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abstract. We are going to show that the standard notion of
Kripke completeness is the strongest one among many provably
distinct algebraically motivated completeness properties, some
of which seem to be of intrinsic interest. More specifically, we
are going to investigate notions of completeness with respect to
algebras which are either atomic, complete, completely additive
or admit residuals (the last notion of completeness coincides
with conservativity of minimal tense extensions); we will be
also interested in combinations of these properties.

1 Motivation

It is known that Kripke frames correspond to complete, atomic and
completely additive Boolean algebras with operators (baos). This
fact became the basis of duality theory for Kripke frames, developed
in the 1970’s by Thomason [13], Goldblatt [4] and others. In this
paper, we are going to investigate notions of completeness and con-
sequence weaker than those associated with standard Kripke frames
from an algebraic perspective. Our starting point is a simple ques-
tion: can we still obtain incompleteness results if we drop at least
one of the properties which hold in baos corresponding to Kripke
frames? Is the phenomenon of Kripke incompleteness caused by any
particular combination of these properties? It will be shown than in
this way one obtains several provably distinct notions, whose mutual
relationships seem to be of independent interest.

The structure of the present work is as follows. Section 2 intro-
duces and systematizes those completeness notions and related con-
sequence relations. Section 3 proves the existence of complete and
completely additive bao whose logic is inconsistent with respect to
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atomic baos; that solves two open problems in the field (see Section
3 for details). Section 4 proves that non-finite tense logics of linear
time are inconsistent with respect to complete baos. Finally, Section
5 discusses completeness with respect to baos which admit residuals,
connection with van Benthem [14] and the notion of weak second-
order consequence introduced there. The main new result of that
section is an example of atomic and completely additive bao whose
logic is incomplete with respect to algebras admitting residuals.

The author hopes that his work provides new arguments for im-
portance of algebraic methods and insights in modal logic.

2 Introduction

This section sums up some existing duality results and gives defini-
tions crucial to what follows. We assume familiarity with basic (1)
set-theoretical, (2) topological and, most importantly, (3) algebraic
notions. Thus, the reader is supposed to be familiar with notions like:
(1) cartesian product, powersets, cardinality of a set, (2) Euclidean
topology (of the reals), open and closed intervals, regular open sets,
(3) lattices, complete lattices, boolean algebras, products, homomor-
phic images, subalgebras, varieties, discriminator terms and so on.
For arbitrary set X, let 2X denote its powerset, X∗ — the set of
all finite sequences from X, X2 — the cartesian product of X with
itself and [X]2 — the set of all dubletons (two-element sets) from
X. W − X denotes the set-theoretical difference; if the universe is
understood from the context, we sometimes write −X. The converse
of a relation R is denoted as R−1.

DEFINITION 1 (Syntax). A modal similarity type is a finite set type
of unary operators; the basic modal similarity type is an arbitrary
singleton. Formulas of propositional modal language are defined as

ϕ ::= ⊥ | > | p | ¬ϕ | ψ ∧ ϕ | ψ ∨ ϕ | ψ → ϕ | ♦πϕ

for every π ∈ type. In addition, for every π ∈ type, we define the
dual operator �πϕ � ¬♦π¬ϕ. For the basic modal similarity type,
we often drop the subscript.

A (normal) modal logic is any set of formulas closed under sub-
stitution, Modus Ponens, necessitation and containing all axioms of
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classical logic plus �π(p → q) → (�πp → �πq) for every π ∈ type.
Define also ♦+

π ϕ� ϕ ∨ ♦πϕ. �+
π is defined dually.

DEFINITION 2 (Frames). A Kripke frame is a structure 〈W, {Rπ}π∈type〉,
where Rπ ⊆W×W for every π ∈ type; for every π ∈ type and every
X ⊆W , let ♦πX � {y ∈W | ∃x ∈ X yRπx} and �π � −♦π−X. A
(normal) neighbourhood frame is a structure 〈W, {Nπ}π∈type〉 where
every Nπ is a function assigning a filter over W to every point. Recall
that a filter is a non-empty family of elements of the powerset which
is upward closed and closed under intersections.

DEFINITION 3 (baos). A boolean algebra with operators (bao) is
a structure 〈A,∧,∨,¬,>,⊥, {♦π}π∈type〉 s.t. 〈A,∧,∨,¬,>,⊥〉 is a
boolean algebra and ♦π⊥ = ⊥, ♦π(x∨ y) = ♦πx∨♦πy hold for every
π ∈ type and every x, y ∈ A. The remaining boolean operations are
defined in the standard way.

