

ISSN 1440-771X

Department of Econometrics and Business Statistics

http://business.monash.edu/econometrics-and-business-
statistics/research/publications

September 2018

Working Paper 16/18

On normalization and algorithm selection for

unsupervised outlier detection

Sevvandi Kandanaarachchi, Mario A Muñoz,
Rob J Hyndman and Kate Smith-Miles

http://business.monash.edu/econometrics-and-business-statistics/research/publications
http://business.monash.edu/econometrics-and-business-statistics/research/publications

On normalization and algorithm selection for unsupervised outlier

detection

Sevvandi Kandanaarachchi, Mario A. Muñoz, Rob J. Hyndman, Kate Smith-Miles

September 13, 2018

Abstract

This paper demonstrates that the performance of various outlier detection methods depends sen-

sitively on both the data normalization schemes employed, as well as characteristics of the datasets.

Recasting the challenge of understanding these dependencies as an algorithm selection problem, we per-

form the first instance space analysis of outlier detection methods. Such analysis enables the strengths

and weaknesses of unsupervised outlier detection methods to be visualized and insights gained into

which method and normalization scheme should be selected to obtain the most likely best performance

for a given dataset.

1 Introduction

An increasingly important challenge in a data-rich world is to efficiently analyze datasets for patterns of

regularity and predictability, and to find outliers that deviate from the expected patterns. The significance

of detecting such outliers with high accuracy, minimizing costly false positives and dangerous false

negatives, is clear when we consider just a few societally critical examples of outliers: e.g. fraudulent

credit card transactions amongst billions of legitimate ones, fetal anomalies in pregnancies, chromosomal

anomalies in tumours, emerging terrorist plots in social media and early signs of stock market crashes.

There are many outlier detection methods already available in the literature, with new methods

emerging at a steady rate (Zimek et al. 2012). The diversity of applications makes it unlikely that a

single method will out-perform all others in all scenarios (Wolpert et al. 1995, Wolpert & Macready

1997, Culberson 1998, Ho & Pepyne 2002, Igel & Toussaint 2005). As such, it is advantageous to know

the strengths and weaknesses of any method, and how specific properties of a dataset might render it

more or less ideally suited to detect outliers than other methods. What kinds of properties would enable

a given method to perform well on one dataset, but maybe poorly on another? How sensitive are the

existing methods to variations in dataset characteristics? How can we objectively evaluate a portfolio of

outlier detection methods to learn these relationships? Given a problem can we learn to predict the best-

suited outlier detection method(s)? And given that normalization of a dataset is a typical pre-processing

step adopted by all outlier detection methods, but rescaling the data can change the relationships between

the data points, what impact does a normalization scheme have on outlier detection accuracy? These are

some of the questions that motivate this work.

When evaluating outlier detection methods, an important issue that needs to be considered is the def-

inition of an outlier - according to both an algorithm’s definition of an outlier and a human who may have

labelled training data. Generically, Hawkins (1980) defines an outlier as an observation which deviates

so much from other observations as to arouse suspicion it was generated by a different mechanism. Bar-

nett & Lewis (1974) define an outlier as an observation (or subset of observations) which appears to be

inconsistent with the remainder of that set of data. Both these definitions indicate that outliers are quite

1

-10 -5 0 5 10
-6

-4

-2

0

2

4

6

8

10

(a)

-2 -1 0 1 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5
KNN

LOF

COF

(b)

Figure 1: First outlier detected in two different datasets by three different

methods: KNN (N), LOF (H) and COF (�).

different from non-outlying observations. Barnett & Lewis (1974) also note that it is a a matter of sub-

jective judgement on the part of the observer whether or not some observation is picked out for scrutiny.

The subjectivity of outlier detection is not only due to human judgement, but extends to differences in

how outlier detection methods define an outlier. Indeed, there are many instances where a set of outlier

detection methods may not agree on the location of outliers due to their different definitions, whether

they be related to nearest neighbour distances, density arguments or other quantitative metrics. Figure 1

illustrates the lack of consensus of three popular outlier detection methods namely, KNN (Ramaswamy

et al. 2000), LOF (Breunig et al. 2000) and COF (Tang et al. 2002), and highlights the opportunity to ex-

ploit knowledge of the combination of dataset characteristics and the algorithm’s definition of an outlier

to enhance selection of the most suitable method.

Evaluation of unsupervised outlier detection methods has received growing attention in recent years.

Campos et al. (2016) conducted an experimental evaluation of 12 methods based on nearest neighbours

using the ELKI software suite (Achtert et al. 2008). While the methods considered all used a similar

nearest neighbor distance definition of an outlier, the study is relevant to ours since it contributed a

useful repository of around 1000 benchmark datasets generated by modifying 23 source datasets that can

be used for further outlier detection analysis. It is common practice to test outlier detection algorithms

on datasets with known ground truth labels, for example classification datasets where observations of the

minority class have been down-sampled. We will be extending their approach to dataset generation for

our comprehensive experimental study. Goldstein & Uchida (2016) conducted a comparative evaluation

of 19 unsupervised outlier detection methods, which fall into three categories, namely nearest neighbour

based, clustering based, and based on other algorithms such as one class SVM and robust PCA. They

have used 10 datasets for their evaluation. Their algorithms are released on RapidMiner data mining

software. Emmott et al. (2015) conducted a meta-analysis of 12 outlier detection methods, which fall into

four categories; namely nearest neighbours based, density based, model based or projection based. These

studies focus on the evaluation of outlier detection methods, which is much needed in the contemporary

literature due to the sheer volume of new methods being developed. However, they do not address the

critical algorithm selection problem for outlier detection, i.e. given a dataset which outlier detection

method(s) is expected to give the best performance, and why? This is one of the main contributions of

our work.

The algorithm selection problem has been extensively studied in various research communities (Rice

1976, Smith-Miles 2009) for challenges such as meta-learning in machine learning (Brazdil et al. 2008),

black-box optimization (Bischl et al. 2012), and algorithm portfolio selection in SAT solvers (Leyton-

2

Brown et al. 2003). Smith-Miles and co-authors have extended the Rice (1976) framework for algorithm

selection and developed a methodology known as instance space analysis to visualize and gain insights

into the strengths and weaknesses of algorithms across the broadest possible set of test instances, rather

than a finite set of common benchmarks (Smith-Miles et al. 2014, Smith-Miles & Bowly 2015, Muñoz

et al. 2018). We will use this framework to gain an understanding of strengths and weaknesses of the

outlier detection methods discussed by Campos et al. (2016).

In addition to tackling the algorithm selection problem for outlier detection for the first time, we

will also focus on a topic that is generally over-looked; namely normalization. One of the main pre-

processing steps in outlier detection is normalizing or standardizing the data. Traditionally min-max

normalization method, which normalizes each column of a dataset to the interval [0, 1] is used routinely

in outlier detection (Campos et al. 2016, Goldstein & Uchida 2016). However, there are many different

methods that can be used for normalizing or standardizing the data. Whether the choice of normalization

method impacts the effectiveness of the outlier detection method is a question which has not been given

much attention. In fact, we have not come across any studies which focus on the effect of normalization

on outlier detection. We explore this relationship and show that the performance of outlier methods

can change significantly depending on the normalization method. This is a further contribution of our

work. In addition, we make available a repository of more than 12000 datasets, which is generated from

approximately 200 source datasets, providing a comprehensive basis for future evaluation of outlier

detection methods.

This paper is organized as follows. We start by investigating the impact of normalization on outlier

detection methods in Section 2. Firstly, from a theoretical perspective we present mathematical argu-

ments in Section 2.1 to show how various normalization schemes can change the nearest neighbours

and densities of the data, and hence why we intuitively expect that the impact of normalization can be

significant depending on the definition of an outlier adopted by an algorithm. In Section 2.2 we present

comprehensive experimental evidence that this theoretical sensitivity is observed in practice across a set

of over 12000 datasets. We show that both the normalization method and the outlier detection method,

in combination, have variable performance across the datasets, suggesting that some datasets possess

properties that some methods can exploit well, while others are not as well suited. This experimen-

tal and theoretical evidence then motivates the remainder of the paper, where we adapt instance space

analysis to gain insights into the strengths and weaknesses of outlier detection methods. Section 3 first

describes the methodological framework for the algorithm selection problem and instance space analysis

introduced by Smith-Miles et al. (2014). This section then discusses a novel set of features that capture

properties of outlier detection datasets, and shows how these features can be used to predict performance

of outlier detection methods. The instance space is then constructed, and objective assessment of outlier

detection method strengths and weaknesses is presented in the form of footprint analysis. The instance

space shows that the datasets considered in this study are more diverse and comprehensive than previ-

ous studies, and suitable outlier detection methods are identified for various parts of the instance space.

Finally, in Section 4 we present the conclusions of this work and future avenues of research.

2 Impact of Normalization on Outlier Detection

One of the main pre-processing steps for many statistical learning tasks is normalizing the data. Normal-

ization1 is especially important in unsupervised outlier detection because different attributes of a dataset

may have different measurement units. In fact, Campos et al. (2016) show that outlier detection methods

on normalized datasets give higher performance values compared to the performance on un-normalized

datasets. Even though there seems to be a general consensus in the research community that normal-

ization is a necessary pre-processing step for outlier detection, the effects of different normalization

methods on outlier detection has not been studied to the best of our knowledge. As such, we investigate

the effect of four normalization/standardization methods of outlier detection.

1. Minimum and maximum normalization (Min-Max)

1Generally normalization refers to scaling each attribute to [0, 1] while standardization refers to scaling each attribute to N(0, 1).
For the sake of simplicity, and without loss of generality, we use the term normalization to refer to both re-scalings in this paper.

3

Each column x is transformed to
x−min(x)

max(x)−min(x) where min(x) and max(x) are the minimum and

maximum values of x respectively.

2. Mean and standard deviation normalization (Mean-SD)

Each column x is transformed to
x−mean(x)

sd(x) , where mean(x) and sd(x) are the mean and standard

deviation values of x respectively.

3. Median and the IQR normalization (Median-IQR)

Each column x is transformed to
x−median(x)

IQR(x) , where median(x) and IQR(x) are the median and

IQR of x respectively.

4. Median and median absolute deviation normalization (Median-MAD)

Here MAD(x) = median(|x− median(x)|) and each column x is transformed to
x−median(x)

MAD(x) .

We note that Min-Max and Mean-SD are influenced by outliers while Median-IQR and Median-

MAD are more robust to outliers. A detailed account of the usage of robust statistics in outlier detection

is covered by Rousseeuw & Hubert (2017).

Generally, normalization scales axes differently causing some axes to compress and some axes to

expand, thus changing the nearest neighbour structure. As nearest neighbour distances play an important

role in many outlier detection techniques, such normalization impacts outlier detection method results,

as will be explained theoretically and then demonstrated experimentally in the following sections.

2.1 Mathematical analysis

In this section we look at the effect of normalization on a dataset from a mathematical view-point. Let

D be a dataset containing N observations and d numerical attributes. Let us denote the ith observation

by xi where xi ∈ R
d. The four normalization techniques described above can be written as

x∗
i = S−1 (xi − µ) . (1)

Here x∗
i is the normalized observation, µ is either the minimum, mean or median of the data and

S is a diagonal matrix containing column-wise range, standard deviation, IQR or MAD. Let S =
diag(s1, s2, s3, . . . , sd) . Let dist(x,y) denote the Euclidean distance between the two points x and

y, i.e. dist(x,y) = ‖x− y‖, where we use the L2 norm. So we have

dist(x∗
i ,x

∗
j) =

∥

∥S−1 (xi − xj)
∥

∥ , (2)

giving us

dist2(x∗
i ,x

∗
j) =

〈

S−1 (xi − xj) , S
−1 (xi − xj)

〉

,

= (xi − xj)
T
S−2 (xi − xj) ,

=

d
∑

k=1

1

s2k
(xik − xjk)

2
, (3)

where xik is the kth coordinate of xi. By defining

w =

(

1

s21
,
1

s22
, . . . ,

1

s2d

)T

and yij =
(

(xi1 − xj1)
2
, (xi2 − xj2)

2
, . . . , (xid − xjd)

2
)T

, (4)

we can write the distance between x∗
i and x∗

j as

dist2(x∗
i ,x

∗
j) = 〈w ,yij〉 . (5)

The advantage of this representation is that we can explore the effect of normalization without re-

stricting ourselves to the normalized space. That is, suppose we want to compare two normalization

methods given by matrices S1 and S2. By working with the corresponding vectors w1 and w2 we can

4

stay in the space of yij for different normalization methods. Here, the space where yij lives is differ-

ent from the space of xi and xj . From equation (4) the components of yij corresponds to the squared

component differences between xi and xj . As such the vector yij cannot contain negative values, i.e.

yij ∈ R
d+ where Rd+ is the positive orthant or hyperoctant in R

d. Similarly, w has positive coordinates

and w ∈ R
d+\{0}.

