
On notions of regularity for data languages ⋆

Henrik Björklund Thomas Schwentick

Technische Universität Dortmund, Computer Science Chair 1, D-44227
Dortmund, Germany

Abstract

Motivated by considerations in XML database theory and model checking, data
strings have been introduced as an extension of finite alphabet strings which carry,
at each position, a symbol and a data value from an infinite domain. Previous work
has shown that it is difficult to come up with an expressive yet decidable automaton
model for data languages. Recently, such a model, data automata, was introduced.
This paper introduces a simpler but equivalent model and investigates its expressive
power, algorithmic and closure properties, and some extensions.

1 Introduction

Regular string languages is clearly one of the most fundamental concepts in
(Theoretical) Computer Science. It has applications in basically all branches
of Computer Science. It can be argued that the following properties were
crucial to its success: (1) Expressiveness, (2) Decidability, (3) Efficiency, (4)
Closure properties, and (5) Robustness. The notion of regularity has been
successfully generalized to other kinds of structures, including infinite strings
and finite or infinite, ranked or unranked trees. More recent applications of
regular languages (on infinite strings and finite, unranked trees, respectively)
can be found in Model Checking and XML processing.

In Model Checking, a system is given as a finite state model, and properties are
specified in a logic like LTL. The step from the ”real” system to its finite state
representation usually involves many abstractions, especially with respect to
data values (variables, process numbers, etc.). Often their range is restricted

⋆ This work was supported by the DFG Grant SCHW678/3-1.
Email addresses: Henrik.Bjoerklund@udo.edu (Henrik Björklund),

Thomas.Schwentick@udo.edu (Thomas Schwentick).

Preprint submitted to Elsevier 26 June 2008

to a (small) finite domain. Even though this approach has been successful and
found its way into large scale industrial applications, the finite abstractions
have some inherent shortcomings. As an example, n identical processes with m

states each give rise to an overall model size of mn. (Symbolic model checking
partially addresses this problem by ”compressing” redundant states.) If the
number of processes is unbounded and/or unknown in advance, the finite state
approach fails. Previous work has shown that even then, decidability can be
obtained by restricting the problem in various ways [9,1].

In XML document processing, regular concepts occur in various contexts.
First, most applications restrict the structure of the allowed documents to
conform to a certain schema, which can be modeled as a regular tree language.
Second, navigation (XPath) and transformation (XSLT) languages have tight
connections to tree automata models and other regular description mecha-
nisms (see, e.g., [14]). All these approaches concentrate on document structure
and ignore attribute and text values. From a database point of view this is not
completely satisfactory: a schema should not only restrict the allowed (tree)
structure, but also state integrity constraints, such as key or inclusion depen-
dencies, on the data. This problem has been addressed (see, e.g., [2]), but just
as in Model Checking, the methods largely rely on case-to-case analysis.

Thus, in both settings, the finite state abstraction leads to interesting results
but does not address all problems arising in applications. In both cases, it
would already be a big step if each string position (or tree node) could carry a
data value in addition to its label. As any kind of arithmetic operations on the
infinite domain quickly leads to undecidability of basic processing tasks (even
a linear order on the domain is harmful), we concentrate on the setting where
data values can only be tested for equality. Furthermore, in this paper we
only consider finite data strings, i.e., finite strings, where each position carries
a symbol from a finite alphabet and a data value from an infinite domain.

Several specification mechanisms for data languages have been suggested, such
as register automata [12], pebble automata [15], quasi-regular expressions [13],
data automata [3], and LTL with freeze quantifier [5]. For an overview, see
[18]. There are also some investigations which assume more knowledge of the
data [4,19]. Two observations are immediate from this body of work: (1) the
landscape of data languages is very heterogeneous, i.e., pairs of defined classes
are often incomparable, and (2) one quickly obtains undecidability.

Thus, the question remains whether there is a notion of regularity for data
languages with the five desirable properties mentioned above. The results so
far indicate that there might be not a single such class sharing all required
properties. Rather there could be several classes fulfilling the requirements
only to a certain extent. The research dedicated to this question is therefore
of an exploratory nature, taking a broad variety of models into account.

2

Here, our requirements on expressiveness are guarded by the goal of Model
Checking in the presence of an unbounded number of processes. In this sce-
nario, a computation naturally gives rise to a data string w, where the data
values represent process identifiers. We aim at describing global properties of
the computation, taking the whole string into consideration, as well as local
properties which concern the actions of individual processes. As an example,
consider processes sharing a printer with three kinds of events: a print job can
be requested (r), start (s), and terminate (t). A global property could be that
a started job must be terminated before the next job can be started, inducing
a regular (finite alphabet) constraint of the form (r∗sr∗tr∗)∗. A natural local
property is stated by (rst)∗, i.e., each process has arbitrarily many request-
start-terminate cycles. We want to be able to specify global and local prop-
erties by (classical) regular languages Rglob and Rloc, respectively. Formalisms
will differ in their ability to coordinate the local and global properties.

Register automata [12] are a quite natural decidable model for data languages.
In [12], the data strings do not have a finite alphabet component, but the
generalization of the model to data languages is straightforward. They are
able to deal with any regular global properties, but their ability to specify
local properties is very limited. For instance, they cannot express the local
property of printers stated above. Another natural approach to specification is
through logics. Data strings can be modeled in a straightforward way as finite
structures. Due to the limited access to data values, they can be represented
by an equivalence relation. First-order logic on data strings is undecidable,
but the two-variable fragment has a decidable satisfiability problem [3]. In
its decidability proof, the latter paper introduced a new automaton model
for data strings, data automata (DAs). As they have the expressive power
described above and a decidable emptiness problem they fulfill, at least to
some extent, the requirements (1) expressiveness and (2) decidability. The
other three requirements were not studied in depth in [3]. Nevertheless, the
paper gave a characterization of the class R of data languages accepted by DAs
in terms of an existential monadic second order logic and thus established a
certain robustness of the class. In this paper, we study R and some extensions
and restrictions more thoroughly.

Contributions. First, we address the robustness of R. We exhibit some simplifi-
cations of data automata which do not affect their expressive power (cf. 3.6 and
3.7). We arrive at the equivalent model of class memory automata (CMAs). We
further confirm the expressiveness of R by showing that it (strictly) captures
all data languages accepted by register automata (4.1).

We next turn to the complexity of model checking. We first consider reg-
ister automata. Even though their data complexity is polynomial time, the
combined complexity is NP-complete [17]. The number k of registers turns
out to be a crucial parameter here: with respect to k, the problem is W [1]-

3

complete (5.2 (b)). For class memory automata, things are even worse, as the
data complexity of model checking is already NP-complete (5.1 (b)). The high
data complexity of CMAs suggests the consideration of deterministic CMAs.
The existence of a reasonable deterministic variant is actually an advantage
of CMAs over DAs. The data and combined complexity of model checking
become polynomial (5.1 (a)). Even though deterministic CMAs can express
regular global and local properties, they are considerably weaker than CMAs,
as they neither capture register automata (4.2) nor two-variable logics (4.3).
The attempt to augment the expressive power of deterministic CMAs by al-
lowing them to operate in a two-way fashion is unsuccessful, as it results in
undecidability (5.3).

We also investigate closure properties of R. It is closed under union, inter-
section, product, and concatenation, but neither under complementation nor
under Kleene star. The former follows already from the undecidability of uni-
versality for register automata [15], the latter is Proposition 6.1. Deterministic
CMAs are closed under intersection but not under union, concatenation, or
complementation. To obtain a deterministic model closed under Boolean op-
erations, we introduce acceptance conditions which combine conditions for
global properties with Presburger conditions on the numbers of data values
fulfilling certain local properties (6.4). Despite its closure under negation this
model is still decidable as even non-deterministic such CMAs can be effec-
tively translated into CMAs without Presburger conditions. Non-deterministic
CMAs with these conditions are, however, still not closed under complemen-
tation.

Since R is still unable to handle some natural properties arising in model
checking, we investigate how much the expressive power of CMAs can be
extended while preserving decidability. More precisely, we consider two such
extensions which allow more interaction between the global and the local prop-
erties: a model with a synchronization mechanism and one with the ability to
”reset” information seen for a data value. Returning to our printer example,
these automata can handle, e.g., restarts of the system, where the content of
the printer queue is lost. An overview of the classes under consideration is
given by Figure 1.