Thus, if not stated otherwise, we will make systematic confusion
between (1) an algebra and its carrier set, (2) syntactic connectives
(or derived terms) and corresponding algebraic operations; at least,
if the underlying algebra is clear from the context. Definition of
satisfaction and validity in frames and algebras are standard.

DEFINITION 4 (Basic properties).

• A is a C-bao if it is lattice-complete, i.e, closed under arbitrary
joins and meets.

• A is a A-bao if it is atomic, i.e., below every element distinct
from the bottom there is an atom — smallest element which
is not equal to the bottom itself. The set of all atoms will be
denoted by AtA.

• A is a V-bao if it is completely additive, i.e., for every π ∈ type
and any family of elements X ⊆ A s.t. whenever the join

∨
x∈X

x

exists, the join
∨
x∈X
♦πx exists as well and is equal to ♦π

∨
x∈X

x.

• A is a T -bao if it admits residuals, i.e., for any π ∈ type there
exists a function hπ s.t. for each x, y ∈ A,♦πx ≤ y iff x ≤ hπy.
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The reader is asked to observe that we don’t require residuals to
be term-definable. This is the difference between our T -baos and
residuated baos of Jipsen [5]. Also, we have the following well-known

FACT 5. ♦π has a residual hπ iff f has a conjugate pπ, i.e, for x, y ∈
A,♦πx ∧ y = ⊥ iff x ∧ pπy = ⊥. Both operations are then related to
each other by equation hπx = ¬pπ¬x, i.e., hπ is the dual of pπ.

DEFINITION 6 (Complex properties). Let properties� {C,A,V, T }.
For any X ∗ ∈ properties∗, we say that A is a X ∗-bao if A is X -bao
for any X appearing in X ∗. E.g., AV-bao is atomic and completely
additive.

Some of these notions coincide. For example, we have the following

LEMMA 7. Every T -bao is a V-bao. For C-baos the converse also
holds: A is a CV-bao iff it is a CT -bao.

Proof. The first statement is well-known. The second statement is
justified by the observation that in a CV-bao A for every π ∈ type
we may define the conjugate of ♦π as

pπa�
∧
{x | a 6 �πx},

where �π, as everywhere in this work, denotes the dual of ♦π. a

It is known that Kripke frames correspond to CAV-baos and neigh-
bourhood frames correspond to CA-bao. See Table 1 for the sum-
mary of known dualities.

REMARK 8. Lemma 7 implies that, in particular, CAV-baos are
also CAT -baos. Thus, by Table 1 we may treat Kripke frames as
CAT -baos in disguise. The reason why we may choose to work with
T -baos instead of V-baos is that the former are much more tractable.
In particular, the property of being a T -bao in a finite type is ex-
pressible by a Σ1

1-sentence (there exists a function such that . . . ) and
hence preserved by ultraproducts. In general, however, it is not pre-
served by subalgebras, hence even the universal class generated by
a given class of such baos contains algebras which are not T -baos.
Fortunately, the situation changes when residuals are term-definable,
as it is often the case. In such a situation, all algebras in the variety
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Dualities
Kripke frames neighbourhood frames

frames → al-
gebras

CAV-bao: powerset algebra
of W with operators �X as
in Def. 2 (the complex
algebra)

CA-bao: powerset algebra
of W with operators �X �
−{x ∈W | −X ∈ Nx}

algebras →
frames

for a CAV-bao A: 〈AtA, R〉
aRb iff a ≤ �b (the atom
structure)

for a CA-bao A: 〈AtA,N〉
N : AtA 3 a −→ {X ⊆
AtA | a ≤ �WX}

morphisms p-morphisms
η : 〈W,R〉 −→ 〈V, S〉
ηxSy iff ∃z (xRz&ηz = y)

neighbourhood morphisms
η : 〈W,M〉 −→ 〈V,N〉
η−1B ∈Ma iff B ∈ Nηa

dual cate-
gories (by
contravariant
functors)

CAV-baos with complete
morphisms

CA-baos with complete
morphisms

Table 1. Summary of basic information. The part concerning neighbourhood
frames based on Došen [3]. For simplicity, we work in the basic similarity type.

must be T -baos. Nothing like this can happen with A-baos or C-
baos; non-degenerate varieties always contain a bao which is nether
complete nor atomic. Further discussion is postponed till Section 5.