To understand more about the space of yij , we give it separate notation. Let us denote the space

of yij by Y and the space of observations by O. It is true that Y is isomorphic to R
d+ and O to R

d.

However, because the original observations in O×O map to Y in a slightly different way when compared

with the standard partitioning of Rd+ from R
d, it makes sense to detach Y from R

d+ and O from R
d for

a moment. From (4) we have

yij =
(

(xi1 − xj1)
2
, (xi2 − xj2)

2
, . . . , (xid − xjd)

2
)T

,

=
(

(xi1 + η1 − xj1 − η1)
2
, (xi2 + η2 − xj2 − η2)

2
, . . . , (xid + ηd − xjd − ηd)

2
)T

.

As such, if the points xi and xj give rise to yij so does the points xi+ η and xj + η for any η ∈ R
d.

Thus, the mapping from O×O to Y is translation-invariant. This shows that Y is obtained from O×O
in a different way to the standard partitioning of Rd+ from R

d. However, we will not use the translation

invariant property of Y in the next sections.

2.1.1 Nearest neighbours

Let the kth nearest neighbour of a point x be denoted by nn(x, k) and the kth nearest neighbour distance

be denoted by nnd(x, k). With the above notation, let us write down the expression for the nearest

neighbour of a point x∗
i :

nn (x∗
i , 1) = argmin

xj , j 6=i

(

dist(x∗
i ,x

∗
j)
)

(6)

Let Ai1 = {1, 2, . . . , i− 1, i+ 1, . . . , N}. Then using (5) we can re-write this as

nn (x∗
i , 1) = argmin

xj , j∈Ai1

(

dist(x∗
i ,x

∗
j)

2
)

= argmin
xj , j∈Ai1

〈w ,yij〉 (7)

If x∗
l1

is the nearest neighbour of x∗
i we define Ai2 as Ai2 = Ai1\l1, giving us

nn (x∗
i , 2) = argmin

xj , j∈Ai2

〈w ,yij〉 .

Similarly we can write

nn (x∗
i , k) = argmin

xj , j∈Aik

〈w ,yij〉 , (8)

where x∗
lk−1

is the (k − 1)st nearest neighbour of x∗
i and Aik = Ai(k−1)\lk−1. Proceeding in a similar

way, the kth nearest neighbour distance can be written as

nnd (x∗
i , k) = min

j∈Aik

√

〈w ,yij〉 . (9)

As the outlier detection method KNN declares the points with the highest k-nearest neighbour distance

as outliers we write an expression for the point with the highest knn distance:

point with highest knn distance = argmax
i

(nnd (x∗
i , k)) = argmax

i

(

min
j∈Aik

√

〈w ,yij〉

)

. (10)

From (10) we can see that w has a role in determining the data-point with the highest knn distance.

A different w may produce a different data-point having the highest knn distance. Therefore, the method

of normalization plays an important role in nearest neighbour computations.

5

yoa

ynm

w

θoa

θnm

Figure 2: The vectors yoa, ynm, w with angles θoa and θnm.

Proposition 2.1. Let xo be an outlier and xn a non-outlier. Let xa and xm be xo and xn’s respective k-

nearest neighbours according to the normalization scheme defined by w. Let θoa and θnm be the angles

that yoa, ynm ∈ Y make with w. If
‖yoa‖

‖ynm‖
<

cos θnm
cos θoa

,

then

nnd (x∗
o, k) < nnd (x∗

n, k) ,

where x∗
o and x∗

n are the normalized coordinates of xo and xn according to w. Thus a non-outlier has

a higher knn distance that an outlier with respect to w.

Proof. From (9) the knn distance of x∗
o is

nnd (x∗
o, k) = min

j∈Aok

√

〈w ,yoj〉 ,

=
√

〈w ,yoa〉 , (11)

as xa is the k-nearest neighbour of xo. Similarly

nnd (x∗
n, k) = min

j∈Ank

√

〈w ,ynj〉 =
√

〈w ,ynm〉 . (12)

From equation (11) we have

nnd (x∗
o, k)

2
= 〈w ,yoa〉 = ‖w‖ ‖yoa‖ cos θoa , (13)

and from equation (12) we have

nnd (x∗
n, k)

2
= 〈w ,ynm〉 = ‖w‖ ‖ynm‖ cos θnm . (14)

Dividing equation (13) from (14) we obtain

nnd (x∗
o, k)

2

nnd (x∗
n, k)

2 =
‖yoa‖ cos θoa
‖ynm‖ cos θnm

< 1 (15)

by the condition of the proposition. This makes nnd (x∗
o, k) < nnd (x∗

n, k).

As illustrated in Figure 2 the angle between the normalization vector w and ynm has an effect in

the ordering of k-nearest neighbour distances. Thus the normalization vector w can mask outliers and

favour non-outliers, reducing the performance of outlier detection methods.

6

0 10 20 30 40

Dimension

0

10

20

30

40

%
 o

f
d

if
fe

re
n

t
n

e
a

re
s
t

n
e

ig
h

b
o

u
rs

With outliers

Without outliers

Figure 3: Percentage of observations that do not have the same nearest

neighbour after normalizing using the above four methods.

2.1.2 Density computations

Density can be defined as the number of data-points in a unit ball. Using this definition, the density of

point x∗
i is

density(x∗
i) = ♯

{

x∗
j :

∥

∥x∗
j − x∗

i

∥

∥ ≤ 1
}

(16)

where ♯ denotes the number of points satisfying the given condition. Using the notation defined in (4)

and (5) we can rewrite this as

density(x∗
i) = ♯

{

x∗
j :

∥

∥x∗
j − x∗

i

∥

∥

2
≤ 1

}

= ♯
{

x∗
j : dist

(

x∗
j ,x

∗
i

)2
≤ 1

}

= ♯ {yij : 〈w ,yij〉 ≤ 1} (17)

Again we see that vector w which comes from the method of normalization plays a role in determin-

ing the density of data-points. As many outlier detection methods are based on density estimates, we see

that normalization affects density based outlier detection methods as well.

We now show that this theoretical sensitivity is observed when using common benchmark datasets,

and that the performance of outlier detection methods depends on normalization as well as characteristics

of the datasets.

2.2 Experimental evidence of impact of normalization

As an initial experiment, we generate a dataset of 100 data points of dimension d from the uniform

distribution, where d ranges from 1 to 40. Next the data was scaled using the four normalization methods.

For each normalized dataset the nearest neighbour was computed for each observation, and we calculate

the percentage of observations that do not have the same nearest neighbour across the whole dataset. This

percentage is the quantity of interest. For each dimension d, we run the experiment for 100 repetitions

and compute this percentage. For a second experiment, we add one outlier to the dataset and repeat the

same process. The graphs in figure 3 show the average percentage of observations that do not have the

same nearest neighbour from different normalizations with and without the outlier added.

We observe that in both the above scenarios the percentage of observations that have different nearest

neighbours due to normalization increase with dimension. For the case with no outliers, this percentage

7

changes from 5% to 25% as the dimension changes from 2 to 20. That is for a 20-dimensional dataset

without outliers, the nearest neighbours of 25% of the data depend on the method of normalization.

Similarly, for a 20-dimensional dataset with one outlier, the nearest neighbours of 30% of the data depend

on the normalization method. This observation has the important implication that as the dimensionality

of the dataset increases while keeping the number of observations constant, the nearest neighbours of a

data-point are highly sensitive to the method of normalization. Thus, given an outlier detection problem,

the normalization method as well as the outlier detection technique play an important role. Of course, it

is important to validate this hypothesis on other datasets, rather than randomly generated data, to see if

structured data from benchmark datasets is also sensitive to normalization.

In the remainder of this section we evaluate the impact of normalization on 12 outlier detection

methods coupled with the above-mentioned 4 normalization methods, across a set of over 12000 datasets

described below.

2.2.1 Datasets

We generate outlier detection datasets by adopting the approach used in recent studies (Campos et al.

2016, Goldstein & Uchida 2016), which takes a classification dataset and down-samples the minority

class to label outliers. Campos et al. (2016) start with 23 datasets, from which different variants are

obtained mainly by downsampling the outlier class at rates 20%, 10%, 5%, 2% and transforming cate-

gorical variables to numeric values. This process results in approximately 1000 datasets. Goldstein &

Uchida (2016) use 10 datasets for their evaluation study, with some overlap with Campos et al. (2016). In

order to obtain a more comprehesive and diverse set of benchmark test datasets, we extend the approach

to utilise a set of 170 base classification datasets recently used by Muñoz et al. (2018) obtained primarily

from the UCI machine learning repository. These classification datasets were not intended for outlier

detection evaluation, and so the following issues need to be addressed to generate meaningful outlier

detection benchmarks:

1. Labelling of outliers - as outliers are rare events, the proportion of outliers is typically 5% or less

for most outlier datasets. In contrast, the classification datasets have sometimes more than 2 classes

and the proportion of observations belonging to each class is often similar and much larger than

10%.

2. Categorical variables - while some classification algorithms such as random forests and decision

trees are capable of handling categorical variables, most outlier detection methods need distances

or densities to find outliers, which requires only numerical attributes.

3. Duplicate observations and missing values - the classification datasets contain data challenges that

we wish to eliminate at this stage to focus on understanding how the underlying mechanism of

outlier detection behaves in the presence of complete data.

Therefore, we modify the 170 classification datasets used in Muñoz et al. (2018) to make them more

applicable for outlier detection, as described below:

Down-sampling: If a dataset has observations belonging to k classes, then each class in turn is desig-

nated the outlier-class and observations belonging to that class are down-sampled, while the observations

belonging to the other k − 1 classes are deemed non-outliers. We conduct the down-sampling such that

the percentage of outliers is p% for p ∈ {2, 5}. For a given outlier class and for each value of p, the

down-sampling is randomly carried out 10 times. Hence, for a given outlier class there are 20 down-

sampled files generated. This procedure is done for all classes in the dataset, e.g. if a base classification

dataset has 3 classes, then there are 3× 2× 10 down-sampled files generated from that base dataset.

Categorical Variables: While a range of techniques for transforming categorical variables to numer-

ical variables are available, there is little consensus on which approach is best suited for a given task.

For each source down-sampled dataset, we create two versions: one with categorical variables removed,

and one with categorical variables converted using the method of inverse data frequency (Campos et al.

2016), which creates a new variable IDF (x) = ln(N/nx) where N is the total number of observations

in the dataset and nx is the number of times the categorical variable takes the value x. IDF maps the

rarer values to higher numbers and common values to lower numbers.

8

Duplicate observations: As the nearest neighbour distance for a duplicate observation is zero, this

can create division by zero errors causing numerical instability when computing densities and other

metrics. As such, we remove duplicate observations from the datasets.

Missing values: We use the method in Campos et al. (2016) to treat missing values. For each attribute

in each dataset, the number of missing values are computed. If an attribute has less than 10% of missing

values, the observations containing the missing values are removed, otherwise, the attribute is removed.

The above procedures were followed on the 170 base classification datasets used in (Muñoz et al.