2 Preliminaries

Data words. Let Σ be a finite alphabet and ∆ an infinite set. A data word
is a finite sequence over Σ × ∆. A data language is a set of such words. If
w = (a1, d1) . . . (an, dn), then str(w) = a1 . . . an is the string projection of
w. The marked string projection mstr(w) is the string (a1, b1) · · · (an, bn) over
Σ×{0, 1} for which bi = 1 iff di = di−1 (b1 = 0). For each data value d, the set

4

CMA + Sync 2D-CMA Undecidable

DecidableCMA + Reset CMA + restr. Sync

CMA
CMA+Presb.

DA
EMSO2(+1, <,∼,⊳)

FO2(+1, <,∼) RA D-CMA + Presb.

D-CMAD-RA

Fig. 1. A schematic picture of inclusions among classes of data languages. The
lowermost three (branches of) classes are pairwise incomparable.

of all positions with value d is called a class of w. The string induced by these
positions is called a class string. A position j is called the class successor of
a position i (denoted i ⊳ j), if i < j, both have the same data value, and there
is no other position with the same value between i and j. Unless otherwise
stated, data values can only be compared with respect to equality.

In the sequel, we will assume w.l.o.g. that all data languages and automata
we investigate are defined over the same data set ∆, which contains all data
values used in examples and proofs. In particular N ⊆ ∆. We will also talk
about data languages over Σ, where Σ is a finite alphabet, implicitly assuming
that the data set is ∆.

Register automata. Register automata were introduced by Kaminski and
Francez [12] and have later been studied in, e.g., [15,5]. They were defined
for sequences of data values only, but the generalization to data words is
straightforward. Register automata are equipped with a constant number of
registers in which they can store data values, which can later be compared
with the data value of the current position. We extend the notion of [12].

Definition 2.1 ([12,15]) A register automaton (RA) over finite alphabet
Σ is a tuple R = (Q, q0, F, k, P), where Q is a finite set of states, q0 is the
initial state, F are the accepting states, k is the number of registers, and P

is a finite set of transitions. A transition is either a write transition of
the form (i, p, a) → q or a read transition of the form (p, a) → (q, i), for
i ∈ {1, . . . , k}, p, q ∈ Q, and a ∈ Σ. A configuration of R is a pair (q, τ),
where q ∈ Q and τ : {1, . . . , k} → ∆∪{⊥} is a register assignment (⊥6∈ ∆
indicates an empty assignment). The initial configuration is (q0, τ0), where
τ0(i) =⊥ for all i ∈ {1, . . . , k}.

A read transition (i, p, a) → q can be applied if the current state is p, the next
input symbol is a and the next input data value is already stored in register i.
It takes the automaton from configuration (p, τ) to (q, τ). A write transition

5

(p, a) → (q, i) can be applied if the current state is p, the next input symbol
is a and the next input data value d is currently not stored in any register.
It takes the automaton from a configuration (p, τ) to (q, τ ′), where τ ′(i) = d,
and τ ′(j) = τ(j) for all j 6= i. R is deterministic if for each state p and
letter a there is exactly one transition (p, a) → (q, i), and for each register i

at most one transition (i, p, a) → q. A run on a data string w is a sequence
(q0, τ0), . . . , (qn, τn) of configurations, defined in the obvious way. The set of
data words accepted by R is denoted L(R).

It should be noted that other definitions of RAs allow a nonempty initial
assignment. This makes it possible to consider a finite number of constants, an
ability that isn’t needed when we have a finite as well as an infinite alphabet.

The definition ensures that a data value can never occur in more than one
register at the same time. In particular, this feature can be used to verify that
the current data value is different from those in the registers.

In [12], languages recognized by register automata are called quasi-regular.
We mention some of the results from [12]: The class of quasi-regular languages
is closed under union, intersection, concatenation, and Kleene star, but not
under complementation. The emptiness problem for register automata is de-
cidable. If R1 and R2 are register automata, and R2 has at most 2 registers,
then it is decidable whether L(R1) ⊆ L(R2). In [15], different versions of reg-
ister automata are investigated (2-way, alternating, etc.). In particular, it is
shown that deterministic RA are strictly weaker than RA, which are in turn
strictly weaker than 2-way RA, and that RA are strictly weaker than MSO∗.

As the following example shows, the ability of register automata to combine
global and local properties is severely limited.

Example 2.2 We take up the printer example from the introduction. Let L0

be the set of valid traces, i.e., the data words whose string projection matches
the expression (r∗sr∗tr∗)∗ and for which each class string satisfies (rst)∗. We
claim that there is no register automaton for L0. For the sake of a contradic-
tion, assume that register automaton R accepts L0. Let k be the number of
registers of R. Let w be the data string (r, 1) · · · (r, k + 1)(s, 1)(t, 1) · · · (s, k +
1)(t, k + 1). As w ∈ L0, R has an accepting run ρ on w. After reading the first
k+1 positions of w, there is at least one data value d ∈ {1, . . . , k+1} that does
not occur in any register of R. We can conclude that R also accepts the string
w′ 6∈ L0 resulting from w by replacing (s, d), (t, d) with (s, k + 2), (t, k + 2).

6

3 Data and Class-Memory Automata

As seen in the previous section, register automata only have a limited abil-
ity to check local properties, e.g., in general they cannot check whether the
class strings of a data word belong to some given regular language. With an
automata model in mind that can check regular local and global properties it
is natural to consider a combination of a finite state automaton reading the
(string projection of the) whole input word and an automaton reading the
different class strings.

In this section, we introduce class-memory automata (CMA), an automaton
model which basically combines a global and a local automaton and allows
some interaction between them. We will show then that class memory au-
tomata have exactly the same expressive power as data automata that were
introduced in [3] mainly as a tool for a decidability proof.

CMAs have two advantages over data automata: they are conceptually slightly
simpler and they have a meaningful notion of determinism.

Definition 3.1 A class-memory automaton C is a tuple (Q, Σ, δ, qI , FL, FG),
where Q is a finite set of states, Σ is a finite alphabet, qI is the initial state,

• δ : (Q × Σ × (Q ∪ {⊥})) → P(Q) is a transition function; and
• FG ⊆ FL ⊆ Q are the sets of globally and locally accepting states,

respectively.

The semantics of class memory automata (CMA) is defined through the no-
tion of class-memory functions. Such a function simply assigns to every data
value d the state of the automaton that was assumed after reading the last
(previous) position with value d. More formally, a class-memory function
is a function f : ∆ → Q ∪ {⊥} such that f(d) 6=⊥ for only finitely many d.
A configuration of C is a pair (q, f) where q ∈ Q and f is a class-memory
function. We call q the global state of C and f(d) the local state of d.
The initial configuration of A is (qI , fI), where fI(d) =⊥ for all d ∈ ∆. When
reading a pair (a, d) ∈ Σ × ∆, the automaton can go from configuration (q, f)
to (q′, f ′) if (1) q′ ∈ δ(q, a, f(d)), (2) f ′(d) = q′, and (3) for all d′ 6= d,
f ′(d′) = f(d′). The automaton accepts if, for the final configuration (q, f),
q ∈ FG and f(d) ∈ FL ∪{⊥}, for all d ∈ ∆. A CMA is deterministic if each
δ(p, a, q) is a singleton.

It should be noted that δ naturally induces a transition relation which is a
subset of (Q× Σ × (Q ∪ {⊥})) ×Q. We freely switch back and forth between
these two points of view.

7

wi

i

p

wb

(s,W) (r, I)

(r, I) (r, I)

(r, I) (t, p)

(s,W) (t, p)

Fig. 2. A CMA for L0. The labels are explained in Example 3.2

Example 3.2 We construct a CMA C that accepts the language L0 from
Example 2.2. The automaton C, depicted in Figure 2, has four states

• p (the printer is printing for the current process),
• i (the current process is neither printing nor waiting for a print),
• wi (the current process is waiting for a print and the printer is idle)
• wb (the current process is waiting for a print but the printer is busy)

Edge labels (σ, p) indicate that the transition can be taken reading symbol σ,
in case the class memory is p. Here W abbreviates wi or wb and I stands for
i or ⊥.

To get a better understanding of the automaton let us have a look at the tran-
sitions leaving p. In state p the automaton just read some (s, d) reflecting the
start of a print for the process number d. Thus, there are only two possible
kinds of next data symbols: either (t, d) which ends the print of process d or
(r, d′) which moves process d′ 6= d into the waiting state. It should be noted
that no (s, d′) could be read next.

We next show that CMAs are not “yet another automata model for data
strings”. Indeed, as mentioned before, they are equivalent to the automata
model of [3] which in turn has a robust characterization by existential monadic
second-order formulas with two first-order variables.