DEFINITION 9 (Completeness notions). For X ∗ ∈ properties∗, Γ
— arbitrary set of modal formulas in a fixed similarity type, ϕ — a
formula in the same language, let

Γ �X ∗ ϕ � ϕ holds in all X ∗-baos in the variety of baos
corresponding to Γ.

Thus, a logic axiomatized by Γ is X ∗-incomplete iff for some ϕ, Γ �X ∗
ϕ and yet Γ 2 ϕ.

A particularly interesting notion arising in this way is

DEFINITION 10 (X ∗-inconsistency). A logic axiomatized by Γ is
X ∗-inconsistent iff it is consistent, i.e., distinct from the set of all
formulas in a given similarity type and yet Γ �X ∗ ⊥, i.e., there is
no X ∗-bao, except possibly for the trivial one, in the corresponding
variety.

REMARK 11. X -inconsistency implies X -incompleteness. For any
Y ⊇ X , X -inconsistency implies Y-inconsistency and X -incompleteness
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implies Y-incompleteness. Thus, the construction of Thomason [12]
may be viewed as the first example of a CAT -inconsistent logic, or
even a CA-inconsistent one, as for tense logics there is no difference
between those two notions; see also Section 5.

REMARK 12 (The basic similarity type). It is not possible to pro-
duce any example of CAT -inconsistent logic in the basic modal sim-
ilarity type. By Makinson’s theorem, any nontrivial variety of baos
with one unary operator contains at least one two-element algebra
(cf., e.g., [2, theorem 8.67]). Nevertheless, the method of reduction
invented by Thomason and developed by Kracht and Wolter (cf.,
e.g., [7, chapter 6]) shows how to transfer examples of X -inconsistent
logics into X -incomplete ones in the basic similarity type.

Relationships between those notions of completeness (or conse-
quence) are as shown by Figure 1 below. For �X ∗ ⊆ �Y∗ , solid lines
denote established proper inclusion �X ∗ ( �Y∗ , i.e. the existence
of X ∗-complete logics which are Y∗-incomplete.

�

�A �C �T

�CA �AT �CT

�CAT

@
@
@

@
@
@

@
@
@

@
@
@
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�
�

�
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�
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�
�

�
�
�

Figure 1. Proper inclusions between various algebraic consequence relations.
This is not a lattice — neither joins nor meets have to be correct.

As the drawing suggests, one may show that all inclusions are
proper. The most economical way to achieve this goal is to prove
three facts:

�A * �CT , �C * �AT , �T * �CA .
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The first one will be proven in Section 3, the second one in Section
4, the last one will be discussed in Section 5. The reader certainly
noted that V-completeness is missing from the picture. Some reasons
for that were already given by Remark 8. Further discussion and an
updated diagram will be given in Section 5.

REMARK 13. The consequence relation symbol introduced above
should not be confused with A |= ϕ (A |=V ϕ), which means, as usual,
that the equation corresponding to ϕ holds in A (under valuation V).

In forthcoming sections, it will be often useful to represent baos
as general frames.

DEFINITION 14. A general frame is a pair 〈F,A〉 s.t. F is a Kripke
frame and A is a subalgebra of the full complex algebra of F (see
Table 1 for the definition). An algebra thus represented will be called
a complex algebra.

3 Varieties with no atomic algebras

Let us start with the proof that �A * �CT . We generalize here
a result of Venema [16], who shows that there are A-inconsistent
logics. We are going to prove that there is CV-bao (hence a CT -bao)
whose logic is A-inconsistent. That solves at least two open problems
in the field. The first one was posed to the present author by V.
Shehtman: according to him, the question whether every C-complete
logic is neighbourhood complete (i.e., whether �CA = �C) was a
folklore since V. Rybakov and L. Maksimova’s work on the subject in
the 1970’s. Another one was posed by Y. Venema himself: can one
produce a variety with no atomic members using a T -bao?

The original construction of Venema [16] is unsuited for the goal
we have in mind. It is based on a particular representation of the
atomless countable boolean algebra. Hence, lattice-incompleteness
and lack of complete additivity seem irreparable. Nevertheless, we
try to exhibit existing analogies between that construction and ours
by the choice of notation and terminology. On the other hand, the
earlier construction gives an example of an atomless variety, whereas
ours — just a variety with no atomic members. It is enough for our
purposes, though.
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NOTATION 15. Let I be the unit interval (0, 1), P = [I ∪ {0, 1}]2,
P — the boolean algebra whose universe is 2P and the operations
coincide with standard set-theoretical ones, O — the boolean algebra
of regular open sets (i.e., interiors of closed sets) from I. Note that ∨
and ¬ in O differ from the set-theoretical operations. It is well-known
that both P and O are complete lattices. For 0 ≤ a < b ≤ 1, the
open interval determined by a and b will be denoted as (a, b), whereas
〈a, b〉 will be simply an ordered pair.