2018). In addition, we augmented our benchmark collection to considering the 1000 datasets used in

Campos et al. (2016) and selected the ones with 5% and 2% outliers (but not the ones with 10% and

20% outliers). With the datasets from (Campos et al. 2016, Goldstein & Uchida 2016), along with the

datasets we prepared from Muñoz et al. (2018), our final set of benchmarks for this experimental study

contains approximately 12200 datasets suitable for outlier detection evaluation.

2.2.2 Outlier detection methods

We investigate the 12 outlier detection methods studied in Campos et al. (2016) using the ELKI software

suite (Achtert et al. 2008). The methods are:

1. KNN - K nearest neighbours (Ramaswamy et al. 2000)

2. KNNW - KNN weight (Angiulli & Pizzuti 2002)

3. ODIN - Outlier Detection using In-degree Number (Hautamaki et al. 2004)

4. LOF - Local Outlier Factor (Breunig et al. 2000)

5. Simplified LOF (Schubert et al. 2014b)

6. COF - Connectivity based Outlier Factor (Tang et al. 2002)

7. INFLO - Influenced Outlierness (Jin et al. 2006)

8. LOOP - Local Outlier Probabilities (Kriegel et al. 2009)

9. LDOF - Local Density based Outlier Factor (Zhang et al. 2009)

10. LDF - Local Density Factor (Latecki et al. 2007)

11. KDEOS - Kernel Density Estimation Outlier Score (Schubert et al. 2014a)

12. FastABOD - Fast Angle Based Outlier Detection (ABOD), faster version of ABOD (Kriegel et al.

2008)

For a brief description of the above methods we refer the reader to Campos et al. (2016) and for a

pictorial explanation of KNN, LOF, COF, INFLO and LOOP, to Goldstein & Uchida (2016).

The parameter that is common to all the above outlier detection methods, and as such deserves

some discussion is the value k in k-nearest neighbours. Even though the effect of k is different across

methods, the common theme is the k-nearest neighbourhood. The choice of k affects the performance of

the method as shown in the following example.

Consider a dataset of 100 observations containing one outlier as shown in figure 4a. For this dataset,

we find outlier scores using KNN and LOF for all observations for each value of k from 1 to 99. An

outlier can be easily detected if the outlier has a higher score compared to non-outliers. So, for both

KNN and LOF we compute the following outlier score ratio:

outlier score ratio =
outlier score of outlier

average outlier score of non-outliers

From figure 4b we see that as k increases, this ratio follows a downward trend for both KNN and LOF.

Therefore, noting that no single k would be applicable for all methods and datasets, and to ensure a fair

evaluation of methods, we choose a tailored value of k based on the dataset and not on the method. That

is, for a given dataset, we choose the same k for all methods as follows:

k(dataset) = min(floor(5% of observations), 100) (18)

Here the maximum of k = 100 is a means of limiting the number of computations that can result from a

large dataset.

9

-3 -2 -1 0 1 2 3

x
1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

x
2

Data

Outlier

(a)

0 20 40 60 80 100

k-nearest neighboors

0

1

2

3

4

5

6

7

O
u

tl
ie

r
s
c
o

re
 r

a
ti
o

s

KNN

LOF

(b)

Figure 4: The dataset is plotted in figure (a) with the outlier at (3, 2). The

outlier score ratios are plotted in figure (b) for both KNN and LOF. We see

the outlier score ratio decrease with increasing k for most k values.

2.2.3 Evaluation metric

Unlike classification or regression, outlier detection offers challenges in finding acceptable evaluation

metrics. As outliers are rare, even if a method does not detect outliers, it still has a very high level

of overall accuracy. The lack of a universally accepted evaluation metric is evident from the different

standards adopted by different research communities. While it is common for outlier methods to rank

observations ordered by the level of outlierness (Breunig et al. 2000, Schubert et al. 2014b, Tang et al.

2002, Jin et al. 2006), it is also common for methods to find outliers and declare them as binary output -

outlier or not (Hubert & Van der Veeken 2008, Wilkinson 2018, Talagala et al. 2018, Billor et al. 2000).

In the first instance, when the observations are ranked, finding the outliers becomes the task of the user

as a threshold is needed to separate outliers from non-outliers. While this may be preferred for some

applications, others might prefer the second approach where observations are either declared outliers or

not.

While there is no single accepted metric to evaluate an outlier detection method, two popular evalua-

tion metrics are 1. the area under the Receiver Operator Characteristic (ROC) curve, and 2. the Precision-

Recall (PR) curve. Of these two methods, it is fair to say that area under the ROC is more widely used

than PR curves. It is also quite common to report false positives and false negatives rather than an

uninformative overall accuracy measure. In addition to these, there are also other methods such as preci-

sion at n (Craswell 2009), average precision (Zhang & Zhang 2009) and excess-mass and mass-volume

curves (Goix 2016). In our study we use the area under ROC curve (AUC) as the evaluation metric.

2.3 Hypothesis testing

To determine the effects of outlier and normalization methods on performance, we use mixed effects

models. Mixed effects models are typically used when there is dependence in the data, such as in

hierarchical structures. They are well suited for our case since:

1. dependencies arise from dataset variants, as all datasets in our corpus are generated from approxi-

mately 200 source datasets; and

2. the structure of the experiment involves the combination of normalization and outlier detection

methods, whereby each dataset is normalized using 4 methods, and each outlier detection method

is performed on all 4 normalized versions of each dataset.

10

Thus, we have a structure where the outlier detection method, normalization method and the source

dataset play a combined role in influencing performance that we seek to understand.

We use two mixed models to ascertain the significance of normalization. The first model uses outlier

detection methods and normalization methods as fixed effects, and source datasets as a random effect.

We do not have any interaction terms for this model. We write the first model (using the R formula

notation) as:

y ∼ Out + Norm + (1|Source) . (19)

Here y is the performance, Out is the outlier detection method, Norm is the normalization method and

Source is the source dataset. The term (1|Source) means that source is a random effect and the intercept

changes according to the source dataset. We can also write this model in the following way:

yijkl = µ+ ci + dj + hk + εijkl , (20)

where yijkl is the performance of outlier detection method i using normalization method j on a dataset

variant l from source k. The term µ denotes the intercept, ci the coefficient of the ith outlier detection

method, dj the coefficient of the jth normalization method, hk the random effect due to the source dataset,

and εijkl the error term. While the fixed effects coefficients ci and dj are parameters, the random effects

coefficients hk are modelled as random variables, i.e. hk ∼ N
(

0, σ2
h

)

. The errors εijkl are assumed to

be normally distributed, i.e. εijkl ∼ N
(

0, σ2
ε

)

.

The second model uses an additional interaction term as follows:

y ∼ Out ∗ Norm + (1|Source) . (21)

We can also write the second model as follows:

yijkl = µ+ gij + hk + εijkl . (22)

The difference between the first and the second model results from the interaction term, which gives

rise to a separate regression coefficient gij for each pair of outlier and normalization methods, rather

than assuming their effects are additive. The second model can be used to determine if normalization

affects each outlier detection method differently.

As the two models are nested, we perform a likelihood-ratio test and obtain a p-value of 2.2×10−16 in

favour of the second model making it clear that there are significant interactions between normalization

methods and outlier detection methods. In other words, the effect of normalization is different from one

outlier method to another.

Figure 5 shows the effect of normalization methods on each outlier detection method using plotting

tools described in Breheny & Burchett (2012). The letters D, Q, M and X denote the normalization

methods Mean-SD, Median-IQR, Median-MAD and Min-Max respectively. The plotted value for each

normalization and outlier method is yij. = µ + gij + h̄ from equation (22) where h̄ denotes the mode

of hk, pertaining to the source connectionist vowel. For any other source, the values yij. is a vertical

translation of values shown in Figure 5. A higher value of yij. denotes better performance while a lower

value denotes a poorer performance. The main quantity of interest of the second model constitutes of the

values yij.. As such, we make the following remarks about yij. using Figure 5.

1. KNNW has the highest yij. values, making it the most effective outlier method on average.

2. The three best outlier methods are KNNW, KNN and FAST ABOD.

3. KDEOS has the lowest yij. values, making it the least effective outlier method on average. The

second least effective outlier method is INFLO.

4. For most outlier methods, Min-Max and Mean-SD outperform Median-IQR and Median-MAD.

5. For most outlier methods, Min-Max and Mean-SD give similar yij. values, and Median-IQR and

Median-MAD also give similar yij. values.

6. LOF, LOOP and SIMLOF are quite similar in terms of yij..

7. The effect of the outlier method on yij.is greater than the effect of the normalization method.

As a result of these insights we only consider normalization methods Min-Max and Median-IQR in

the following sections, so as to elicit higher contrasts in performance arising from normalization.

11

COF F.ABOD INFLO KDEOS KNN KNNW LDF LDOF LOF LOOP ODIN SIMLOF

D Q M X D Q M X D Q M X D Q M X D Q M X D Q M X D Q M X D Q M X D Q M X D Q M X D Q M X D Q M X

0.55

0.60

0.65

Norm

y
ij.

Out

COF

F.ABOD

INFLO

KDEOS

KNN

KNNW

LDF

LDOF

LOF

LOOP

ODIN

SIMLOF

(a)

Figure 5: Effect of normalization on outlier detection methods based on

model (22). Here, yij. = gij + h̄ is plotted for normalization methods

Mean-SD (D), Median-IQR (Q), Median-MAD (M) and Min-Max (X) for

each outlier method. Higher values indicate better performance.

2.4 Preferred normalization methods

In this section we investigate whether each outlier detection method has a preferred normalization

method, independent of the dataset. The results of this analysis are given in Table 1. Table 1 gives

the percentage of datasets which prefers Min-Max or Median-IQR for each outlier detection method.

For a given outlier detection method, we say a dataset prefers a normalization method, if that method

gives a higher performance value than other normalization methods.

By inspecting Table 1 we see that 1. there is not much difference between the percentages of datasets

that prefer Min-Max to Median-IQR, 2. for all outlier methods apart from INFLO and LDOF the per-

centage of datasets that prefer Min-Max is higher than that of Median-IQR, although non reach 60%,

and 3. it is only for KNN, KNNW and FAST ABOD that this difference is greater than 10%. For all

other methods this difference is less than 4%.

As Min-Max is more often preferred than Median-IQR, this analysis somewhat validates the histori-

cal preference to use Min-Max for outlier detection. However, for 40–50% of our datasets, Median-IQR

was the preferred method. This again brings to light the importance of normalization when performing

outlier detection.

2.5 Sensitivity to normalization

By inspecting the performance results for a given outlier detection method we see that for some datasets

normalization has an effect on performance while for others it does not. How can we determine if

normalization affects outlier method performance for a given dataset? If we think of “sensitivity to nor-

malization” as an attribute, is it an intrinsic attribute of the dataset, or is it an attribute of the combination

12

Table 1: Percentage of datasets for which Median-IQR or Min-Max gives

better performance for each outlier method.