Data automata implement the idea of combining a global with a local automa-
ton in a different way: the global automaton is a string transducer, the local
automaton reads the class strings induced by its output.

Definition 3.3 ([3]) A data automaton (DA) D is a pair (A,B), where A

is a nondeterministic letter-to-letter transducer (the base automaton) with
a finite output alphabet Γ and B an NFA (the class automaton). A data
word w = w1 . . . wn over Σ is accepted by D if there is an accepting run of A

on the marked string projection mstr(w), yielding an output string g1 . . . gn,
such that B accepts each string gi1 . . . gik induced by a class of w.

Example 3.4 We construct a data automaton D = (A,B) for the language
L0 from Examples 2.2 and 3.4 (cf. Figure 3). The transducer A makes sure
that the string projection matches (r∗sr∗tr∗)∗, and copies its input to the class
strings. The class automaton B verifies that each class string matches (rst)∗.

8

A : i b

s

t

r r B :
c w

p

r

st

Fig. 3. A data automaton for the language L0. A has states i (idle) and b (busy).
B has states c (computing), w (waiting) and p (printing).

We aim to show next that data automata and CMAs are expressively equiv-
alent. As a technical preparation for that proof we first show that it is not
necessary that a DA A reads the marked string projection mstr(w) (indicat-
ing where the data value changes): we define unmarked data automata in
the same way as data automata but the base automaton reads str(w) instead
of mstr(w) and show that the expressive power of unmarked data automata
is the same as that of data automata. It should be stressed that thanks to
Proposition 3.6 we could define CMAs do read str(w) as opposed to mstr(w).

We illustrate the coloring technique used in the proof of this result with an
example.

Example 3.5 We consider the language L1 of traces in which the pattern
(t, d)(r, d) does not occur, i.e., after a print job of a process terminates it
can request the next one only after some other event occurred. We note that
a DA whose base automaton reads mstr(w) can easily accept this language
by simply avoiding the pattern (t, b)(r, 1), for b ∈ {0, 1}. It is, however, less
obvious how a data automaton can do this if its base automaton only sees
str(w). Intuitively, the class automaton has no clue whether between a t and
the subsequent r of some class some other event occurred. The base automaton,
on the other hand, does not know about data values whatsoever. Nevertheless,
by working together, the base and class automaton can accept L1 by using the
coloring technique explained next. The idea is that the base automaton guesses
a color (black or yellow), for each t-position and each r-position, such that the
following two conditions hold.

(1) Every r-position shares the color of the previous t-position in the same
class (if it exists).

(2) If an r-position immediately follows a t-position they have different colors.

Obviously, if colors can be assigned such that (1) and (2) hold, then w ∈ L1.
Furthermore, condition (1) can be checked by the class automaton, condition
(2) by the base automaton.

It remains to show that for each w ∈ L1 a coloring fulfilling (1) and (2) can be
found. To this end, we associate with w a directed graph G(w) whose vertices
are the positions of w carrying t or r and which has an edge from i to j if

(i) j < i, j carries t and i is the next r-position of w in the class of j, or
(ii) j = i + 1, i carries t and j carries r.

9

r

d1

1
b

r

d2

2
b

s

d1

3
b

t

d1

4
b

r

d3

5
y

s

d2

6
b

t

d2

7
y

r

d1

8
b

s

d3

9
b

t

d3

10
b

r

d2

11
y

s

d1

12
b

t

d1

13
b

s

d2

14
b

t

d2

15
b

Fig. 4. A data string w with its graph G(w) and the induced coloring.

The intuitive meaning of an edge (i, j) is that the color of i determines the color
of j. Observe that each node in G(w) has in-degree at most one. Furthermore,
there are no cycles. Thus, we can assign colors as follows: (1) Each node of
in-degree 0 gets the color black. (2) Whenever there is an edge (i, j) and i is
a t-position which is already colored then j gets a different color than i. (3)
Whenever there is an edge (i, j) and i is an r-position which is already colored
then j gets the same color as i. Clearly, this leads to a coloring respecting
conditions (1) and (2). Figure 4 gives an illustration.

Proposition 3.6 For every data automaton, there is an equivalent unmarked
data automaton.

Proof. Let D = (A,B) be a data automaton. We construct an equivalent
data automaton D′ = (A′, B′) with the claimed restriction. Intuitively, on
input str(w), A′ guesses a marked string v and simulates the behavior of A

on v. Simultaneously, together with B′, it checks that v = mstr(w) using the
coloring technique of Example 3.5.

Thus, first of all, A′ guesses, for each position i, whether it has the same
data value as position i − 1. Furthermore, for each i, it guesses a subset Si of
the set S = {open(black), open(yellow), close(black), close(yellow)}. More pre-
cisely, Si contains exactly one opening element, open(black) or open(yellow),
if position i is (guessed to be) in a different class than i− 1. Likewise, Si con-
tains either close(black) or close(yellow) if position i is in a different class than
i+1. At position i, the output of A′ is just (gi, Si), where gi is the output of A

when reading position i of mstr(w). The automaton (A′, B′) has to make sure
that the positions with a data value change are guessed correctly, i.e., that
the open-position after each close-position has a different data value. To this
end, (A′, B′) accepts if the following two conditions hold, for every position i.

(1) If open(c) ∈ Si, for some color c then the previous position j < i with the
same data value fulfills close(c) ∈ Sj (if such a position exists).

(2) If i > 1 and open(c) ∈ Si, for some color c, then close(c′) ∈ Si−1, where
c′ 6= c.

Again, (1) can be checked by the class automaton B′ and (2) by the base
automaton A′. Clearly, if (1) and (2) are satisfied, A′ guessed the marked
string correctly and thus (A′, B′) accept if and only if (A,B) would have

10

accepted. On the other hand, if the marking is guessed, there is a coloring
fulfilling (1) and (2) which is shown in complete analogy to Example 3.5.

Now we turn to the main result of this section.

Proposition 3.7 DAs and CMAs are expressively equivalent.

Proof (Sketch). We show that, for every unmarked DA, there is an equiva-
lent CMA. The simulation of an unmarked DA D = (A,B) by a CMA C is just
a generalization of Example 3.2. The states of C simply combine the states of
A and B; the state set QC of C is QA × QB. A configuration ((q, q′), f) of C

thus represents the current state q of A and, for each data value d, the current
state of B is just the second component of f(d). More precisely: if A has a
transition from p to p′ that reads an a and outputs a t, and B has a transition
from q to q′ that reads a t, then C has a transition ((p, x), a, (y, q), (p′, q′)),
for each state x of A and y of B. If q is an initial state of B, then C also has
a transition ((p, x), a,⊥, (p′, q′)), for each state x of A. The locally accepting
states FL of C are those whose second components are accepting in B, and
the globally accepting states FG are those where the first component is also
accepting in A.

We next show how a CMA C can be simulated by a DA D = (A,B). The idea
is simple: for each position with a data value d, A guesses f(d), and simulates
C based on this guess. B checks that the guesses were correct. More precisely,
A has the same state set Q as C. If C has a transition (p, a, q, p′) then A can
go from state p to p′, reading a and outputting (q, p′) (where q =⊥ is also
allowed). B checks, for each data value, that the guesses of A are consistent.
For this purpose, B has state set Q ∪ {qI , q−}, where the locally accepting
states of C are accepting in B. From the initial state qI it enters state p if it
reads a symbol of the form (⊥, p) and q−, otherwise. Likewise, from a state p it
enters p′ when it reads a symbol (p, p′) and q−, otherwise. It is straightforward
that D accepts the same language as C.

Note that in both directions, the translation can be computed in polynomial
time.

4 Expressiveness

In this section, we compare the expressive power of CMAs with that of RAs.
The main result is that CMAs are strictly stronger than register automata.
Remarkably, this result does not carry over to the deterministic counterparts.

11

Theorem 4.1 CMAs are strictly more expressive than RAs.

Proof. The set L0 of valid traces is not recognized by any RA (Example 2.2)
but by a CMA (Example 3.2). It remains to show that for every RA, we
can construct an equivalent CMA. Let R = (Q, q0, F, k, P) be a fixed RA
with k registers. Without loss of generality, we can assume that each state
q determines whether it is reached by a read or a write transition. Let ρ =
(q0, τ0), . . . , (qn, τn) be a run of R on input w = (a1, d1) · · · (an, dn). Note that,
after each step i, di is stored in some register of R, i.e., τi(j) = di, for some j.
We say that a transition using register j closes the register if either it is the
last transition involving j in the run or there is no transition reading from j

before the next write to j.