THEOREM 16. There exists a nontrivial CV-bao A s.t. the variety
generated by A — i.e., HSP (A) – contains no atomic members.

Proof. We will proceed via a series of easily verifiable claims.

CLAIM 17. B ∈ O only if there exists at most countable set J s.t.
B =

⋃
j∈J

(aj , bj), where for each j ∈ J , 0 ≤ aj < bj ≤ 1 and for each

j 6= k, either bj < ak or bk < aj . The set {{aj , bj} | j ∈ J} will be
called the canonical representation of B and denoted as ZB.

NOTATION 18. For any z ∈ P, z< � inf(z), z> � sup(z) and
xzy � (z<, z>).

Our main object of interest will be a bao whose underlying boolean
reduct is A− � P×O. As this is a product of two complete boolean
algebras, we get

CLAIM 19. A− is a complete boolean algebra.

Now we are going to define five unary operations on the universe
of our algebra. Subscripts will be chosen so as to emphasize analogies
with Venema [16] construction.

First, we are going to define four auxiliary mappings:

ηC : O 3 B −→ {z ∈ P | ∃y ∈ B y ∈ xzy} ∈ P,

ηB : P 3 A −→
∨

a∈A

Oxay ∈ O,

η> : P 3 A −→ {z ∈ P | ∃z∗ ∈ A xz∗y ! xzy} ∈ P,

ηL : P 3 A −→ {z ∈ P | ∃z∗ ∈ A z< = z∗<, z> = z∗< + (z∗> − z∗<)/2} ∈ P.

Through this section, we set type� {C,B, >, L,E}.
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DEFINITION 20. Define A� 〈A−, {♦π}π∈type〉, where ♦C〈A,B〉�
〈ηCB, ∅〉, ♦B〈A,B〉 � 〈∅, ηBA〉, ♦>〈A,B〉 � 〈η>A, ∅〉, ♦L〈A,B〉 �
〈ηLA, ∅〉, and ♦E will be the unary boolean discriminator function on
A− (cf., e.g., [5] for a definition).

We want to prove that these operations distribute over arbitrary
joins. It is obvious for the unary discriminator, ♦> and ♦L as both
♦> and ♦L are easily seen to be operators given by certain relations
on a Kripke frame whose universe is P. Assume now we have a family
of pairs {〈Aj , Bj〉}j∈J ⊆ A. Then

∨

j∈J
♦C〈Aj , Bj〉 =

∨

j∈J
〈ηCBj , ∅〉 = 〈

⋃

j∈J
ηCBj , ∅〉

and, similarly,

∨

j∈J
♦B〈Aj , Bj〉 =

∨

j∈J
〈∅, ηBAj〉 = 〈∅,

∨

j∈J
ηBAj〉.

Hence, it is enough to establish

(a)
⋃

j∈J
ηCBj = ηC

∨

j∈J
Bj

and

(b)
∨

j∈J
ηBAj = ηB

⋃

j∈J
Aj .

Observe that in both cases, the ⊆-direction is trivial. To establish
the converse for a, assume there exists i ∈ P s.t.

(∃y ∈
∨

j∈J
Bj y ∈ xiy) & (∀j ∈ J ∀y ∈ Bj y /∈ xiy).

But then for each j ∈ J , Bj ⊆ ¬xiy, hence Bj = Int(Bj) ⊆
Int(¬xiy) ∈ O. Thus, we get

∨
j∈J

Bj ⊆ Int(¬xiy) ⊆ ¬xiy, a contra-

diction.
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To establish
∨

a∈ S
j∈J

Aj

xay ⊆
∨

j∈J

∨

a∈Aj
xay,

take any X s.t. for each j ∈ J ,
∨

a∈Aj
xay ⊆ X. Obviously, for each

a ∈ ⋃
j∈J

Aj there exists ja ∈ J s.t. a ∈ Aja . Hence for each a ∈ ⋃
j∈J

Aj ,

xay ⊆ ∨
a∈Aja

xay ⊆ X and thus we get
∨

a∈ S
j∈J

Aj

xay ⊆ X, which gives

us b. In fact, this a sort of law of infinite associativity which holds
in every complete lattice; cf., e.g., [9]. Thus. we got the desired

CLAIM 21. ♦C, ♦B, ♦>, ♦L and ♦E are completely additive opera-
tors.