Outlier detec-

tion method

Median-IQR better per-

formance (%)

Min-Max better perfor-

mance (%)

COF 48.70 51.30

FAST ABOD 44.64 55.36

INFLO 50.98 49.02

KDEOS 49.05 50.95

KNN 42.84 57.16

KNNW 43.38 56.62

LDF 48.98 51.02

LDOF 51.09 48.91

LOF 49.00 51.00

LOOP 49.34 50.66

ODIN 48.15 51.85

SIMLOF 48.89 51.11

Table 2: Sensitivity to normalization grouped by outlier method

Outlier detection

method

ξ = 0.05 ξ = 0.10 ξ = 0.15 ξ = 0.20

COF 7956 (68%) 4927 (52%) 2860 (25%) 1617 (14%)

FAST ABOD 8977 (77%) 5778 (50%) 3643 (31%) 2356 (20%)

INFLO 7366 (63%) 4290 (37%) 2459 (21%) 1473 (13%)

KDEOS 8171 (70%) 5443 (47%) 3453 (30%) 2212 (19%)

KNN 6057 (52%) 3024 (26%) 1709 (15%) 1050 (9%)

KNNW 5545 (48%) 2803 (24%) 1544 (13%) 926 (8%)

LDF 7581 (65%) 4975 (43%) 3241 (28%) 2168 (19%)

LDOF 6687 (58%) 3782 (33%) 2130 (18%) 1186 (10%)

LOF 7028 (61%) 4126 (36%) 2382 (21%) 1377 (12%)

LOOP 6502 (56%) 3543 (31%) 1872 (16%) 1037 (9%)

ODIN 6705 (58%) 3640 (31%) 1899 (16%) 990 (9%)

SIMLOF 6325 (54%) 3427 (30%) 1796 (15%) 989 (9%)

of dataset and outlier detection method? For example, if the performance of an outlier method α1 on

dataset x fluctuates due to normalization, will a different outlier method α2 on x give fluctuating re-

sults as well? We start this investigation by offering a definition of the dataset attribute “sensitivity to

normalization”.

Definition 2.2. For a given dataset, we say that an outlier detection method is ξ−sensitive to normal-

ization if the difference between the maximum performance and the minimum performance across all

normalization schemes for that outlier detection method is greater than ξ.

We use this definition with ξ = 0.05, 0.10, 0.15 and 0.20 to investigate the effects of normalization.

Table 2 reports the number of our datasets that are ξ− sensitive to normalization for each outlier detection

method. By definition 2.2 the number of datasets sensitive to normalization decreases as ξ increases.

By looking at Table 2 we seek to identify if there are common datasets that are sensitive to normal-

ization for multiple outlier detection methods. To this end, we compute the number of datasets that are

sensitive to normalization for exactly n outlier methods for n ∈ {0, 1, 2, . . . , 12}. Table 3 summarizes

these results for ξ = 0.05, 0.10, 0.15 and 0.20. For ξ = 0.05 we see that 2029 datasets are sensitive

to normalization for all 12 outlier methods and 412 datasets are not sensitive to normalization for any

outlier method. In addition to these two extremes, there are different numbers of datasets sensitive to

normalization for n number of outlier methods for n ∈ {1, . . . , 11}. In particular, there are 1002 datasets

that are sensitive to normalization for exactly 1 outlier method. Similarly there are 656 datasets that are

13

Table 3: Number of datasets that are ξ-sensitive to normalization for n
outlier methods.

Number of outlier

methods

ξ = 0.05 ξ = 0.10 ξ = 0.15 ξ = 0.20

0 412 (3.5%) 1977 (17.0%) 4087 (35.2%) 5966 (51.3%)

1 1002 (8.6%) 2009 (17.2%) 2350 (20.2%) 2330 (20%)

2 656 (5.6%) 1142 (9.8%) 1182 (10.2%) 939 (8.1%)

3 627 (5.4%) 899 (7.7%) 854 (7.4%) 584 (5.0%)

4 692 (6.0%) 719 (6.2%) 626 (5.4%) 426 (3.7%)

5 573 (4.9%) 689 (5.9%) 501 (4.3%) 361 (3.1%)

6 530 (4.6%) 697 (6.0%) 441 (3.8%) 281 (2.4%)

7 695 (6.0%) 671 (5.8%) 398 (3.4%) 230 (2.0%)

8 839 (7.2%) 672 (5.8%) 322 (2.8%) 154 (1.3%)

9 994 (8.6%) 642 (5.5%) 295 (2.5%) 152 (0.3%)

10 1205 (10.3%) 532 (4.6%) 231 (2.0%) 111 (1.0%)

11 1361 (11.7%) 498 (4.3%) 206 (1.8%) 66 (0.6%)

12 2029 (17.5%) 468 (4.0%) 122 (1.1%) 15 (0.1%)

Table 4: Unique sensitivity of outlier detection methods to normalization:

the number of datasets sensitive to normalization for exactly one outlier

method grouped by the outlier method. Each method may additionally

have shared sensitivities to other datasets with other methods.

Outlier detection

method

ξ = 0.05 ξ = 0.10 ξ = 0.15 ξ = 0.20

COF 62 (6.2%) 205 (10.2%) 264 (11.2%) 224 (9.6%)

FAST ABOD 691 (69.0%) 964 (48.0%) 913 (38.9%) 888 (38.1%)

INFLO 48 (4.8%) 72 (3.6%) 127 (5.4%) 122 (5.2%)

KDEOS 147 (14.7%) 424 (21.1%) 594 (25.3%) 585 (25.1%)

KNN 4 (0.4%) 6 (0.3%) 15 (0.6%) 31 (1.3%)

KNNW 1 (0.1%) 2 (0.1%) 3 (0.1%) 3 (0.1%)

LDF 28 (2.8%) 209 (10.4%) 259 (11.0%) 273 (11.7%)

LDOF 10 (1.0%) 40 (2.0%) 45 (1.9%) 66 (2.8%)

LOF 0 (0.0%) 17 (0.8%) 36 (1.5%) 46 (2.0%)

LOOP 4 (0.4%) 9 (0.4%) 8 (0.3%) 14 (0.6%)

ODIN 6 (0.6%) 61 (3.0%) 84 (3.6%) 71 (3.0%)

SIMLOF 1 (0.1%) 0 (0.0%) 2 (0.1%) 7 (0.3%)

Total 1002 2009 2350 2330

sensitive to normalization for exactly 2 outlier methods for ξ = 0.05. Again, each dataset may have a

different combination of outlier methods that are sensitive to normalization.

From Table 3 we observe a subtle interplay of dataset characteristics and outlier detection methods

affecting the sensitivity to normalization. In order to understand which outlier methods are more sensitive

to normalization, we examine the datasets which are sensitive to normalization for only one outlier

method. Table 4 contains these results.

From Table 4 we see that FAST ABOD is the method most sensitive to normalization followed by

KDEOS. This is consistent for ξ = 0.05, 0.10, 0.15 and 0.20. The outlier detection methods KNNW

and SIMLOF are the least sensitive to normalization with LOOP and KNN and achieving comparable

results. This outcome further validates the results of the second mixed model in section 2.3 given by

equation (21). In other words, we explicitly see evidence of normalization affecting outlier detection

methods differently.

This section has provided comprehensive evidence, both theoretical and experimental, that normal-

14

ization can have significant impact on some outlier detection methods, and that the complex interplay

of dataset characteristics, outlier detection method and normalization scheme makes it challenging to

ensure the best algorithm is selected for a given dataset. We now turn to recent advances in instance

space analysis to address the challenges of this algorithm selection problem.

3 Instance Space Analysis

We use the extended methodology developed by Smith-Miles et al. (2014), which is based on the Al-

gorithm Selection Problem framework proposed by Rice (1976). This methodology enables the visu-

alization of the broadest possible test instance space, beyond the test instances under study, and how

the difficulty of the instances and performance of algorithms varies across the instance space. Analysis

within this instance space enables an objective measurement of algorithmic power, and the strengths and

weaknesses of algorithms to be visualized.

Figure 6 illustrates the framework and its component spaces. The first is the ill-defined problem

space, P , which contains all the relevant problems in the application domain (e.g. outlier detection).

However, we only have instances and computational results for a subset, I . Second is the algorithm

space, A, which is composed of a portfolio of algorithms applied to the problems in I . Third is the

performance space, Y , which is the set of metrics y(α, x), measuring the performance of an algorithm

α ∈ A to solve a problem x ∈ I . Fourth is the feature space, F , which contains multiple measures that

characterize the properties that can distinguish similarities and differences between instances in I , and

that may correlate with difficulty for various algorithms. These features are represented by the vector

f(x). The meta-data, composed of the features and algorithm performance for all the instances in I , is

used to learn the mapping g(f(x), y(α, x)) that projects an instance x from a high-dimensional feature

space to a two-dimensional space, which is called the instance space. The methods used to learn this

mapping, and to project from a high-dimensional feature space to a 2 − d instance space are flexible.

In this paper, we adopt the approach from Muñoz et al. (2018) to obtain an optimal projection that

encourages linear trends in both features and algorithm performance to be visualized across the resulting

instance space.

Instance Space Analysis involves a study of the instances described by their location in the instance

space, hence their features, and the performance of algorithms in various parts of the instance space. In

particular, we are able to construct footprints for each algorithm, defined as the region in instance space

where we statistically infer good performance of the algorithm, for a user-defined criteria of good. Fur-

thermore, instance space allows us to: (a) visualize the distribution and diversity of existing benchmark

and real-world instances; (b) assess the adequacy of the features; (c) describe the unique strengths and

weaknesses of algorithms; (d) identify and measure the algorithm’s footprint to objectively compare al-

gorithms; (e) partition the instance space into recommended regions for automated algorithm selection;

and (f) distinguish areas of the instance space where it may be useful to generate additional instances to

gain further insights.

The meta-data from which we now construct the outlier detection instance space is described by

the problem instances (see datasets in Section 2.2.1), the algorithms (see outlier detection methods in

Section 2.2.2), and the performance metric described in Section 2.2.3, as well as a set of outlier detection

dataset features we propose below.

3.1 Features

Given that our outlier detection datasets have been generated by down-sampling classification datasets,

we are able to borrow many of the features that have been used to summarize interesting properties

of classification datasets, and then add some additional features that are unique to the outlier detection

challenge. We start with a set of standard classification meta-features categorised as follows:

1. Simple features - These are related to the basic structure of a dataset. For our study these include

the number of observations, number of attributes, ratio of observations to attributes, number of

binary attributes, number of numerical attributes and the ratio of binary to numerical attributes.

15

x ∈ I

Problem
subset

f (x) ∈ F
Feature
space

y ∈ Y
Performance

space

α ∈ A
Algorithm

space

g (f (x)) ∈ R
2

Instance
space

x ∈ P
Problem
space

Footprints
in instance

space

Learn selection mapping
from the instance space

α∗ = S (g (f (x)))

Dimensionality reduction
and visualisation

α∗ = S (f (x))

Select α∗ to
maximise ‖y‖

y (x, α)
apply α to x

Feature selection f

Define algorithm
footprints ϕ (y (x, α))

Select or generate
a subset I ⊂ P

Infer algorithm
performance
for any x ∈ P

Figure 6: Summary of the Instance Space methodology proposed by

Smith-Miles et al. (2014), underpinned by the Algorithm Selection frame-

work (in the dotted box) by Rice (1976).

2. Statistical features - These include statistical properties of skewness, kurtosis, mean to standard

deviation ratio, and IQR to standard deviation ratio for all attributes of a dataset, i.e. if a dataset

has d attributes, then there are d values for each statistical property. For skewness and kurtosis

we include the mean, median, maximum and the 95% percentile of these d values as features.

For IQR to standard deviation ratio we include the maximum and the 95% percentile. We also

include the average mean to standard deviation ratio. As a correlation measure, we compute the

correlation between all attributes and include the mean absolute correlation. We also perform

Principal Component Analysis and include the standard deviation explained by the first Principal

Component.

3. Information theoretic features - for measures of the amount of information present in a dataset, we

compute the entropy of each attribute and include the mean in our feature set. Also we include the

entropy of the whole dataset and the mutual information.

The above set of features are generic features which measure various aspects of a dataset but are not

particularly tailored towards outlier detection. While it is relevant for us to consider these features, they

shed little light on the outlier structure of a dataset.

4. Outlier features - In order to make our feature set richer we include density-based, residual-based and

graph-based features. We also include features that are based on section 2.1, which are related to the

normalization vector w. We compute these features for different subsets of the dataset, namely outliers,

non-outliers and proxi-outliers. We define proxi-outliers as data points that are either far away from

“normal” data or residing in low density regions. If there is a significant overlap between proxi-outliers

16

and actual outliers, then we expect outlier detection methods to perform well on such datasets. Formally,

we define proxy-outliers as data-points which have the top 3% of knn-distances for k defined in (18).