Intuitively, the CMA C guesses, for each transition, whether it closes the
register. To ensure that the guesses are correct, C makes use of the coloring
technique that was already used in Example 3.5 and Proposition 3.7. More pre-
cisely, the states of C are of the form (q, l, S, p), where q ∈ Q, l ∈ {1, . . . , k}
and S is a subset of {open(black), open(yellow), close(black), close(yellow)}
and p stores some more information to be specified below. Intuitively, it cor-
responds to a configuration of R with state q, in which the last transition
affected register l, and in which this transition was a write iff open(b) ∈ S, for
some b and it closed the register iff close(c) ∈ S, for some c. We show that C

can be constructed such that the following holds.

Claim. C has a run ρ = (q0, l0, S0, p0), . . . , (qn, ln, Sn, pn) on w, fulfilling con-
dition (1)-(3) below if and only if R has an accepting run on w, where we call
a position opening if open(b) ∈ Si, for some b, and closing if close(c) ∈ Si, for
some c.

(1) The transitions of C are consistent with the transition relation of R, i.e.,
for each i, 0 < i ≤ n, R has a read transition (li, qi−1, ai) → qi or a write
transition (qi−1, ai) → (qi, li), and, if i is opening, then the latter applies.

(2) For each position i, there is an opening position j ≤ i and a closing
position j′ ≥ i with (a) li = lj = lj′ , (b) di = dj = dj′ , and (c) for all
positions m, j < m < j′ it holds either lm 6= li and dm 6= di or lm = li,
dm = di and Sm = ∅.

(3) If open(b) ∈ Si, for some b, then either there is no j < i with dj = di, or
the following two conditions hold.
(a) For the largest position j < i with dj = di, close(b) ∈ Sj.
(b) If the largest position m < i with lm = lj is closing then close(c) ∈ Sm,

for c 6= b.

We first note how these conditions can be ensured by C: (1) is straightforward.
(2) can be checked by the local states. For each data value, the sequence of
opening, closing and other positions must be ok. Condition (3a) can also be

12

checked by using local states whereas (3b) uses the global state. The necessary
information is stored in the p-component of the states of C.

It remains to prove the above claim. Let us first assume that there is a run ρ

of C fulfilling conditions (1)-(3). We have to show that there is an accepting
run ρ′ of R. We construct ρ′ inductively and show by induction that, for each
i, the prefix of ρ′ of i steps is consistent and leads to a configuration (qi, τi),
where for each l ≤ k one of the following conditions holds.

• τi(l) = τ0(l) and lj 6= l, for every j ≤ i.
• τi(l) = dj, for the maximal j ≤ i with lj = l.

For i = 0, the conditions clearly hold. Assume now that the i-th transition
of C corresponds to the read transition (li, qi−1, ai) → qi. By (1), i is not an
opening position. Thus, (2) guarantees that the maximum j < i with lj = li
fulfills di = dj. Therefore, τi−1(li) = di, the read transition can be applied
by R and the induction statement holds for i. Otherwise, the i-th transition
corresponds to the write transition (qi−1, ai) → (qi, li). By (1), i is an opening
position and, if di has occurred before its last occurrence was at a closing
position. We have to make sure that di 6= τi−1(li), equivalently that for the
maximal position j < i with lj = li it holds dj 6= di. Let us assume otherwise.
Condition (1) implies that j is a closing position. Let b be its corresponding
color. By (3b), there must be a position m, j < m < i, with lm = li and thus
τi−1(lj) 6= dj = di. As lj is the register in which di was stored last time, by
induction di is not stored in any other register either.

By a similar argument as in Example 3.5 and Proposition 3.7 it can be shown
that a run of C fulfilling (1) - (3) exists if R has an accepting run. It is sufficient
to notice that, in condition (3), the closing color of m determines the opening
color of i which in turn determines the closing color of j < m. Thus, in the
underlying graph each node has in-degree at most one.

In the next section, we show that Model Checking for CMAs is expensive,
due to non-determinism. Thus, it is natural to consider deterministic CMAs
(D-CMAs) which turn out to be quite expressive but less powerful than CMAs.

Proposition 4.2 Deterministic RA and D-CMAs are expressively incompa-
rable.

Proof. The language L0 of valid traces can be recognized by a deterministic
CMA (Example 3.2), but not by any RA (Example 2.2). For the opposite
direction, we show that L1, defined in Example 3.5 cannot be accepted by a
deterministic CMA. Note that L1 can be easily checked by a deterministic RA.
Consider data words wn = (t, 1)(t, 2) . . . (t, n), for n ∈ N. For any deterministic
CMA C, if n is large enough, there are i < j such that the state of C after

13

reading position i of wn is the same as after reading position j. Thus, for the
configuration (q, f) after position j we have f(i) = f(j) = q. We conclude that
wj · (r, i) is accepted by C if and only if wj · (r, j) is accepted. But wj · (r, i)
is in L1 while wj · (r, j) is not.

The above proof also shows that a statement corresponding to Proposition 3.6
does not hold for deterministic CMAs.

As discussed in the introduction, data languages can also be described in
terms of logic. In particular, when using fragments of first order logic, we
let variables range over positions in words, and use predicates to talk about
the labels, data values, and order of positions. It is shown in [3] that empti-
ness for data automata is decidable, and that they capture FO2(+1, <,∼),
that is, the two-variable fragment of FO with the usual string predicates
+1 and <, and the ∼-predicate, which is true for two positions in the same
class. Actually, marked data automata are shown to be expressively equiva-
lent to EMSO2(+1, <,∼,⊳), i.e., (the two-variable fragment of) existential
monadic second-order logic with the class successor ⊳ as additional predicate.
By Propositions 3.6 and 3.7 and their constructive proofs, all these results
carry over to unmarked data automata and CMAs. As L1 is defined by the
FO2(+1,∼)-formula ∀x∀y (x + 1 = y ∧ t(x) ∧ r(y)) → x 6∼ y we can conclude
the following.

Proposition 4.3 D-CMAs cannot express all FO2(+1,∼)-definable proper-
ties.

5 Algorithmic Properties

The model checking problem for automata asks whether a data word w is in the
language L(A), for an automaton A. If A is fixed, we refer to the complexity
of the problem as data complexity. If A is considered as part of the input we
speak about combined complexity.

Proposition 5.1 (a) For D-CMAs and deterministic RAs, data and com-
bined complexity are polynomial.

(b) The data complexity (and the combined complexity) of model checking for
CMAs is NP-complete.

Proof. In (a), every new input pair (a, d) uniquely defines the next transition.
Thus the unique run on a word can be constructed in polynomial time. For
(b), NP-membership is easy, since a run of the automaton on a word can be
guessed. We show NP-hardness by a reduction from 3-CNF-SAT. An instance

14

φ = φ1 ∧ · · · ∧ φm of 3-CNF-SAT can be encoded as a data word of length 3m
in the following way. We associate with each variable some data value, in a
pairwise distinct fashion. Each clause is encoded by a data word over {+,−}3.
E.g., if x1 appears negatively in the first clause and d is its associated data
value then the first sub-word contains (−, d).

Now we construct a CMA C. The basic idea is that C will guess the truth
values of the variables, and verify that it has guessed correctly. Each state
of C is a tuple (v, p, c), where v is a variable truth value from {0, 1}, p is a
position from {0, 1, 2}, indicating how many positions in the current clause
C has read, and c is a clause truth value from {0, 1}, indicating whether the
current clause has yet been proved to be true (according to the guessing of the
truth values). The initial state is (0, 0, 0). Let ((v, p, c), f) be a configuration
of C and let (a, d) be the next input pair. We will describe the possible next
configurations (v′, p′, c′) of C.

• If f(d) = ⊥ then v′ ∈ {0, 1} (C guesses a truth value for the variable of d).
• If f(d) = (v′′, p′′, c′′) 6=⊥ then v′ = v′′ (the automaton does not change the

truth value of a variable).
• If p = i then p′ = i + 1 mod 3.
• If c = 0 the next transition on input (a, d) depends on a and v′′. If a = +

and v′′ = 1 or if a = − and v′′ = 0 then c′ = 1, unless p = 2, in which
case c′ = 0. Otherwise, c′ = 0 or, if p = 2, there is no further transition: the
truth assignment did not satisfy the last clause and thus C rejects.

• If c = 1 and p < 2 then c′ = 1. If c = 1 and p = 2 then c′ = 0 (indicating
that the new clause has not been satisfied yet).