Define c� ♦B> and Fx� ♦B�L(�Cx ∧ ¬♦>�Cx).

CLAIM 22. In A, c is equal to 〈∅, I〉. Hence, an element of A is below
c iff it is of the form 〈∅, B〉 for some B ∈ O.

CLAIM 23. For any B ∈ O,

�C〈∅, B〉 = 〈{z ∈ P | xzy ⊆ B}, I〉,

�C〈∅, B〉 ∧ ¬♦>�C〈∅, B〉 = 〈ZB, I〉,

F 〈∅, B〉 = 〈∅,
⋃

z∈ZB
(z<, z< + (z> − z<)/2)〉.

This gives us the following

CLAIM 24. There exists a constant term c and an unary term Fx
in language determined by type s.t. A |= c > ⊥ and A |= ∀x (⊥ <
x ≤ c → ⊥ < Fx < x). As A is a discriminator algebra, i.e., ♦E

behaves like universal modality, those two facts may be reformulated
as follows: A |= ♦Ec = > and A |= ♦Ex ∧ �E(x → c) ≤ ♦EFx ∧
♦E(x ∧ ¬Fx) ∧�E(Fx→ x).

The above claim implies Theorem 16. For similar arguments cf.
Venema [16] or an earlier, undebugged attempt of such a construction
by Kracht and Kowalski [8] . a
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4 Varieties with no complete algebras

This section establishes �C * �AT . Examples of C-incomplete
logics (above the unimodal logic K4 and higher) have been already
provided in a previous work of the author [11]. Nevertheless, here are
we are going to obtain a stronger result (C-inconsistency) by means of
surprisingly natural examples. We are going to work in the similarity
type of tense logic in this section, and hence we set type� {<,>}.
In the 90’s, Kowalski [6] and Wolter [18] proved independently that
there are exactly countably many maximal consistent extensions of
Lin — the tense logic of all linear time flows (for definition, cf., e.g.,
[18] or [10]). We are going to show that every maximal Lin logic
which is not tabular, i.e., which is not determined by a finite frame,
is C-inconsistent.

DEFINITION 25. By a head-and-tail logic we will understand the
tense logic determined by a general frame Fa � 〈Wa, {Ra

π}π∈type,Aa〉,
where

• a = 〈κ, r, λ〉, κ, λ ∈ ω + 1, r ∈ {0, 1}. If ω ∈ {κ, λ}, then
r = 0.

• Wa � {n< |n ∈ κ} ∪ {o∗ | o ∈ r} ∪ {m> |m ∈ λ},
• Ra

< � {〈n<,m>〉 |n ∈ κ,m ∈ λ} ∪ {〈n<,m<〉 |n,m ∈ κ, n <
m}∪ {〈n>,m>〉 |n,m ∈ λ, n > m}∪ {〈n<, o∗〉, 〈o∗, o∗〉, 〈o∗,m>〉 |n ∈
κ,m ∈ λ, o ∈ r}. Ra

> � Ra−1
< .

• Aa is the algebra of finite and co-finite subsets over Wa.

Note that to make the definition more condensed, we followed von
Neumann convention of representing ordinals; hence, e.g., 1 = {0}.
Finite irreflexive chain of length m may thus be represented as F〈k,0,l〉,
for any k, l s.t. k + l = m.

FACT 26. On every Aa, the following term (master modality) defines
the unary boolean discriminator:

Eϕ� ♦>ϕ ∧ ϕ ∧ ♦<ϕ.

THEOREM 27. A tense logic containing Lin is maximal consistent
iff it is a head-and-tail logic.
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Proof. Cf. Kowalski [6] or Wolter [18]. a

Thus, we will use the names head-and-tail logic and maximal Lin
logic interchangeably. Those determined by a frame of the form
F〈κ,r,λ〉, where either κ or λ (or both) is (are) equal to ω, are called
infinite, the others — tabular or finite.

From now on in this section, to fix the discourse we concentrate on
head-and-tail logics with κ = ω, but proofs are instantly adaptable for
those with finite κ and λ = ω — it is enough to exchange modalities.
As in the infinite case r is always equal to 0, instead of notation
F〈ω,r,λ〉, we write Fω,λ. Define a sequence of variable-free formulas
which will serve as names for points: i� ♦i>> ∧�i+1

> ⊥ (n ∈ ω).