The density, residual and graph-based features we consider are all ratios. It is either a ratio between

proxi-outliers and outliers, or a ratio between outliers and non-outliers. An example is the ratio between

average density of non-outliers and average density of outliers. We explain the outlier features below:

i) Density based features

The density based features are computed either using the density based clustering algorithm DB-

SCAN (Ester et al. 1996) or kernel density estimation as follows:

(a) DBSCAN features

We perform principal component analysis (PCA) and use DBSCAN for clustering in a lower-

dimensional space. We focus on data-points that either belong to very small clusters, or do

not belong to any cluster. Let us call these points dbscan-proxi-outliers, henceforth named

dbscan-proxies. Once again, if dbscan-proxies are outliers then we expect density based out-

lier algorithms to perform well on such datasets. As features we include i. the percentage of

dbscan-proxies that are outliers, ii. the percentage of dbscan-proxies that are outliers which

do not belong to any cluster and iii. the percentage of dbscan-proxies that are outliers which

belong to very small clusters.

(b) Kernel density estimate (KDE) related features

Here too, we perform PCA and compute kernel density estimates (KDE) on two dimensional

PC spaces to reduce computational burden. We compute KDE as detailed by Duong (2018) for

the first 10 principal component (PC) pairs, and for each PC pair we find proxi-outliers. We

compute the mean, median, standard deviation, IQR, minimum, maximum, 5th, and 95th per-

centiles of KDE values for outliers, non-outliers, proxi-outliers and non-proxi-outliers in each

PC space. Next we take the computed summary statistics ratios of outliers to non-outliers,

and proxi-outliers to non-proxi-outliers; for example the ratio between the mean KDE of

non-outliers and the mean KDE of outliers. These ratios are computed for the first 10 two-

dimensional PC spaces. As features, we include the average of each ratio for the set of PC

spaces. In addition we also include the percentage of proxi-outliers that are outliers in our

feature set.

(c) Local density features

We compute all features explained in i)(b) using a local density measure based on KDE instead

of using KDE itself. The local density is computed by dividing the KDE value of a point by the

mean KDE value of its k-nearest neighbours. Here for each data-point its k-nearest neighbours

are computed with k as in equation (18).

ii) Residual based features

These features include summary statistics of residuals from linear models. First, we fit a series of

linear models by randomly choosing the dependent variable and treating the rest of attributes as

independent variables. For each model, data-points which have the the top 3% of absolute residual

values are deemed as proxi-outliers. Similar to KDE features, the mean, median, standard deviation,

IQR, minimum, maximum, 5th, and 95th percentiles of residual values for outliers, non-outliers,

proxi-outliers and non-proxi-outliers are computed. Next the respective ratios are computed for

each linear model. Finally, the average of each ratio for all the models is included in the feature set.

We also include the percentage of proxi-outliers that are outliers as a feature.

iii) Graph based features

These features are based on graph-theoretic measures such as vertex degree, shortest path and con-

nected components. First, we convert the dataset to a directed-graph based on each data-points’

k-nearest neighbours using the software igraph (Csardi & Nepusz 2006). Next, we compute the

degree of the vertices and label ones with the lowest degree as proxi-outliers. Then, similar to

residual based features, we find the summary statistics of degree values for outliers, non-outliers,

proxi-outliers and non-proxi-outliers and include ratios of outliers to non-outliers and proxi-outliers

to non-proxi-outliers in our feature set. We also include the percentage of proxi-outliers which

are actual outliers. Another set of graph features come from connected components. We compute

17

the number of vertices in each connected component and, similar to degree calculations, compute

summary statistics of these values for outliers, non-outliers, proxi-outliers and non-proxi-outliers

and include the ratios as above. We also compute the shortest distances from outlier vertices to

non-outlier vertices. Here the shortest distance from vertex a to vertex b is the minimum number

of edges that connect a and b. We include some statistics about these distances: the percentage of

outliers which have infinite shortest distance to all non-outlier vertices, i.e. outlier vertices which

are not connected. For outliers that have finite shortest distances to some non-outlying vertex, we

compute the percentage of outliers for which the shortest distance is 1.

iv) Normalization related features

These features are related to quantities described in section 2.1 and Proposition 2.1. First, we

compute the normalization vector w as in equation (4) for Min-Max and Median-IQR. Next, we

compute vectors yij as in equation (4) for outliers and non-outliers based on each data-point’s k-

nearest neighbours. Then we compute 〈w,yij〉 for the two different normalization vectors w that

correspond to Min-Max and Median-IQR. The purpose of this exercise is to compare the quantity

〈w,yij〉 obtained from outliers with that of non-outliers for each normalization technique. So we

compute 〈w,yij〉 ratios of outliers to non-outliers and include the minimum, maximum, mean,

median, standard deviation and IQR as features. We also include percentage of ratio values less

than 1, as this is a quantity of interest and relates to equation (15) in Proposition 2.1.

This concludes the list of features - both classification and outlier based - that we compute for each

dataset. From this list of features, those that are based on density, residuals and graphs depend on nearest

neighbours and as such are sensitive to the method of normalization. Hence we calculate features for

each of the two selected normalization methods that we have earlier shown are not correlated, namely

Min-Max and Median-IQR. The choice of these two is justified since: 1. Min-Max is the most commonly

used normalization method for outlier detection, 2. Median-IQR is one of the methods which is robust

to outliers. By combining density, residual and graph based features computed on datasets normalized

by 2 different methods with standard features and normalization based features we end up with a total of

346 candidate features. Table 5 provides a summary of features by category.

Table 5: Types of features calculated

Feature category Number of fea-

tures

Normalization

methods

Total features

Standard meta-learning 25 NA 25

Density based 77 2 154

Residual based 35 2 70

Graph based 41 2 82

Normalization based 15 NA 15

Total 346

Before we can proceed with the Instance Space Analysis, it is important to validate that the features

contain sufficient information about the similarities, differences and difficulties of datasets that they

are reliable as instance summaries. To this end, we first demonstrate that reasonable accuracy can be

obtained using the features to predict sensitivity to normalization, and outlier detection method perfor-

mance, given the characteristics of a dataset summarized by the features.

3.2 Predicting sensitivity to normalization

We have already demonstrated in Section 2 that some combinations of datasets and outlier methods are

sensitive to normalization, but can we predict these combinations? That is, given a dataset and an outlier

method, can we predict if the dataset is sensitive to normalization with respect to that outlier method,

and if it is sensitive, which normalization method should be used? To investigate this question we use

features discussed in section 3.1. Using 10-fold cross validation (Bischl et al. 2012), we train and test

18

12 random forest classifiers (Liaw & Wiener 2002), one for each outlier method, with all 346 features

as input to predict the binary output of ξ-sensitivity to normalization with ξ = 0.05. The results are

given in Table 6. As shown in Table 6 prediction accuracy of sensitivity to normalization ranges from

71% to 80% with FAST ABOD, which was the method most sensitive to normalization, achieving the

highest prediction accuracy. Also, it is insightful to compare these prediction accuracies with the actual

percentages of datasets that are sensitive to normalization, which is given in column 2 of Table 6. In

general, we can correctly predict if a dataset is sensitive to normalization with respect to an outlier

detection method with an accuracy greater than 70%, suggesting that the feature set must contain some

useful summaries of relevant dataset properties.

Table 6: Prediction results for ξ-sensitivity to normalization with ξ = 0.05
using 10-fold cross validation

Outlier detection

method

Actual Percentage

sensitive to normaliza-

tion(%)

Prediction accuracy of

sensitivity to normal-

ization (%)

COF 67.36 76.78

FAST ABOD 77.45 80.15

INFLO 62.76 74.78

KDEOS 68.48 76.87

KNN 50.63 73.17

KNNW 45.88 72.74

LDF 63.89 71.63

LDOF 57.70 74.42

LOF 59.84 74.02

LOOP 55.46 73.19

ODIN 57.28 73.06

SIMLOF 53.77 73.61

Next, we investigate which normalization method gives better performance if a dataset is sensitive to

normalization for a given outlier detection method. We only consider the normalization methods Min-

Max and Median-IQR, and datasets that are ξ-sensitive to normalization for each outlier method with

ξ = 0.05, 0.10, and 0.15. Using features of ξ-sensitive datasets as input to a random forest classifier

using 5-fold cross-validation, we predict the normalization method that gives better performance with

results shown in Table 7. From Table 7 we see that prediction accuracy generally increases with ξ. This

is to be expected because it is easier for the classifier to predict the preferred normalization method as the

sensitivity to normalization increases. Also, prediction accuracy is higher for KNN, KNNW and FAST

ABOD than for other outlier methods.

From the results of the mixed models in section 2.3 we know that normalization methods affect

outlier methods differently. As such, one of the reasons for high fluctuations in prediction accuracy

seen in Table 7 may be because the set of features do not sufficiently explain these effects for all outlier

methods equally. Indeed, the features were pooled together with the intent of discovering strengths and

weaknesses of outlier detection methods, not of normalization methods. Only a handful of features

focus on normalization as seen in Table 5. When comparing with Table 6 which predicts the sensitivity

to normalization, Table 7 has higher contrasts in terms of accuracy. However, from both these tables we

see that we can reasonably predict if a dataset is sensitive to normalization given an outlier method, and

if it is sensitive to normalization which normalization method to recommend.

In effect we are proposing a strategy to select the normalization method to maximize performance.

First for a preferred outlier method, we find if a dataset is sensitive to normalization using features and a

classifier. If it is sensitive, then we find which normalization method gives better performance. One may

ask how one selects the preferred outlier method. This question will be answered in detail in Section 3.4.

19

Table 7: Best normalization method prediction accuracy

Outlier detection

method

ξ = 0.05 (%) ξ = 0.10 (%) ξ = 0.15 (%)

COF 57.69 61.72 68.52

FAST ABOD 76.40 83.62 82.84

INFLO 58.94 63.49 59.32

KDEOS 61.76 63.24 69.85

KNN 71.73 74.18 93.51

KNNW 74.25 85.85 93.33

LDF 60.42 62.68 63.87

LDOF 66.36 62.71 73.54

LOF 63.54 65.17 70.89

LOOP 64.45 67.22 69.43

ODIN 59.78 57.23 67.47

SIMLOF 63.66 64.74 73.47

Table 8: Outlier method performance prediction - average cross validation

accuracy %

Outlier detection method Default accuracy(%) of

AUC > 0.8
Prediction accuracy of

AUC > 0.8

COF 75.58 83.48

FAST ABOD 67.77 86.07

INFLO 83.22 89.29

KDEOS 90.96 92.81

KNN 68.16 86.56

KNNW 67.13 86.13

LDF 75.65 85.28

LDOF 80.08 87.36

LOF 74.63 84.07

LOOP 77.19 85.88

ODIN 79.09 87.00

SIMLOF 75.85 85.21

3.3 Predicting outlier method performance using features

To confirm that our set of 346 features are also predictive of outlier method performance, we use the

complete set of features as input to a Random Forest classifier, which predicts whether a method’s area

under the ROC curve is greater than 0.8, indicating a good performance for an outlier detection method.

Table 8 presents the average cross-validation accuracy over 10 folds for each outlier detection method.

The default accuracy is the percentage of the majority class. As the minimum accuracy is 83.48%, we

conclude that these features are reasonable predictors of outlier detection method performance.

3.4 Constructing an outlier detection instance space

Having validated that the features contain sufficient information to be predictive of both normalization

effects and outlier detection method performance, we now use the features to construct an instance space

to visualize the relationships between instance features and strengths and weaknesses of methods.

3.4.1 Feature subset selection

Critical to both algorithm performance prediction and instance space construction is the selection of

features that are both distinctive (i.e. uncorrelated to other features) and predictive (i.e correlated with

20

algorithm performance). Therefore, we follow a systematic procedure to select a small subset of fea-

tures that best meet these requirements, using a subset of 2018 instances for which there are three well

performing algorithms or less. This choice is somewhat arbitrary, motivated by the fact that we are less

interested to study datasets where many algorithms perform well or poorly, given our aim is to under-

stand strengths and weaknesses of outlier detection methods. We will later project the full set of datasets

into the constructed instance space, but consider this reduced set of datasets sufficient for performance

prediction and instance space construction.