All states with p = 0 are accepting. Obviously, C accepts if and only if it
guessed a satisfying assignment for φ, which implies the statement of the
proposition.

For RAs, the data and combined complexity are (probably) different.

Proposition 5.2 (a) The data complexity of model checking for RAs is poly-
nomial.

(b) The combined complexity of model checking for RAs, parameterized by the
number of registers, is W [1]-hard. 1

Proof (Sketch). For (a), consider an RA R with k registers. The number

of possible configurations of R on input w is bounded by |Q| ·
(

|w|
k

)

· k!. Thus,

one can check w ∈ L(R) in polynomial time by inductively computing the set
of reachable configurations, for each position of w.

1 For an introduction to fixed-parameter complexity and W [1], see, e.g., [8,6,10].

15

The proof of (b) is by reduction from parameterized k-Clique. In this problem,
we are given a Graph G = (V,E) and a positive integer k (the parameter).
The question is whether G has a clique of size k. The problem is known to be
W [1]-complete [7]. Given G and k ∈ N, we construct a word w over alphabet
{a, b, c} with data values from V and an RA R with k + 1 registers as follows.
The word w consists of two parts. The first part is just (a, v1) . . . (a, vn), where
v1, . . . , vn are the vertices in V . The second part is a concatenation of all strings
(b, u)(c, v) such that u, v ∈ V but (u, v) 6∈ E. When R reads the first part, it
nondeterministically selects k vertices that are stored in the first k registers.
When reading the second part, it immediately rejects if it reads (b, u)(c, v),
for which u and v are stored in a register. If it reaches the end of w without
reading such a pair, it accepts.

No parameterized upper bound for this problem is yet known, except that it
belongs to XP (as can be seen from the proof of Proposition 5.2(a)).

2-Way Deterministic CMAs. Since deterministic CMAs are clearly weaker
than general CMAs, it is natural to ask whether we can allow them to move
both ways. A 2-way CMA is a CMA in which the head of the automaton can
move to the right or to the left in one step. To this end, the input string w is
padded by a symbol ✄ to the left and ✁ to the right to enable the automaton
to recognize the ends of the strings. The class memory function is generalized
in a straightforward way: f(d) is just the state taken after reading some po-
sition (σ, d) the last time (and ⊥ if such a position has not yet been visited).
Transitions depend on the current state and the class memory function, just
as for 1-way CMAs. We omit a formal definition.

Unfortunately, the 2-way extension does not preserve decidability, as we show
next.

Theorem 5.3 Emptiness for 2-way deterministic CMAs is undecidable.

Proof. We use a reduction from Post’s Correspondence Problem (PCP) which
is well-known to be undecidable [11]. An instance I of PCP is a sequence
(x1, y1), . . . , (xn, yn) of pairs, where xi, yi ∈ {a, b}∗ for i = 1, . . . , n. This in-
stance has a solution if there exist m ∈ N and i1, . . . , im ∈ {1, . . . , n} such
that xi1 · · ·xim = yi1 · · · yim . Given an instance I = {(x1, y1), . . . , (xn, yn)} of
PCP, we construct a 2-way deterministic CMA C whose language is nonempty
if and only if I has a solution.

We encode solution candidates as data words w over Σ = {a, b, #}∪{1, . . . , n}.
If i1, . . . , im is a solution, str(w) will be i1xi1 · · · imxim#i1yi1 · · · imyim . We refer
to positions with a number as index positions and to the others (besides #) as
letter positions. Each data value (besides the one for #) will appear exactly
twice. For 1 ≤ j ≤ m, the two occurrences of ij get the same data values.

16

Furthermore, two letters from {a, b} in the first and the second half of w get the
same data value if they represent the same position in xi1 . . . xim = yi1 . . . yim .

The automaton C intended to accept all data strings u#v encoding correct
solutions to I, works in four stages, each of which uses its own state space. To
this end, let u = (a1, d1) · · · (an, dn) and v = (a′

1, d
′
1) · · · (a

′
m, d′

m)

In the first stage, the automaton checks that the word following an index
character ij really is xij (yij). For this it uses state set Q1 and works as a DFA
over words without data, ignoring the class memory function. When this is
done, it returns to the first position of the word. After the first stage, we know
that for each data value, the class memory function assigns a state in Q1.

In the second stage, C checks that each data value appears exactly twice, once
in u and once in v, and that it appears together with the same label in u and
v. This is done in two passes. The first pass from left to right checks that
each data value appearing in v also appears, with the same label, in u. The
second pass checks the dual property with u and v switched. In the first pass,
C uses one state pa, for each a ∈ Σ. Inside u, it checks, for each position i,
that f(di) ∈ Q1 and enters state pai

. Inside v, it checks, for each position j

that f(dj) = paj
. Here, f always refers to the current class memory function.

The second pass is done in an analogous fashion.

After stage 2, C can make use of the fact that each data value occurs exactly
once in u and v (besides the value of #). In particular it can remember data
values as follows: If C uses a certain state p exactly once in u at a position i

then it can move into v and identify the unique position i′ with di′ = di by
simply searching for the first position i′ with f(di′) = p. Next, C can move to
the left, ”mark” di′ by another state q and find it’s way back to position i in
u.

In stage 3, this technique is used to check that the sequence of data values
occurring at the index positions in u is the same as in v. To this end, C goes
to the first index position i of u and marks it with a state p. Then it moves
to the smallest index position j > i of u and marks it with a state q. Next
it moves to the right until it reaches the position i′ corresponding to i and
verifies that it does not see the corresponding position j′ of j on its way thus
verifying that j′ > i′ as required. Next it moves back to position i (basically to
”erase the memory”), and continues with the second and third index position
of u as i and j and so on.

In the last stage, C checks that the data value sequences induced by the letter
positions are also identical in u and v. Clearly, C accepts a string u#v after
these 4 stages, if and only if it encodes a PCP solution.

17

6 Closure Properties

For the automata-theoretic approach to static analysis and verification, closure
properties are of great importance, since they facilitate modular reasoning.
In this section, we consider the closure properties of the classes of languages
defined by nondeterministic and deterministic CMAs. We first prove a negative
result; the class R of languages recognized by CMAs is not closed under Kleene
star. We then show that by extending deterministic CMAs with Presburger
conditions, we obtain a decidable model closed under Boolean operations.

Proposition 6.1 The class R of languages accepted by CMAs is effectively
closed under intersection, union and concatenation. It is not closed under
complementation and Kleene star.

Proof. Closure under union and intersection for data automata was shown
in [3]. To prove closure under concatenation, let C1 = (Q1, Σ, δ1, q1

I , F 1
L, F 1

G)
and C2 = (Q2, Σ, δ2, q2

I , F
2
L, F 2

G) be CMAs. An automaton C for L(C1) ·L(C2)
is constructed as follows. It starts by simulating C1 and at some point, if the
current state is in F 1

G, it non-deterministically switches to C2. To this end, Q1

and Q2 have to be disjoint. During the second phase, C rejects whenever it
encounters an input (a, d) such that f(d) ∈ Q1 − F 1

L. On the other hand, if
f(d) ∈ F 1

L it just behaves as C2 for f(d) = ⊥. The globally accepting set is
F 2

G, the locally accepting set is F 1
L ∪ F 2

L.

We next show that R is not closed under Kleene star. The proof is a reduc-
tion from the halting problem for 2-counter machines without input. Such
automata have only ε-transitions between states, which perform counter op-
erations. A counter operation can increase, decrease, or zero-check a counter.
The counters can never have negative values. The machine halts if it reaches
a final state with empty counters. The halting problem is known to be unde-
cidable. We show that if R were closed under Kleene star, we could effectively
reduce the halting problem for 2-counter machines to the emptiness problem
for CMAs. This is a contradiction, since emptiness for CMAs is decidable.

Each run of a 2-counter machine induces a word over Γ = {c+
1 , c−1 , c0

1, c
+
2 , c−2 , c0

2}
where c+

i , c−i , c0
i represent incrementing, decrementing, and zero-checking counter

i, respectively. With each counter automaton A we associate a language LA ⊆
Γ∗ as follows. A string w = w1 · · ·wn is in LA if qn is an accepting state of
A and there is a sequence q0, . . . , qn of states of A such that, for each i > 0,
A has a transition consistent with qi−1, wi, qi, i.e., A can go from qi−1 to qi

while performing operation wi. Note that we ignore that a transition might be
applicable only if the counters allow it. Clearly, for each A a DFA accepting
LA can be effectively constructed.