LEMMA 28. The following variable-free formulas are theorems of
every Fω,λ:

(c) Ei (i ∈ ω),

(d) i→ ♦<i+ n (i ∈ ω, n > 0).

In addition,

(e) i→ ¬j
is a theorem of Lin for every i 6= j.

Proof. Statements c and d are true on the basis of the easy fact
that numeral i is true exactly in one point, namely i, and that in the
future of every i there is a point verifying j for every j > i. Statement
e follows from the fact that the right conjunct of i is a negation of
the left conjunct of i+ 1 and that �<p→ �2

<p is a theorem of Lin;
the rest is proven by simple induction. a

LEMMA 29. Every complete (or even ω-complete) bao verifying all
variable-free theorems of Fω,λ refutes the weak Grzegorczyk axiom or
the law of weak foundation i.e., the formula

wf � ¬(p ∧ �+
<(p → ♦<(¬p ∧ ♦<p))).



On notions of completeness weaker than Kripke completeness 13

Proof. Take any complete bao B verifying all variable-free formu-
las true in Fω,λ. Define two sequences of variable-free formulas and
corresponding elements of B: an � 2n and bn � 2n+ 1 (n ∈ ω).

By statement e of Lemma 28, any a and b intersect at ⊥ and it
follows that

∨
n∈ω

an 6 ¬
∨
n∈ω

bn and
∨
n∈ω

bn 6 ¬
∨
n∈ω

an. By claim d,

an 6 ♦<bn 6 ♦<
∨
n∈ω

bn and it follows that
∨
n∈ω

an 6 ♦<
∨
n∈ω

bn;

in a similar way, one proves
∨
n∈ω

bn 6 ♦<
∨
n∈ω

an. Hence, if we set

V(p) �
∨
n∈ω

an, V(wf) = V(¬p), as the value of the subformula of

wf preceded by �+
< is >. By statement c of Lemma 28, V(p) 6= ⊥,

hence V(¬p) 6= >. a

THEOREM 30. There is no complete bao in the variety correspond-
ing to an infinite maximal Lin logic.

Proof. By Lemma 29 it is enough to prove that the law of weak
foundation (both for ♦> and ♦<) cannot be refuted in any frame
of the form Fω,λ. Assume there is a point y0 where formula wf is
refuted under some valuation V′. In the future of this point, there
must a point y1 belonging to V′(¬p); in the future of y1 there must
be a point y2 in V′(p) and proceeding in this way we can prove there
is an infinite set with infinite complement in Aω,λ, namely V′(p),
which is a contradiction. Hence, the law of weak foundation belongs
to every maximal consistent Lin logic and yet it is refuted in any
complete algebra verifying all variable-free formulas true in a given
infinite maximal Lin logic. a

REMARK 31. One may prove that all head-and-tail logics are de-
cidable and their satisfiability problem is NP-complete. Thus, C-
inconsistency does not imply a high level of computational complex-
ity. Moreover, all of them with the exception of the one determined
by Fω,ω are finitely axiomatizable. These results follow from Wolter
[18] and a forthcoming paper Litak, Wolter [10]. By use of meth-
ods from those papers one may actually prove that all extensions
of Lin are AT -complete. Thus, the situation in the lattice of all
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extensions of Lin is rather peculiar: although incompleteness is a
common phenomenon for logics from that lattice, the sole perpetra-
tor of all problems is lattice-completeness of baos corresponding to
Kripke frames. Section 3 showed that in general it is not true even
for logics with conjugated operators and universal modality. Proof
of this result would require too much techniques outside the scope of
the present work. Therefore, it will be provided in a separate paper
together with a more in-depth analysis of incompleteness problems
for tense logics of linear time.

5 Varieties which do not admit residuals

This section deals with T -incompleteness and AV-completeness. Let
us formulate the following representation theorem, which, albeit sim-
ple, will be of some importance later on.

THEOREM 32. An algebra is a AV-bao iff it can be represented as
a complex algebra containing all singletons of the underlying frame.
An algebra is a AT -bao iff it can be represented as a reduct of a
complex algebra containing all singletons of a frame in which every
relation has its converse — i.e., a tense frame.

