 � Λ2k2r , π = (22r )II

0

0 0 0 · · · 0 0 2

•
• ◦ • · · · • ◦

(5) E6 : �2 � k8

0

1 0 0 0 1

◦
• ◦ •

(6.1) E7 : �2 � k10

0

0 0 0 0 1 0

•
◦ • • • ◦

(6.2) E7 : �2 � k27

0

0 0 0 0 0 2

•
◦ • • • ◦
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(7) E8 : �2 � k14

0

1 0 0 0 0 0 0

•
• • • • • ◦

(8) F4 : �2 � k7

0 0 ��0 1

◦ • ��•
We hope that it is possible to develop a similar approach also for the nilpotent orbits of

height equal to 3. In this case symmetric varieties should be replaced with a more general
class of spherical varieties.
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