18

Let Lc1 be the data language with string projections of the form(c+
1 + c−1 +

c+
2 + c−2 + c0

2)
∗c0

1(c
0
2 + ε) such that each class string is either c+

1 c−1 or does not
contain c+

1 or c−1 . It is easy to see that Lc1 can be recognized by a CMA C1.
Symmetrically, we define the language Lc2 with string projections in (c+

2 +c−2 +
c+
1 + c−1 + c0

1)
∗c0

2(c
0
1 + ε) such that every class string is either c+

2 c−2 or doesn’t
contain c+

2 or c−2 . Lc2 is recognized by CMA C2. Towards a contradiction, let
us now assume that R is closed under Kleene star and that C ′

1 and C ′
2 are

CMAs for L∗
c1

and L∗
c2

, respectively. For each 2-counter automaton A we can
then effectively construct a CMA CA for L∗

c1
∩L∗

c2
∩L′

A, where L′
A is the set of

data words whose string projection is in LA. We claim that A has an accepting
computation if and only if L(CA) 6= ∅, yielding the desired contradiction.

It should be stressed that A 7→ CA is indeed effective even though our assump-
tion that R is closed under Kleene star does not yield C ′

1 and C ′
2. But from

the assumption we can conclude that they exist and therefore an algorithm
for computing A 7→ CA also exists. it is crucial here that C ′

1 and C ′
2 do not

depend on A.

Given an accepting run ρ of A, we can construct a data word w accepted by
CA as follows: the string projection of w is obtained from the transitions of
ρ in a straightforward manner. Furthermore, each position with a symbol c+

i

(corresponding to incrementing counter i from some m to m+1) gets the same
data value as the position (carrying c−i) that corresponds to the subsequent
decrementation of counter i from m + 1 to m. This data value does not occur
anywhere else. All other (zero check) positions get distinct data values. Clearly,
w is accepted by CA. On the other hand, it is straightforward to check that
each data string accepted by CA induces an accepting run of A. The proof
that R is not closed under Kleene star is thus completed.

The proof that R is not closed under complementation is very similar. First it
shows that there is a CMA C for the complement of L∗

c1
∩ L∗

c2
. The construc-

tion of C is straightforward: it is basically the union of several automata, each
checking one type of violated constraint. If R were closed under complementa-
tion we would obtain a CMA C ′ for L∗

c1
∩L∗

c2
. Thus we could again effectively

construct an automaton for L∗
c1
∩L∗

c2
∩L′

A from a 2-counter automaton A.

Proposition 6.2 The class of languages recognized by deterministic CMAs
is effectively closed under intersection. It is not closed under union, comple-
mentation, concatenation, or Kleene star.

Proof. For intersection, closure is shown by a straightforward product con-
struction. For Kleene star, non-closure follows from the proof of Proposi-
tion 6.1, since the automata involved there can be made deterministic.

19

Union. Let L′ be the set of all data words over {a, b} such that all data values
are different, and the last letter is a b. Let L′′ be all data words over {a} such
that each data value appears exactly twice. It is easy to see that both L′ and
L′′ can be recognized by deterministic CMA. We show that no deterministic
CMA can recognize L = L′ ∪ L′′. Towards a contradiction, we assume that
there is such a CMA C. Let n be the number of states of C, and consider a
data word w of length n + 1 over {a} such that all data values are different.
Then there exist two positions i < j ≤ n+1 such that the configuration (qj, fj)
of C after reading w up to position j has fj(di) = fj(dj). Let wi and wj be
the prefixes of w up to position i and j, respectively. The configurations of C

after reading wi or wj must both be such that the memory for each data value
is a locally accepting state, but the global state is rejecting. This is because C

should accept the words obtained from wi and wj by appending a b-position
with a fresh data value at the end.

Now consider the word wiwi. This word belongs to L, so the configuration of C

after reading it must be both locally and globally accepting. Since the global
state and the memories for the data values appearing in wi are identical after
reading wi or wj, the transitions taken when reading wi after wj are exactly
the same as when reading wi after wi. But this means that C would accept
wjwi, which is a contradiction, since wjwi 6∈ L.

As the class is closed under intersection but not under union, it can clearly
not be closed under complement.

Concatenation. Let L′ be the set of all data words over alphabet {a, b} that end
with letter a. Let L′′ be the language over {a, b} such that all data values are
different. We claim that no deterministic CMA recognizes the concatenation
language L = L′ · L′′. Assume there were such a CMA C with n states.
Let, for each i, ui be the word (b, 1)(b, 2) · · · (b, i) and let wi be word wi =
un+1(a, 0)un(a, 0) · · ·ui. Let qi denote the state of C after reading wi, for each i.
We claim that the states q1, . . . , qn+1 are pairwise different, yielding the desired
contradiction as C only has n states. To this end, let us assume qi = qj, i < j.
As j does not occur in the suffix of wi after the prefix wj, we can conclude for
the configuration (q, f) of C after reading wi that f(i) = f(j) = qj. Thus, C

accepts wi · (b, j) if and only if it accepts wi · (b, i). But since wi · (b, j) ∈ L

and wi · (b, i) 6∈ L, our assumption qi = qj was wrong.

Presburger conditions.

As one of our motivations for the introduction of CMAs was that they have a
natural notion of determinism, Proposition 6.2 is rather bad news. This moti-
vates the following extension of CMAs by Presburger conditions: the extension
does not enlarge the power of CMAs but it yields an extension of DCMAs that
is closed under Boolean operations.

20

Instead of just requiring that the memory states for all data values are locally
accepting, we generalize the acceptance condition as follows. Suppose that
CMA C has states Q = {q1, . . . , qm}. Each computation ρ of C with final
configuration (p, f) induces a function g : Q → N, where g(q) is the number
of data values d with f(d) = q. We consider atomic formulas of two kinds:
(1) q, where q ∈ Q and (2) (q1 + · · · + qk mod c) = c′, where the qi are from
Q and c, c′ are constant numbers. A configuration (p, f) fulfills q iff p = q. It
fulfills (q1 + · · · + qk mod c) = c′ iff (g(q1) + · · · + g(qk) mod c) = c′. Any
Boolean combination of such formulas is a limited Presburger formula. A
Presburger CMA C is a CMA with a limited Presburger formula Φ. A run
of C is accepting if its final configuration satisfies Φ.

Proposition 6.3 For each Presburger CMA there is an equivalent CMA.

Proof (Sketch). Let C be a Presburger CMA with formula Φ. We assume,
w.l.o.g., that in Φ negation occurs only before atomic formulas. There is a
CMA for each formula q and ¬q. The global accepting set simply has to be
set to {q} or Q− {q}, respectively. The other kind of atomic formulas can be
handled by a modulo counter in a straightforward manner. E.g., for a formula
(q1 − q2 mod 3) = 0, a modulo counter is added to the global state of the
automaton which is incremented (modulo 3) whenever the automaton enters
a state q1 or leaves (locally) state q2. The Boolean combinations can be taken
care of by the globally accepting state.

Proposition 6.4 The class of languages accepted by deterministic Presburger
CMAs is closed under Boolean operations.

Proof. Let A = (Q, Σ, ∆, δ, qI , Φ) and B = (P, Σ, ∆, γ, pI , Ψ) be deterministic
CMAs. To construct an automaton that accepts the complement of L(A), we
only need to negate Φ. For the intersection or the union of L(A) and L(B),
we construct the product automaton A × B and use the conjunction (or the
disjunction) of Φ and Ψ, where, e.g., in the atomic modulo formulas each q of
A is replaced by the sum of those q′ of A×B with q in their A-component.

The following result completes Figure 1.

Proposition 6.5 For each deterministic Presburger CMA there is an equiv-
alent 2-way deterministic CMA.

Proof (Sketch). We only sketch the proof idea. Let A be a deterministic
Presburger CMA. The 2-way deterministic CMA A′ first simulates A. When
A reaches the end of the input, A′ traverses the string backwards and counts,
for each state p of A, for how many classes the computation of A ended in p.

21

Of course, A′ cannot literally compute this number but it is able to compute
it modulo N , the product of all numbers c occurring in some atomic formula
of A’s Presburger formula. When A′ reaches the left end of the string it can
decide whether A would have accepted.

7 CMA with Synchronization and Reset

The expressive power of CMAs is sufficient to handle a large number of proper-
ties relevant in parameterized verification. Still, there are many natural prop-
erties that cannot be expressed. In this section we investigate ways of strength-
ening the expressive power, while maintaining decidability of the emptiness
problem. We begin with an example of a relatively simple verification property
that cannot be expressed by CMAs.