We pre-process the data such that it becomes amenable to machine learning and dimensionality

projection method. Given that some features are ratios, there is often the case that one feature can

produce excessively large or infinite values. Hence, we bound all the features between their median

plus or minus five times their interquartile range. Any not-a-number value is converted to zero, while

all infinite values are equal to the bounds. Next, we apply Box-Cox transformation to each feature to

stabilize the variance and make the data more normal-like. Finally, we apply z-transform to standardize

the feature.

We start with the full set of 346 features. First, we determine whether the feature has unique values

for most instances. A feature provides little information if it produces the same value for the majority of

the datasets. Hence, we discard those that have less than 30% unique values. After this step we are left

with 255 features. Then, we check the correlation between the features and the algorithm performance

measure, which is the area under the ROC curve. Sorting the absolute value of the correlation from

highest to lowest, we pick the top three features per algorithm, some of which can be repeated. After

this step we are left with 26 features. Next, we identify groups of similar features. We use a clustering

approach, with k-means as the clustering algorithm and 1 − |ρ|, where ρ is the correlation between two

features, as the dissimilarity measure. As result, we obtain eight clusters. All the possible combinations

of eight features out of 26, taking only one feature from each cluster, is 7200. Finally, we determine

the best of these 7200 subsets for the dimensionality reduction. We use PCA with two components to

project the datasets into a 2-d instance space using a candidate feature subset. Then, we fit a random

forest model per algorithm to classify the instances in the trial instance space into groups of ǫ-good and

bad performance, which is defined as follows:

Definition 3.1. For a given dataset x, an outlier detection algorithm α gives ǫ-good performance if the

difference in area under the ROC curve to the best algorithm is less than ǫ. Formally:

max
a∈A

(AUC(x, a))− AUC(x, α) < ǫ ,

where A denotes the algorithm space and AUC the area under the ROC curve.

That is, we fit 12 models per each feature combination. We define the best combination as the

one producing the lowest average out-of-the-bag (OOB) error across all models. Table 9 shows the

combinations which produce the lowest OOB error for each algorithm, and the one selected as the best

compromise. We observe that: (a) the most selected feature in a cluster does not always belong to the

lowest average set; (b) some features never belong to a best performing subset; and (c) each algorithm

has a unique subset of preferred features, even if it shares underlying principles with other algorithms.

The final set of selected features from which we construct the instance space is listed in table 10.

3.4.2 Projection method

Our approach to constructing the instance space is based on the most recent implementation of the

methodology described in (Muñoz et al. 2018). We use the Prediction Based Linear Dimensionality

Reduction (PBLDR) method (Muñoz et al. 2018) to find a projection from 8-d to 2-d that creates the

most linear trends of algorithm performance and feature values across the instance space, to assist vi-

sualization of directions of hardness and feature correlations. The resulting method requires global

optimization techniques to solve the multi-objective optimization problem of finding the optimal linear

transformation matrix, and the optimization algorithm BIPOP-CMA-ES (Hansen 2009) is used. Given

this method’s stochasticity, we calculate 30 different projections. We then select the one with the highest

topological preservation, defined as the correlation between high- and low-dimensional distances. The

21

Table 9: Feature combinations that produce the lowest out-of-the-bag error

(OOB) for each algorithm, and the one that produces the lowest average

across all models (LO-AVG).

cluster # Feature C
O

F

F
A

S
T

A
B

O
D

IN
F

L
O

K
D

E
O

S

K
N

N

K
N

N
W

L
D

F

L
D

O
F

L
O

F

L
O

O
P

O
D

IN

S
IM

L
O

F

%
se

le
ct

ed

L
O

-A
V

G

1
OPO DenOut Out 95P 1 X X 17

OPO LocDenOut Out 95P 1 X X X X X X X X X X 83 X

2

OPO Out DenOut 1 3 X X X X X X 50 X

OPO Out LocDenOut 1 3 X X X X 33

OPO Out LocDenOut 2 3 X X 17

3

Skew 95 X X X 25

Kuto Max 0

OPO Res KNOut 95P 1 X X X X X 42 X

OPO Res ResOut Median 3 X X X X 33

4

OPO Res Out SD 1 X 8

OPO Res Out IQR 1 0

OPO Res Out 95P 1 X X X X X 42

OPO Res Out IQR 3 X X X 25

OPO Res Out 95P 3 X X X 25 X

5

Total Entropy Dataset X X X X X X X X 67

OPO ResOut Out Min 1 0

OPO ResOut Out Min 3 0

OPO GComp PO Mean 3 X X 17

OPO GComp PO Q95 3 X X 17 X

6

OPO Den Out SD 3 X X X X 33 X

OPO Den Out IQR 3 X X X X X 42

OPO Den Out 95P 3 X X X 25

7
SNR X X X X X X X X X X 83 X

OPO LocDen Out IQR 1 X X 17

8
OPO GDeg Out Mean 1 X X X X X X X 58 X

OPO GDeg Out Mean 3 X X X X X 42

OOB error (%) 19 25 2 12 24 24 20 10 11 8 8 10 16

final projection matrix is defined by Equation 23 to represent each dataset as a 2-d vector Z depending

on its 8-d feature vector.

Z =

























−0.0506 0.1731
−0.0865 −0.1091
−0.1697 0.0159
0.0041 −0.0465

−0.2158 0.0398
0.0087 −0.0053
0.0420 −0.2056

−0.0661 −0.1864

























⊤ 























SNR

OPO Res KNOut 95P 1

OPO Out DenOut 1 3

OPO Den Out SD 3

OPO Res Out 95P 3

OPO LocDenOut Out 95P 1

OPO GDeg Out Mean 1

OPO GComp PO Q95 3

























(23)

Figure 7 illustrates the resulting instance space, including the full set of more than 12000 instances,

discriminated by their source. The sets by Campos et al. (2016) and Goldstein & Uchida (2016) are

mostly located in the lower left area of the space; whereas the set produced by down-sampling the

22

Table 10: Feature descriptions

Feature Description Other details

1 OPO LocDenOut Out 95P 1
95

th percentile of local density for proxi-outliers

95thpercentile of local density for outliers
Local density computed using KDE on

2D PC space. Min-Max used.

2 OPO Out DenOut 1 3
number of density proxi-outliers that are also outliers

number of outliers
Density computed using KDE on 2D

PC space. Median-IQR used.

3 OPO Res KNOut 95P 1
95

th percentile of residuals for non-proxi-outliers

95thpercentile of residuals for proxi outliers
Residuals of many linear models com-

puted with Min-Max normalization.

4 OPO Res Out 95P 3
95

th percentile of residuals for non-outliers

95thpercentile of residuals for outliers
Residuals of many linear models com-

puted with Median-IQR normalization.

5 OPO GComp PO Q95 3
95

thpercentile of connected component size of graphs for non-proxi-outliers

95thpercentile of connected component size of graphs for proxi-outliers
The distribution of connected compo-

nents of KNN graphs computed using

Median-IQR normalizaiton.

6 OPO Den Out SD 3
Standard deviation of density for non-outliers

Standard deviation of density for outliers
Density computed using KDE on 2D

PC space. Median-IQR used.

7
SNR Signal to noise ratio Averaged across dataset attributes.

8
OPO GDeg Out Mean 1

Mean graph-degree for non-outliers

Mean graph-degree for outliers
The distribution of vertex degree of

KNN graphs computed using Min-Max

normalizaiton.

UCI repository provides a greater coverage of the instance space and hence more diversity of features.

Finally, Figures 8 and 9 show the distribution of feature values and outlier method performance across

the instance space respectively, based only on the subset of 2018 instances. The scale has been adjusted

to the [0, 1] range. We observe that:

1. Low values of the feature SNR and high values of OPO Res KNOut 95P 1 are found at the bottom

of the space, which correlates with good performance of LDF.

2. Both OPO Out DenOut 1 3 and OPO Res Out 95P 3 tend to decrease from left to right of the

space. Both features tend to correlate with high performance of KDEOS and low performance of

KNN and KNNW.

3. Performance of FAST ABOD tends to increase from the bottom up, which tends to be correlated

with the feature OPO GDeg Out Mean 1.

4. There are no distinguishable linear patterns for some algorithms, such as COF and LOF. This

indicates that either PBLDR cannot find a predictive projection for these algorithms, or that we

lack representative instances for these algorithms. This will be reflected in weaker footprint results

for these methods.

3.5 Footprint analysis of algorithm strengths and weaknesses

We define a footprint as an area of the instance space where an algorithm is expected to perform well

based on inference from empirical performance analysis (Smith-Miles & Tan 2012). To construct a

footprint, we follow the approach first introduced in (Smith-Miles & Tan 2012) and later refined in

(Muñoz & Smith-Miles 2017): (a) we measure the distance between all instances, and eliminate those

with a distance lower than a threshold, δ; (b) we calculate a Delaunay triangulation within the convex

hull created formed by the remaining instances; (c) we create a concave hull, by removing any triangle

with edges larger than another threshold, ∆; (d) we calculate the density and purity of each triangle in the

concave hull; and, (e) we remove any triangle that does not fulfil the density and purity thresholds. The

values for parameters for the lower and upper distance thresholds, {δ,∆}, are set to 1% and 25% of the

23

-1.5 -1 -0.5 0 0.5 1 1.5

z
1

-1.5

-1

-0.5

0

0.5

1

1.5

2
Dataset Sources

Campos

Goldstein

UCI#

Figure 7: Instance space including the full set of more than 12000 in-

stances, discriminated by their source.

maximum distance respectively. The density threshold, ρ, is set to 10, and the purity threshold, π, is set

to 75%. We then remove any contradictions that could appear when two different conclusions could be

drawn from the same section of the instance space due to overlapping footprints, e.g., when comparing

two algorithms. This is achieved by comparing the area lost by the overlapping footprints when the

contradicting sections are removed. The algorithm that would loose the largest area in a contradiction

gets to keep it, as long as it maintains the density and purity thresholds.

Table 11 presents the results from the footprint analysis. The best algorithm is the one with the

largest area under the ROC curve for the given instance, assuming that the most suitable normalization

method was selected. The results are expressed as a percentage of the total area (3.5520) and density

(565.8808) of the convex hull that encloses all instances. Further results are also illustrated in Figure 10,

which shows the ǫ-good footprint as black areas and ǫ-bad instances as grey marks. Table 11 demon-

strates that most algorithms have very small footprints. This can be corroborated by Figure 10, which

shows that some algorithms do not have pockets of good performance. Instead, some algorithms such as

INFLO, LDOF and SIMLOF present good performance in scattered regions of the instance space; hence,

we fail to find a well-defined area that fulfils the density and purity requirements. On the other hand,

FAST ABOD, KNN and KNNW possess the largest footprints. FAST ABOD, with a footprint covering

29.8%, of the instance space tends to dominate the upper left areas, while KNN and KNNW tend to

dominate the lower left areas of the instance space. KDEOS and LDF are special cases. If we only

consider their ǫ-good performance, we could think that both are unremarkable, as their footprints only

cover 4.9% and 2.2% of the space respectively. However, their footprint increase to 12.9% and 6.4%

respectively when considering their best performance, suggesting that they have some unique strengths.

Observing Figures 10d and 10g, we observe that KDEOS and LDF tend to dominate the upper right and

lower areas of the instance space respectively. Given that the footprint calculation minimises contradic-

tions, their ǫ-good performance is diminished when it is compared with the three dominating algorithms,

FAST ABOD, KNN and KNNW. In fact, most algorithms have areas of superior performance, which are

masked by good performance of the three dominating ones.