Proof. Follows from Venema [15, Theorem 5.1]. The second part
may be proven analogously. a

OBSERVATION 33. A term Pπ defines the conjugate of an opera-
tor ♦π on all algebras in the variety V iff A |= p → ¬Pπ¬♦πp and
V |= p→ �πPπp hold for all A ∈ V. Hence, the most straightforward
method to obtain a T -complete extension of a given logic is to add
for π ∈ type a new operator Pπ and stipulate the above equalities.
This procedure is known as forming minimal tense extensions . Thus
we arrive at the most important reason for independent interest in
T -completeness; it boils down to conservativity of minimal tense ex-
tensions, as the latter means that logic is complete with respect to a
class of algebras which are reducts of T -baos.

For the time being, we are going to work in the basic modal sim-
ilarity type. It is already known that logics with non-conservative
minimal tense extensions indeed do exist; in fact, Zakharyaschev et
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al. [19, Theorem 124] generalize the Blok Incompleteness Theorem
for degrees of T -incompleteness. For the purpose of this work, it is
enough to observe that

LEMMA 34. �♦> → �(�(�p→ p)→ p) �T ♦�⊥ ∨�⊥.

Proof. Assume A 2 ♦�⊥∨�⊥ = > and ♦ has a conjugate p� (not
necessarily term-definable). It means that a� �♦>∧♦> is distinct
from the bottom element. Define b � p�a. b ≤ ♦> because of the
fact that a ≤ �♦>. Our goal is to show that

(f) a ≤ ♦b

and

(g) b ≤ ♦b.

As, by assumption, a ≤ �♦>, it will follow that

(h) ⊥ < a ≤ �♦> ∧ ♦(�(♦b ∨ ¬b) ∧ b)A,

which implies our theorem. h follows from g and f, because g
implies that b ∧ �¬b = ⊥ and hence b = �(♦b ∨ ¬b) ∧ b. f follows
from the fact that for any x ≤ ♦>, x ≤ ♦p�x. As b ≤ ♦> as well
and for every x, x ≤ �p�x, we get that a ≤ �♦b, which gives us g.

a

Nevertheless, Wolter [17, Section 4.6] defined a CA-bao which is
readily seen to separate �♦> → �(�(�p→ p)→ p) from ♦�⊥∨�⊥.
This completes the proof that �T * �CA and that all inclusions
in Figure 1 are proper. By adding the unary discriminator to the
similarity type of the algebra defined by Wolter and following an
argument analogous to the proof of Lemma 34, one may actually
prove a T -inconsistency theorem:

FACT 35. There exists a consistent bimodal logic that is T -inconsistent
and CA-complete.

Observe that we may prove also

LEMMA 36. �♦> → �(�(�p→ p)→ p) �AV ♦�⊥ ∨�⊥
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Proof. This time, a is defined as an arbitrary atom below �♦>∧♦>
in an AV-bao D. As a ≤ ♦∨{x | x ∈ AtD} and D is completely
additive, there must exist an atom b s.t. a ≤ ♦b (we use here the fact
that a is an atom). If b ≤ ♦b, then we have both f and g and that
gives us h in a manner similar to the proof of lemma 34. If g does
not hold, then, as b is an atom, b ≤ �¬b and that gives us h anyhow.

a

REMARK 37. We have proven above that �T ∩ �AV * �CA.
Unfortunately, it is not at all clear how we could strengthen the above
observations to a proof that �V * �CA or at least to a proof of
existence of a V-incomplete logic. Atomicity in the proof of Lemma
36 or existence of residuals in the proof of Lemma 34 are used in a
crucial way. This shows once again that complete additivity itself is
not a very tractable property.

Van Benthem [14] formulated a monadic weak second-order logic
complete with respect to Henkin models closed under first-order de-
finability. Closure under first-order definability means that for any
formula ψ without second-order quantifiers, any sequence of admis-
sible subsets X̄ and any sequence of elements w̄, the set of elements
x satisfying ψ(x, w̄, X̄) is admissible. Such a model is always a gen-
eral frame, as ♦X is definable in the standard way. This motivates
definition of yet another property of baos and associated notion of
consequence/completeness:

DEFINITION 38. A is a E-bao iff it can be depicted as a complex
algebra containing all first-order definable subsets of some general
frame. Γ �E ϕ and the notion of E-completeness are defined in an
analogous way to other properties.

THEOREM 39. Every E-bao is a AT -bao.