Example 7.1 Consider a variation Ls of the language L0 from Examples 2.2,
3.4, and 3.2 where we use an additional symbol n (network failure). When a
network failure occurs, all printer jobs that have been requested but not yet
started are lost and thus the requests have to be repeated. The network failure
notifications are sent by a special network process. In other words, Ls is the
set of data words w such that

(1) if a class string contains a symbol n, then it contains only n symbols (i.e.,
it matches n∗),

(2) each other class string of w matches (rst + r)∗,
(3) if i ⊳ j and both i and j carry label r, there is a position k with i < k < j

that has label n,
(4) if i ⊳ j, i has label r, and j has label s, there is no position k with

i < k < j that has label n, and
(5) str(w) matches ((r + n)∗s(r + n)∗t(r + n)∗)∗.

Proposition 7.2 There is no CMA that recognizes the language Ls from Ex-
ample 7.1.

Proof. We consider a sublanguage L′
s of Ls from Example 7.1 in which no

request ever gets handled. The string projections of words in L′
s match the

expression (r∗n)∗. The data values are such that if two r-positions belong to
the same class, then there is an n-position between them (a process cannot
send a new request until a network error has occurred). It is clear that if no
CMA accepts L′

s, then no CMA accepts Ls.

Suppose there were a CMA C with m states, that accepted L′
s. We define a

consistency property C must have. Let w ∈ L′
s and let i < j be r-positions

22

of w, with data values di and dj, and with no n-position between them (thus
di 6= dj). Let (q, f) be a configuration of C after reading w up to position
i in an accepting run ρ on w. Then we must have f(di) 6= f(dj). Indeed, if
f(di) = f(dj), the automaton could not tell the difference between di and dj

when reading the rest of w. Thus ρ would also be an accepting run on the
word w′ 6∈ L′

s obtained from w by replacing all occurrences of di with dj, and
vice versa, in the suffix starting at position i + 1. For words in L′

s we use ni

to denote the ith position with label n and Bi for the ith block, that is, the
positions between ni−1 and ni (we interpret n0 as the beginning of the word).

We now construct a word w such that no CMA can satisfy the above property
when reading w. As data values we use natural numbers. In block Bi, all data
values have a 1 in the ith bit of their binary representation. Suppose that we
can construct w so that the following is fulfilled. For each i < j there is a data
value mi,j with ones in bits i and j and zeroes in all bits between i and j such
that mi,j appears in the first half of Bi and in the second half of Bj. Let ρ be
an accepting run of C on w, and let Qi, for each i be the set of states used in
ρ when reading the first half of Bi. Now suppose that the number of blocks is
2m. Then there are i < j with Qi = Qj. Since mi,j appears in the first half of
Bi, and doesn’t appear between Bi and Bj, the memory state for mi,j when
C starts reading Bj will be some state qi,j ∈ Qi. When reading the first half
of Bj, all states in Qj = Qi are used. Thus, after reading half of Bj, some
data value appearing there will have memory state qi,j. But since mi,j is yet
to appear in Bj, this violates the consistency property defined above.

It remains to show that we can construct w so that for each pair i, j, there is
a data value mi,j with the above property. We use 2m blocks, and data values
with binary representations of length 2m · 2m. Thus, for each i ≤ 2m there are
at least 22m data values with ones in bit i. For mi,j we can choose the value
that has ones only in bits i and j. After placing mi,j, for each pair i, j, in the
first half of Bi and the second of Bj, we can pad the two halves of Bk, for each
k, with unrelated data values (with ones in bit k), until each half has length
exactly 2m.

As mentioned in the introduction, CMAs can combine global regular proper-
ties with local regular properties (of the class strings). The ”communication”
between the global and the local properties is limited: the global automaton
can “send information” to a class d only when a symbol (σ, d) occurs in the
input. In particular, it is not possible to broadcast a global event to all classes
simultaneously.

It is exactly this limitation that prohibits CMAs from recognizing Ls from Ex-
ample 7.1: all processes have to be simultaneously informed that print requests
have been lost.

23

We now study a stronger class of automata. It is equipped with transitions
that model a synchronous failure broadcast to all processes, and can therefore
recognize Ls.

Definition 7.3 A CMA with synchronization is a CMA C = (Q, Σ, δ, qI ,

g, FL, FG) equipped with a synchronization function g : Q → P(Q ∪ {⊥}).
Some of the transitions apply g. When such a transition is taken from a con-
figuration the automaton first changes state and updates the memory function
for the current data value as usual, assuming a configuration (q, f). Then, it
updates the class memory function by setting f(d) to some state in g(f(d)),
unless f(d) = ⊥.

Constructing a CMA with synchronization that recognizes Ls from Exam-
ple 7.1 is fairly straightforward. Unfortunately, with the full power of this
extension, we overstep the border of decidability.

Theorem 7.4 Emptiness for CMAs with synchronization is undecidable.

Proof. The proof resembles the undecidability proof from Proposition 6.1. In
particular, it is a reduction from the halting problem for 2-counter machines
without input. We again use the symbols Γ = {c+

1 , c−1 , c0
1, c

+
2 , c−2 , c0

2} with the
same intended meaning. We further use additional symbols #1 and #2: after
each c0

i an arbitrary number of #i symbols can occur. The proof can be more
easily stated in terms of data automata. In a nutshell, CMA with synchro-
nization correspond to data automata with the ability to push a fixed symbol
$ to all class strings in one step. More precisely, $ is inserted into each class
string at the current position of the class automaton. Thus, from a 2-counter
automaton A, we construct a data automaton D such that A has an accepting
run if and only if L(D) 6= ∅. In principle, runs of A correspond to strings over
Γ in a similar fashion as in Proposition 6.1. The treatment of zero tests is the
crucial point. Whenever a zero check for counter i occurs, and a class already
has seen c+

i but not c−i then the counter i is not zero, and thus the data string
should not be accepted. On the other hand, having seen c+

j , for j 6= i does not
harm as the value of the other counter is arbitrary.

The idea of the reduction is to use synchronization to handle zero checks.
More precisely, at a symbol c0

i , the automaton pushes the symbol $ to all
class strings. For classes having seen c+

i but not c−i this shall lead to rejection.
However, classes having seen c+

j , for j 6= i, should not be affected by the zero
test. To this end, we use the additional symbols: After c0

i , an arbitrary number
of #j can occur with the intention that each of them has the data value of
some class that has seen c+

j but not yet c−j .

Thus, a class string is rejected by D if it contains a symbol $ between c+
i

and c−i and there is no symbol #i right after the $. More precisely, each class

24

string must be of the form c+
i ($#i)

∗c−i ($ + #i)
∗ or should not contain any c+

i

or c−i . The computation of the base automaton checks that the input string
corresponds to a sequence of states of A which is locally consistent, and that
blocks of #j, j 6= i only occur after c0

i . It is not hard to show that if A has an
accepting run ρ, a data string wρ accepted by D can be constructed.

For the reverse part of the proof, let w be a data string accepted by D.
Clearly, there is a sequence ρ of states of A corresponding to w which is
locally consistent. It remains to show that there is such a ρ which is actually
a run of A (i.e., where the transitions are consistent with the counters). For
the sake of a contradiction, let us assume that some zero test corresponding
to a position labeled c0

i is inconsistent. I.e., there is a class with some data
value d, in which c+

i has occurred but no subsequent c−i has been seen. Thus,
in the class string of d the symbol $ is inserted but the subsequent block of
symbols does not contain #i. We can conclude that the class string wd of d

is rejected by D, a contradiction. This is simply because there is no way to
get the symbol #i behind $ in wd: another $ is pushed to wd before the next
block of #i symbols .

Since full synchronization is too powerful, we next suggest a limited version
of synchronization, which allows the automaton to forget all information com-
puted so far for the classes. This ability, which we call reset, is enough to
capture Ls from Example 7.1.

Definition 7.5 A class-memory automaton with reset is a CMA with syn-
chronization function g such that for all states q, either g(q) = {q} or g(q) =
{⊥}.

Example 7.6 We construct a CMA with reset that recognizes Ls from Exam-
ple 7.1. This automaton is very similar to the one in Example 3.2. We only
need to add transitions for the network failure symbol n and a synchronization
function that they apply. When reading an n with data value d in a configu-
ration (γ, f), the automaton always requires that f(d) =⊥. If γ ∈ {p, wb} the
automaton goes to state wb and if γ ∈ {i, wi} it goes to i.