3.6 Automated algorithm selection in the instance space

One of the main advantages of the instance space is that we can see regions of strength for some outlier

methods. In addition, the instance space can also be used for automated algorithm selection for untested

instances. Given the instance space coordinates of an untested instance, we can find outlier methods

suited for it by exploring the instance space. In fact, machine learning methods can be used to partition

the instance space into regions where different outlier methods are dominant.

24

-1
.5

-1
-0

.5
0

0
.5

1
1

.5

z
1

-1
.5-1

-0
.50

0
.51

1
.5

z
2

S
N

R

(a
)

-1
.5

-1
-0

.5
0

0
.5

1
1
.5

z
1

-1
.5-1

-0
.50

0
.51

1
.5

O
P

O
_
R

e
s
_
K

N
O

u
t_

9
5
P

_
1

(b
)

-1
.5

-1
-0

.5
0

0
.5

1
1
.5

z
1

-1
.5-1

-0
.50

0
.51

1
.5

O
P

O
_
O

u
t_

D
e
n

O
u

t_
1
_
3

(c
)

-1
.5

-1
-0

.5
0

0
.5

1
1
.5

z
1

-1
.5-1

-0
.50

0
.51

1
.5

O
P

O
_
D

e
n

_
O

u
t_

S
D

_
3

00
.2

0
.4

0
.6

0
.8

1

(d
)

-1
.5

-1
-0

.5
0

0
.5

1
1

.5

z
1

-1
.5-1

-0
.50

0
.51

1
.5

z
2

O
P

O
_

R
e

s
_

O
u

t_
9

5
P

_
3

(e
)

-1
.5

-1
-0

.5
0

0
.5

1
1
.5

z
1

-1
.5-1

-0
.50

0
.51

1
.5

O
P

O
_
L

o
c
D

e
n

O
u

t_
O

u
t_

9
5
P

_
1

(f
)

-1
.5

-1
-0

.5
0

0
.5

1
1
.5

z
1

-1
.5-1

-0
.50

0
.51

1
.5

O
P

O
_
G

D
e
g

_
O

u
t_

M
e
a
n

_
1

(g
)

-1
.5

-1
-0

.5
0

0
.5

1
1
.5

z
1

-1
.5-1

-0
.50

0
.51

1
.5

O
P

O
_
G

C
o

m
p

_
P

O
_
Q

9
5
_
3

00
.2

0
.4

0
.6

0
.8

1

(h
)

F
ig

u
re

8
:

D
is

tr
ib

u
ti

o
n

o
f

n
o
rm

al
iz

ed
fe

at
u
re

s
o
n

th
e

p
ro

je
ct

ed
in

st
an

ce
sp

ac
e.

25

-1
.5

-1
-0

.5
0

0
.5

1
1
.5

z
1

-1
.5-1

-0
.50

0
.51

1
.5

z
2

C
O

F

(a
)

-1
.5

-1
-0

.5
0

0
.5

1
1

.5

z
1

-1
.5-1

-0
.50

0
.51

1
.5

F
A

S
T

_
A

B
O

D

(b
)

-1
.5

-1
-0

.5
0

0
.5

1
1

.5

z
1

-1
.5-1

-0
.50

0
.51

1
.5

IN
F

L
O

(c
)

-1
.5

-1
-0

.5
0

0
.5

1
1

.5

z
1

-1
.5-1

-0
.50

0
.51

1
.5

K
D

E
O

S

(d
)

-1
.5

-1
-0

.5
0

0
.5

1
1

.5

z
1

-1
.5-1

-0
.50

0
.51

1
.5

K
N

N

(e
)

-1
.5

-1
-0

.5
0

0
.5

1
1

.5

z
1

-1
.5-1

-0
.50

0
.51

1
.5

K
N

N
W

00
.2

0
.4

0
.6

0
.8

1

(f
)

-1
.5

-1
-0

.5
0

0
.5

1
1
.5

z
1

-1
.5-1

-0
.50

0
.51

1
.5

z
2

L
D

F

(g
)

-1
.5

-1
-0

.5
0

0
.5

1
1

.5

z
1

-1
.5-1

-0
.50

0
.51

1
.5

L
D

O
F

(h
)

-1
.5

-1
-0

.5
0

0
.5

1
1

.5

z
1

-1
.5-1

-0
.50

0
.51

1
.5

L
O

F

(i
)

-1
.5

-1
-0

.5
0

0
.5

1
1

.5

z
1

-1
.5-1

-0
.50

0
.51

1
.5

L
O

O
P

(j
)

-1
.5

-1
-0

.5
0

0
.5

1
1

.5

z
1

-1
.5-1

-0
.50

0
.51

1
.5

O
D

IN

(k
)

-1
.5

-1
-0

.5
0

0
.5

1
1

.5

z
1

-1
.5-1

-0
.50

0
.51

1
.5

S
IM

L
O

F

00
.2

0
.4

0
.6

0
.8

1

(l
)

F
ig

u
re

9
:

S
ca

le
d

ar
ea

u
n
d
er

th
e

cu
rv

e
fo

r
ea

ch
o
u
tl

ie
r

d
et

ec
ti

o
n

al
g
o
ri

th
m

o
n

th
e

in
st

an
ce

sp
ac

e.

26

-1
.5

-1
-0

.5
0

0
.5

1

z
1

-1
.5-1

-0
.50

0
.51

1
.5

z
2

C
O

F

0 0

(a
)

-1
.5

-1
-0

.5
0

0
.5

1

z
1

-1
.5-1

-0
.50

0
.51

1
.5

F
A

S
T

_
A

B
O

D

0 0

(b
)

-1
.5

-1
-0

.5
0

0
.5

1

z
1

-1
.5-1

-0
.50

0
.51

1
.5

IN
F

L
O

0 0

(c
)

-1
.5

-1
-0

.5
0

0
.5

1

z
1

-1
.5-1

-0
.50

0
.51

1
.5

K
D

E
O

S

0 0

(d
)

-1
.5

-1
-0

.5
0

0
.5

1

z
1

-1
.5-1

-0
.50

0
.51

1
.5

K
N

N

0 0

(e
)

-1
.5

-1
-0

.5
0

0
.5

1
1
.5

z
1

-1
.5-1

-0
.50

0
.51

1
.5

K
N

N
W

0-
g
o
o
d

0-
b
a
d

(f
)

-1
.5

-1
-0

.5
0

0
.5

1

z
1

-1
.5-1

-0
.50

0
.51

1
.5

z
2

L
D

F

0 0

(g
)

-1
.5

-1
-0

.5
0

0
.5

1

z
1

-1
.5-1

-0
.50

0
.51

1
.5

L
D

O
F

0 0

(h
)

-1
.5

-1
-0

.5
0

0
.5

1

z
1

-1
.5-1

-0
.50

0
.51

1
.5

L
O

F

0 0

(i
)

-1
.5

-1
-0

.5
0

0
.5

1

z
1

-1
.5-1

-0
.50

0
.51

1
.5

L
O

O
P

0 0

(j
)

-1
.5

-1
-0

.5
0

0
.5

1

z
1

-1
.5-1

-0
.50

0
.51

1
.5

O
D

IN

0 0

(k
)

-1
.5

-1
-0

.5
0

0
.5

1
1
.5

z
1

-1
.5-1

-0
.50

0
.51

1
.5

S
IM

L
O

F

0-
g
o
o
d

0-
b
a
d

(l
)

F
ig

u
re

1
0
:

F
o
o
tp

ri
n
ts

o
f

th
e

al
g
o
ri

th
m

s
in

th
e

in
st

an
ce

sp
ac

e,
as

su
m

in
g
ǫ-

g
o
o
d

p
er

fo
rm

an
ce

.

27

Table 11: Footprint analysis of the algorithms. αN is the area, dN the

density and p the purity. The footprint areas (and their density and purity)

are shown where algorithm performance is ǫ-good and best, with ǫ = 0.05.

ǫ-good Best algorithm

αN dN p αN dN p

COF 0.9% 464.2% 94.3% 1.7% 317.1% 86.0%

FAST ABOD 29.8% 81.2% 95.1% 5.8% 181.7% 82.5%

INFLO 0.5% 31.2% 100.0% 6.4% 34.1% 88.6%

KDEOS 4.9% 50.4% 88.0% 12.9% 46.8% 78.5%

KNN 15.7% 130.5% 96.4% 1.3% 237.5% 80.3%

KNNW 12.3% 128.6% 96.6% 2.5% 171.4% 83.9%

LDF 2.2% 380.4% 95.2% 6.4% 200.6% 80.3%

LDOF 0.0% 4180.1% 100.0% 2.0% 123.7% 82.0%

LOF 0.2% 386.5% 100.0% 1.7% 155.9% 79.6%

LOOP 0.0% 8164.9% 100.0% 0.9% 96.8% 83.3%

ODIN 0.1% 720.4% 90.9% 3.2% 80.4% 76.9%

SIMLOF 0.0% 0.0% 00.0% 0.9% 196.5% 79.4%

Table 12: Accuracy of SVM prediction of ǫ-good performance based on

instance space location of test sets.

Outlier detection method Prediction Accuracy (%) Actual percentage of majority

class (%)

FAST ABOD 71 58

KDEOS 87 87

KNN 71 60

KNNW 68 64

We use support vector machines (SVM) for this partitioning. Of the 12 outlier methods we consider

FAST ABOD, KDEOS, KNN and KNNW, as these methods have bigger footprints that span a contigu-

ous region of the instance space. For these outlier methods, we use ǫ-good performance as the output and

the instance space coordinates as the input for the SVM. In this way, we train 4 SVMs, each SVM on a

single outlier method. The prediction accuracies using 5-fold cross validation along with the percentage

of instances in the majority class are given in Table 12. From Table 12 we see that for FAST ABOD,

KNN and KNNW that the SVM accuracy is greater than the majority class percentage and for KDEOS,

it is equal.

The regions of strength resulting from this experiment are given in Figure 11. From Figure 11 we

see an overlap of regions for FAST ABOD, KNN and KNNW. By combining these regions of strength

we obtain a partitioning of the instance space shown in Figure 12. To break ties, we use the prediction

probability of the SVM and choose the method with the highest prediction probability. One can also use

a different approach such as the sensitivity to normalization criteria to break ties.

From Figure 12 we see that no outlier method is recommended for a large part of the instance space.

This highlights the opportunity for new outlier methods which perform well in this part of the space to

be developed. In addition, we see that KDEOS, which was the overall least effective method (see Figure

5) has a niche in the instance space where no outlier method performs well. This insight was missed by

the standard statistical analysis.

28

-1.5 -1 -0.5 0 0.5 1

z
1

-1.5

-1

-0.5

0

0.5

1

1.5

z
2

FAST ABOD

0

0

(a)

-1.5 -1 -0.5 0 0.5 1 1.5

z
1

-1.5

-1

-0.5

0

0.5

1

1.5
KDEOS

0-good

0-bad

(b)

-1.5 -1 -0.5 0 0.5 1

z
1

-1.5

-1

-0.5

0

0.5

1

1.5

z
2

KNN

0

0

(c)

-1.5 -1 -0.5 0 0.5 1 1.5

z
1

-1.5

-1

-0.5

0

0.5

1

1.5
KNNW

0-good

0-bad

(d)

Figure 11: Regions of strength for FAST ABOD, KNN family and LOF

family.

4 Conclusions

In this study we have investigated the effect of normalization and the algorithm selection problem for 12
unsupervised outlier methods. Normalization is a topic which has not received much attention in the liter-

ature. We show its relevance to outlier detection mathematically and further illustrate experimentally that

performance of an outlier method may significantly change depending on the normalization method. In

fact we show that the effect of normalization changes from one outlier method to another. Furthermore,

certain datasets and outlier methods are more sensitive to normalization than others, creating a subtle

interplay between the datasets and the outlier methods that affects their sensitivity to normalization.

One main conclusion of this research is that normalization should not be treated as a fixed strategy,

and a normalization method should be selected to maximize performance. To aid with this selection,

we have proposed an approach whereby we first predict the sensitivity to normalization of a dataset, and

then the normalization method best suited for a given outlier detection method. Our models predict with

reasonable accuracy, with some outlier methods having higher accuracy than others.