Proof. All singletons are definable by identity formulas with one
parameter. p�X may be defined as ∃y(yRx&y ∈ X). It is enough
now to apply Theorem 32. a

OBSERVATION 40. We have thus a following sequence of inclusions:

(i) �AV ⊆ �AT ⊆ �E ( �CAT .
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As �AT * �CA, the notion of weak second-order consequence
relation is too strong for analysis of consequence relation over neigh-
bourhood frames. Nevertheless, the question now arises whether all
of the inclusions in i are proper. Van Benthem [14] showed that

�♦> → �(�(�p→ p)→ p) �E ♦�⊥ ∨�⊥.

By inequality i, this observation is weaker than either of Lemmas 34
and 36. It was, however, an open question whether Lemma 36 is an
actual strengthening of van Benthem’s result. Now we are going to
show that it is indeed the case. Actually, the result we are going to
prove is stronger: �T * �AV . This is the main new result of this
section. Set type� {<,>}.
THEOREM 41. There exists a AV-algebra which generates a T -
incomplete logic.

Proof. Consider a frame G � 〈W, {Rπ}π∈type,A〉. W � {∞} ∪
{an}n∈ω, R< � {〈ai, aj〉|i < j}∪{〈∞, a2i〉|i ∈ ω}, R> � {〈ai, aj〉|i >
j} (i.e., R> = R−1

< ∩ (W − {∞})2), A is the algebra of finite and
cofinite subsets of W . Observe that — just like in case of frames
from Section 4 — all points are definable by variable-free formulas.
For our purposes, we need only the following

CLAIM 42. Define 1 � ♦>> ∧ �2
>⊥, ∞ � ♦<�>⊥. Then ∞A =

{∞} and 1A = {a1}
LEMMA 43. Let �ϕ � ¬ϕ ∧ �<ϕ. The following formulas hold in
G:

∞ → ♦2
<1 ∧�<¬1, (j)

∞∧ ♦<�<x ∧ ♦2
<¬p → ♦<�p ∨ ♦2

<�p, (k)
♦<�p → ♦<(p ∧�<p ∧ ♦2

>�p ∧�3
>¬�p), (l)

∞∧¬♦<�p → �<¬(p ∧�<p ∧ ♦2
>�p ∧�3

>¬�p),(m)
∞∧�<p → �<♦<p, (n)
�<♦<p → ♦<�<p. (o)

Conjunction of these formulas will be denoted as Γ.
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Proof. Statement j follows directly from the definition of the frame
and Claim 42. For k, assume {∞} ≤ V(♦<�<p ∧ ♦2

<¬p). It means
that for some i, {ai} ≤ V(�p) and yet V(¬p) is nonempty. Thus,
there must exist a maximal point aj in V(¬p) and ∞ R<-sees aj in
one or two steps. For statement l, assume xRai and {ai} ≤ V(�p).
But then xR<ai+2 and ai+2 is the one and only point V-satisfying the
formula arising from the successor by erasing the initial ♦<. Similar
reasoning establishes m. Statement n is straightforward. For o, as-
sume {w} ≤ V(�<♦<p). It means that for every i, there exists j > i
s.t. {aj} ≤ V(p), hence V(p) is infinite. But then the complement of
V(p) must be finite and for some i, ai ≤ V(�<p). a

LEMMA 44. Γ �T ¬∞.

Proof. Assume that for some T -bao A A 6|= ∞ = ⊥ and there
exists a conjugate p< of ♦<. We will show that ∞ ≤ �<♦<p<∞∧
�<♦<¬p<∞, thus contradicting the fact that A validates McKinsey
Axiom (statement o). That ∞ ≤ �<♦<p<∞ follows from n of the
previous lemma. Assume now ∞ ∧ ♦<�<p<∞ 6= ⊥. By j, ∞ ≤
♦2
<1 ≤ ♦2

<¬p<∞. Thus, ∞∧ ♦<�<p<∞∧ ♦2
<¬p<∞ 6= ⊥. By k, it

means that

(p) ♦<�p<∞ 6= ⊥.

Define

c� p<∞∧�<p<∞∧ ♦2
>�p<∞∧�3

>¬�p<∞.

By definition, c ≤ p<∞. On the other hand, m and the fact that

∞ ≤ �<p<∞ ≤ �<(p<∞∨ ♦<¬p<∞) = �<¬�p<∞

imply p<∞ ≤ ¬c. Thus, c = ⊥ but this contradicts l and p. a

As A 6|= ¬∞, Theorem 41 follows. a

Let us finish then with Figure 2 — a refined version of Figure 1.
It is less symmetric, but perhaps more thought-provoking.
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Figure 2. Dotted lines denote inclusions in whose case it is unclear whether they
are proper or not.
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