The synchronization function g is defined by g(p) = p and g(wi) = g(wb) =
g(i) =⊥. All transitions that read an n apply g while none of the other does.

The intuition behind this definition is the following. When a network failure
occurs, the only process that is remembered is the one currently printing (if
there is one). This process has class memory p. If the automaton was in state
p or wb, it goes to wb, signifying that the printer is busy. I the automaton was
in i or wi, it goes to i, signifying that the printer is idle.

Corollary 7.7 CMA with reset are strictly stronger than ordinary CMA.

25

Proposition 7.8 Emptiness for CMA with reset is decidable.

Proof. The proof is similar to the one for data automata in [3]. We briefly
sketch the idea of that proof. It shows that for each data automaton D =
(A,B) a multicounter automaton M (on non-data strings) can be constructed
which accepts the set str(L(D)). Thus, given a finite alphabet string v, M

checks whether v can be extended to a data word w that is accepted by D.
To this end, M uses one counter cq, for each state q of B. When reading w,
M guesses when the classes change, simulates what A would do, and, for each
class, what B would do with the parts of the class strings produced so far.
The counter cq is used to keep track of for how many classes M guesses that
the part of the class string seen so far would lead B to state q. At the end,
for each state q of B which is not final it is required that cq = 0. Some more
details are needed to ensure L(M) = str(L(D)). Modifying the proof to work
for CMA instead of data automata is straightforward; we use one counter per
state of the CMA.

The only thing we need to add is how the multicounter automaton M should
handle reset transitions. What it needs to do is to set all its counters that
represent states q for which g(q) =⊥ to zero. Ordinary multicounter automata
cannot do this. It is shown in [16], however, that emptiness for multicounter
automata with this ability is still decidable. 2

Even though we have seen that the addition of a reset capability was enough
to capture Ls from Example 7.1, it is of course not the solution to every verifi-
cation problem. As mentioned in the introduction, the landscape of modeling
tools for data languages is quite heterogeneous, and in many cases, it seems
that we will have to select the model we use carefully, after analyzing the
problem we actually want to solve. Sometimes we may have to engineer new
models in order to capture a particular problem. Below, we give another ex-
ample of how CMAs may be taken as the basis for designing slightly stronger
model, which is still decidable.

Example 7.9 Consider again a printer system, but one in which a partial
network failure may occur. Computations of this system may be modeled as a
slight modification of the data language Ls from Example 7.1. Thus, let Lt be
the language obtained by removing rule (4) from the definition of Ls.

We now define an automaton model which, like CMAs with reset, is a spe-
cial case of CMAs with synchronization, and which, among other things, can
recognize Lt.

2 The automaton model in [16] is called priority multicounter automata, and can
actually do more than what we need here.

26

Definition 7.10 Let C be a CMA with synchronization, Q the states of C,
and g its synchronization function. Consider the graph Gg = (Q,E) of g

defined as follows. There is an edge from p to q if and only if q ∈ g(p). A
subset E ′ of E defines a permutation on Q if it is functional and bijective
(each state in Q has exactly one incoming and one outgoing edge in E ′). We
say that C has restricted synchronization if there is a subset of E that
induces a permutation on Q.

Example 7.11 We construct a CMA Ct with restricted synchronization that
accepts Lt. This automaton is very similar to the one in Example 7.6, and
also extends automaton C for L0 from Example 3.2. Automaton Ct uses the
same states as C, plus two additional states ni and nb, which are used for the
classes of the network processes. The synchronization function g is defined by

• g(i) = {i},
• g(wi) = {i, wi},
• g(p) = {p},
• g(wb) = {i, wb},
• g(ni) = {ni},
• g(nb) = {nb}.

Since p ∈ g(p) for all states p, g clearly provides restricted synchronization.

For each state in {p, wb, nb} there is an additional transition to nb that reads
and n and checks that the memory for the data value is in {⊥, ni, nb}. For
each state in {i, wi, ni} there is a corresponding transition to ni. The outgoing
transitions from ni and nb are identical to those of wi and wb, respectively.
When Cs reads an n, the synchronization function is applied. Intuitively, the
automaton guesses which jobs have to resend a print request and sets their
state to i.

Corollary 7.12 CMAs with restricted synchronization are strictly stronger
than CMAs.

Proof. The language L′
s from the proof of Proposition 7.2 is also a sublan-

guage of Lt.

Proposition 7.13 Emptiness for CMAs with restricted synchronization is de-
cidable.

Proof. As in the proof of Proposition 7.8 we only have to extend the ar-
gument for DAs from [3]. For an outline of this argument, see the proof of
Proposition 7.8.

27

To extend this construction to a CMA C with restricted synchronization we do
the following. Let g be the synchronization function of C, and Gg = (Q,E).
Assume that E ′ ∈ E induces a permutation on Q. What should M do to
simulate a synchronizing transition of C? If, for example, g(p) = {q} and
g(q) = {p}, then the counters cp and cq should switch their values. Instead
of performing this switch by incrementing and decrementing counters, M can
simply change the interpretation of the affected counters. I.e., the counter
representing p becomes that for q and vice versa. Since there is only a fi-
nite number of assignments of counters to states, the correspondence between
counters and states of C can be maintained in the state of M . When simulat-
ing a synchronizing transition, M updates this assignment according to the
edges in E ′.

So far, we haven’t explained what happens if g(q) for some state q is not a
singleton, i.e., in Gg, q has at least one outgoing edge in E \E ′. Assume that
g(q) = {p1, . . . , pk}, and that (q, p1) ∈ E ′. When M simulates a synchronizing
transition, it first nondeterministically transfers counter content from cq to
cp2

, . . . , cpk
, and only then updates the counter assignment, assigning cq to p1.

In this way, all synchronizing actions of C can be simulated.

Acknowledgments. We thank Miko laj Bojańczyk, Anca Muscholl and Luc
Segoufin for many valuable discussions.

References

[1] P. Abdulla, B. Jonsson, M. Nilsson, and M. Saksena. A survey of regular model
checking. In CONCUR’04, volume 3170 of LNCS, pages 35–48, 2004.

[2] M. Arenas, W. Fan, and L. Libkin. Consistency of XML specifications. In
Inconsistency Tolerance, volume 3300 of LNCS, pages 15–41, 2005.

[3] M. Bojańczyk, A. Muscholl, T. Schwentick, L. Segoufin, and C. David. Two-
variable logic on words with data. In LICS’06, pages 7–16, 2006.

[4] P. Bouyer, A. Petit, and D. Thérien. An algebraic approach to data languages
and timed languages. Information and Computation, 182(2):137–162, 2003.

[5] S. Demri and R. Lazić. LTL with the freeze quantifier and register automata.
In LICS’06, pages 17–26, 2006.

[6] R. G. Downey. Parameterized complexity for the skeptic. In CCC’03, pages
147–169, 2003.

[7] R. G. Downey and M. R. Fellows. Fixed-parameter tractability and
completeness II: On completeness for W[1]. TCS, 141(1-2):109–131, 1995.

28

[8] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.

[9] E. Emerson and K. Namjoshi. Reasoning about rings. In POPL’95, pages
85–94, 1995.

[10] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.

[11] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 1979.

[12] M. Kaminski and N. Francez. Finite-memory automata. TCS, 132(2):329–363,
1994.

[13] M. Kaminski and T. Tan. Regular expressions for languages over infinite
alphabets. In K. Chwa and J. Munro, editors, COCOON 04, volume 3106
of LNCS, pages 171–178, 2004.

[14] F. Neven. Automata, logic, and XML. In CSL ’02, volume 2471 of LNCS, pages
2–26, 2002.

[15] F. Neven, T. Schwentick, and V. Vianu. Finite state machines for strings over
infinite alphabets. ACM transactions on computational logic, 15(3):403–435,
2004.

[16] K. Reinhardt. Counting as Method, Model and Task in Theoretical Computer
Science. 2005. Habilitation Thesis, University of Tübingen.

[17] H. Sakamoto and D. Ikeda. Intractability of decision problems for finite-memory
automata. TCS, 231(2):297–308, 2000.

[18] L. Segoufin. Automata and logics for words and trees over an infinite alphabet.
In Computer Science Logic (CSL), volume 4207 of LNCS, pages 41–57, 2006.

[19] T. Wilke. Automaten und Logiken zur Beschreibung zeitabhängiger Systeme.
PhD thesis, University of Kiel, 1994.

29