29

-2 -1 0 1 2

z
1

-1.5

-1

-0.5

0

0.5

1

1.5

FAST ABOD

KDEOS

KNN

KNNW

None

Figure 12: A partition of the instance space showing recommended outlier

detection methods.

In addition to normalization we also studied the algorithm selection problem for unsupervised outlier

detection. Given measurable features of a dataset, we find the outlier method best suited for it with rea-

sonable accuracy. This is important because each method has its strengths and weaknesses and no single

method out-performs all others for all instances. We have explored the strengths and weaknesses of

outlier methods by analysing their footprints in the constructed instance space. Moreover, we have iden-

tified different regions of the instance space that reveal the relative strengths of different outlier detection

methods. Our work clearly demonstrates for example that KDEOS, which gives poor performance on

average, has a region of strength in the instance space where no other algorithm excels.

In addition to these contributions, we hope to have laid some important foundations for future re-

search into new and improved outlier detection methods, in the following ways: 1. enabling evaluation

of the sensitivity to normalization for new outlier methods; 2. rigorous evaluation of new methods using

the comprehensive corpus of over 12000 datasets with diverse characteristics we have made available;

3. using the instance space, the strengths and weaknesses of new outlier methods can be identified, and

their uniqueness compared to existing methods described. Equally valuable, the instance space anal-

ysis can also reveal if a new outlier method is similar to existing outlier methods, or offers a unique

contribution to the available repertoire of techniques.

As a word of caution, we note that our current instance space is computed using our set of datasets,

outlier methods and features. Thus, we do not make claim to have constructed the definitive instance

space for all unsupervised outlier detection methods. Hence, the selected features for the instance space

may change with the expansion of the corpus of datasets and outlier methods. Future research paths

include the expansion of the instance space by generating new and diverse instances and considering

other classes of outlier detection methods, such as subspace approaches. To aid this expansion and

future research, we make all of our data and implementation scripts available on our website.

Broadening the scope of this work, we have been adapting the instance space methodology to other

problems besides outlier detection. For example, machine learning (Muñoz et al. 2018) and time series

forecasting (Kang et al. 2017). Part of this larger project is to build freely accessible web-tools that carry

out the instance space analysis automatically, including testing of algorithms on new instances. Such

tools will be available at matilda.unimelb.edu.au in the near future.

Acknowledgements

Funding was provided by the Australian Research Council through the Australian Laureate Fellowship

FL140100012, and Linkage Project LP160101885. This research was supported in part by the Monash

eResearch Centre and eSolutions-Research Support Services through the MonARCH HPC Cluster.

30

References

Achtert, E., Kriegel, H.-P. & Zimek, A. (2008), Elki: a software system for evaluation of subspace clustering

algorithms, in ‘International Conference on Scientific and Statistical Database Management’, Springer, pp. 580–

585.

Angiulli, F. & Pizzuti, C. (2002), Fast outlier detection in high dimensional spaces, in ‘European Conference on

Principles of Data Mining and Knowledge Discovery’, Springer, pp. 15–27.

Barnett, V. & Lewis, T. (1974), Outliers in statistical data, Wiley.

Billor, N., Hadi, A. S. & Velleman, P. F. (2000), ‘Bacon: blocked adaptive computationally efficient outlier nomina-

tors’, Computational Statistics & Data Analysis 34(3), 279–298.

Bischl, B., Mersmann, O., Trautmann, H. & Preuß, M. (2012), Algorithm selection based on exploratory landscape

analysis and cost-sensitive learning, in ‘Proceedings of the 14th annual conference on Genetic and evolutionary

computation’, ACM, pp. 313–320.

Brazdil, P., Giraud-Carrier, C., Soares, C. & Vilalta, R. (2008), Metalearning: Applications to data mining, Cogni-

tive Technologies, Springer.

Breheny, P. & Burchett, W. (2012), ‘Visualizing regression models using visreg’.

Breunig, M. M., Kriegel, H.-P., Ng, R. T. & Sander, J. (2000), Lof: identifying density-based local outliers, in ‘ACM

sigmod record’, Vol. 29, ACM, pp. 93–104.

Campos, G. O., Zimek, A., Sander, J., Campello, R. J., Micenková, B., Schubert, E., Assent, I. & Houle, M. E.

(2016), ‘On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study’, Data

Mining and Knowledge Discovery 30(4), 891–927.

Craswell, N. (2009), Precision at n, in ‘Encyclopedia of database systems’, Springer, pp. 2127–2128.

Csardi, G. & Nepusz, T. (2006), ‘The igraph software package for complex network research’, InterJournal, Com-

plex Systems 1695(5), 1–9.

Culberson, J. C. (1998), ‘On the futility of blind search: An algorithmic view of no free lunch’, Evolutionary

Computation 6(2), 109–127.

Duong, T. (2018), ‘ks: Kernel density estimation for bivariate data’.

Emmott, A., Das, S., Dietterich, T., Fern, A. & Wong, W.-K. (2015), ‘A meta-analysis of the anomaly detection

problem’, arXiv preprint arXiv:1503.01158 .

Ester, M., Kriegel, H.-P., Sander, J., Xu, X. et al. (1996), A density-based algorithm for discovering clusters in large

spatial databases with noise., in ‘Kdd’, Vol. 96, pp. 226–231.

Goix, N. (2016), ‘How to evaluate the quality of unsupervised anomaly detection algorithms?’, arXiv preprint

arXiv:1607.01152 .

Goldstein, M. & Uchida, S. (2016), ‘A comparative evaluation of unsupervised anomaly detection algorithms for

multivariate data’, PloS one 11(4), e0152173.

Hansen, N. (2009), Benchmarking a bi-population CMA-ES on the BBOB-2009 function testbed, in ‘GECCO ’09’,

ACM, pp. 2389–2396.

Hautamaki, V., Karkkainen, I. & Franti, P. (2004), Outlier detection using k-nearest neighbour graph, in ‘Pattern

Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on’, Vol. 3, IEEE, pp. 430–

433.

Hawkins, D. M. (1980), Identification of outliers, Vol. 11, Springer.

Ho, Y.-C. & Pepyne, D. L. (2002), ‘Simple explanation of the no-free-lunch theorem and its implications’, Journal

of optimization theory and applications 115(3), 549–570.

31

Hubert, M. & Van der Veeken, S. (2008), ‘Outlier detection for skewed data’, Journal of chemometrics 22(3-4), 235–

246.

Igel, C. & Toussaint, M. (2005), ‘A no-free-lunch theorem for non-uniform distributions of target functions’, Journal

of Mathematical Modelling and Algorithms 3(4), 313–322.

Jin, W., Tung, A. K., Han, J. & Wang, W. (2006), Ranking outliers using symmetric neighborhood relationship, in

‘Pacific-Asia Conference on Knowledge Discovery and Data Mining’, Springer, pp. 577–593.

Kang, Y., Hyndman, R. & Smith-Miles, K. (2017), ‘Visualising forecasting algorithm performance using time series

instance spaces’, Int. J. Forecast 33(2), 345–358.

Kriegel, H.-P., Kröger, P., Schubert, E. & Zimek, A. (2009), Loop: local outlier probabilities, in ‘Proceedings of the

18th ACM conference on Information and knowledge management’, ACM, pp. 1649–1652.

Kriegel, H.-P., Zimek, A. et al. (2008), Angle-based outlier detection in high-dimensional data, in ‘Proceedings of

the 14th ACM SIGKDD international conference on Knowledge discovery and data mining’, ACM, pp. 444–452.

Latecki, L. J., Lazarevic, A. & Pokrajac, D. (2007), Outlier detection with kernel density functions, in ‘International

Workshop on Machine Learning and Data Mining in Pattern Recognition’, Springer, pp. 61–75.

Leyton-Brown, K., Nudelman, E., Andrew, G., McFadden, J. & Shoham, Y. (2003), A portfolio approach to algo-

rithm selection, in ‘IJCAI’, Vol. 3, pp. 1542–1543.

Liaw, A. & Wiener, M. (2002), ‘Classification and regression by randomforest’, R News 2(3), 18–22.

URL: http://CRAN.R-project.org/doc/Rnews/

Muñoz, M. A., Villanova, L., Baatar, D. & Smith-Miles, K. (2018), ‘Instance spaces for machine learning classifi-

cation’, Machine Learning 107(1), 109–147.

Muñoz, M. & Smith-Miles, K. (2017), ‘Performance analysis of continuous black-box optimization algorithms via

footprints in instance space’, Evol. Comput. 25(4), 529–554.

Ramaswamy, S., Rastogi, R. & Shim, K. (2000), Efficient algorithms for mining outliers from large data sets, in

‘ACM Sigmod Record’, Vol. 29, ACM, pp. 427–438.

Rice, J. (1976), The algorithm selection problem, in ‘Advances in Computers’, Vol. 15, Elsevier, pp. 65–118.

Rousseeuw, P. J. & Hubert, M. (2017), ‘Anomaly detection by robust statistics’, Wiley Interdisciplinary Reviews:

Data Mining and Knowledge Discovery .

Schubert, E., Zimek, A. & Kriegel, H.-P. (2014a), Generalized outlier detection with flexible kernel density esti-

mates, in ‘Proceedings of the 2014 SIAM International Conference on Data Mining’, SIAM, pp. 542–550.

Schubert, E., Zimek, A. & Kriegel, H.-P. (2014b), ‘Local outlier detection reconsidered: a generalized view on lo-

cality with applications to spatial, video, and network outlier detection’, Data Mining and Knowledge Discovery

28(1), 190–237.

Smith-Miles, K. A. (2009), ‘Cross-disciplinary perspectives on meta-learning for algorithm selection’, ACM Com-

puting Surveys (CSUR) 41(1), 6.

Smith-Miles, K., Baatar, D., Wreford, B. & Lewis, R. (2014), ‘Towards objective measures of algorithm perfor-

mance across instance space’, Comput. Oper. Res. 45, 12–24.

Smith-Miles, K. & Bowly, S. (2015), ‘Generating new test instances by evolving in instance space’, Computers &

Operations Research 63, 102–113.

Smith-Miles, K. & Tan, T. T. (2012), Measuring algorithm footprints in instance space, in ‘Evolutionary Computa-

tion (CEC), 2012 IEEE Congress on’, IEEE, pp. 1–8.

Talagala, P., Hyndman, R., Smith-Miles, K., Kandanaarachchi, S., Munoz, M. et al. (2018), Anomaly detection in

streaming nonstationary temporal data, Technical report, Monash University, Department of Econometrics and

Business Statistics.

32

Tang, J., Chen, Z., Fu, A. W.-C. & Cheung, D. W. (2002), Enhancing effectiveness of outlier detections for low

density patterns, in ‘Pacific-Asia Conference on Knowledge Discovery and Data Mining’, Springer, pp. 535–

548.

Wilkinson, L. (2018), ‘Visualizing big data outliers through distributed aggregation’, IEEE transactions on visual-

ization and computer graphics 24(1), 256–266.

Wolpert, D. H. & Macready, W. G. (1997), ‘No free lunch theorems for optimization’, IEEE transactions on evolu-

tionary computation 1(1), 67–82.

Wolpert, D. H., Macready, W. G. et al. (1995), No free lunch theorems for search, Technical report, Technical Report

SFI-TR-95-02-010, Santa Fe Institute.

Zhang, E. & Zhang, Y. (2009), Average precision, in ‘Encyclopedia of database systems’, Springer, pp. 192–193.

Zhang, K., Hutter, M. & Jin, H. (2009), A new local distance-based outlier detection approach for scattered real-

world data, in ‘Pacific-Asia Conference on Knowledge Discovery and Data Mining’, Springer, pp. 813–822.

Zimek, A., Schubert, E. & Kriegel, H.-P. (2012), ‘A survey on unsupervised outlier detection in high-dimensional

numerical data’, Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387.

33

	covertemplate - wp16-2018
	wp16-2018

