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Abstract. The study of deterministic public-key encryption was ini-
tiated by Bellare et al. (CRYPTO ’07), who provided the “strongest
possible” notion of security for this primitive (called PRIV) and con-
structions in the random oracle (RO) model. We focus on constructing
efficient deterministic encryption schemes without random oracles. To do
so, we propose a slightly weaker notion of security, saying that no par-
tial information about encrypted messages should be leaked as long as
each message is a-priori hard-to-guess given the others (while PRIV did
not have the latter restriction). Nevertheless, we argue that this version
seems adequate for many practical applications. We show equivalence
of this definition to single-message and indistinguishability-based ones,
which are easier to work with. Then we give general constructions of both
chosen-plaintext (CPA) and chosen-ciphertext-attack (CCA) secure de-
terministic encryption schemes, as well as efficient instantiations of them
under standard number-theoretic assumptions. Our constructions build
on the recently-introduced framework of Peikert and Waters (STOC ’08)
for constructing CCA-secure probabilistic encryption schemes, extending
it to the deterministic-encryption setting as well.

1 Introduction

1.1 Background and Overview

Motivation. Deterministic public-key encryption (where the encryption algo-
rithm is deterministic) was studied by Bellare, Boldyreva and O’Neill [1]. They
proposed a semantic-security-style definition of privacy for it, called PRIV, which
requires that no partial information about multiple, possibly-dependent mes-
sages is leaked from their encryptions, while appropriately taking into account
two inherent limitations of deterministic encryption: privacy is only possible for
messages that are a-priori hard-to-guess by the adversary, and some information
about a message leaks unavoidably, namely its encryption. Both the chosen-
plaintext (CPA) and chosen-ciphertext-attack (CCA) cases were considered, and
the authors designed several constructions meeting them.

D. Wagner (Ed.): CRYPTO 2008, LNCS 5157, pp. 335–359, 2008.
c© International Association for Cryptologic Research 2008



336 A. Boldyreva, S. Fehr, and A. O’Neill

Deterministic encryption seems interesting and useful. As discussed in [1], it
allows for fast searching on encrypted data; moreover, deterministic encryption
can be length-preserving, which can be needed for securing legacy code or in
bandwidth-critical applications. Finally, we find that the study of deterministic
encryption can have applications to normal (randomized) encryption as well.

However, the constructions of [1] are only proven secure in the random oracle
(RO) model [4]. Of course, finding alternative schemes secure in the standard
model (i.e. without random oracles) is desirable, as a growing number of papers
have raised concerns about the “soundness” of the RO model (e.g. [8,22,2] to
name a few). Finding deterministic encryption schemes secure in the standard
model was left as an important open problem in [1].

This paper. We construct efficient deterministic encryption schemes without
random oracles, secure under standard number-theoretic assumptions. The no-
tion of security we use, however, is slightly weaker than that of [1], in that it
considers the encryption of block-sources. That is, it guarantees no partial infor-
mation about encrypted messages is leaked, as long as each message is a-priori
hard-to-guess given the other messages. We believe this notion to nevertheless
be suitable for a variety of practical applications, for example the encryption
high-entropy data containing social security or phone numbers. In such exam-
ples, messages can depend on one another, e.g. share a common prefix, yet the
foregoing condition is satisfied.

Related work. The encryption of high-entropy sources was first considered
in the information-theoretic, symmetric-key setting by Russell and Wang [28],
and the problem was studied in greater generality (under the name “entropic
security”) by Dodis and Smith [20,19]. Entropic security was later studied in the
quantum setting by Desrosiers and Dupuis [16,17].

1.2 Main Results

Equivalent Definitions. We show that PRIV-security for block-sources is
equivalent to PRIV-security for a single hard-to-guess message. The latter was
briefly introduced (using a slightly different formulation) in [1] under the name
PRIV1, where it was shown strictly weaker than PRIV, but beyond that this
notion remained unstudied. We also show equivalence of PRIV1 to a single-
message, indistinguishability-based notion, which is handier to work with. The
proof is non-trivial and employs ideas from [20] and [16,17], used for showing
the equivalence between entropic security for information-theoretic symmetric-
key (quantum) encryption schemes and an indistinguishability-based notion. All
our results about the definitions extend to the CCA setting as well.

General constructions. We present general constructions of both CPA-
and CCA-secure deterministic encryption schemes, building on the recently-
introduced framework of Peikert and Waters [26] for constructing (randomized)
IND-CCA encryption schemes in the standard model. Recall that [26] introduces
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a framework of “lossy” trapdoor functions (TDFs) — TDFs that operate in
one two possible “modes,” an injective one and an un-invertible lossy one, for
which the outputs are indistinguishable. We observe that if the lossy mode also
acts as a universal hash function [9,10] (in which case we say it has a universal
hash mode), then the lossy TDF in injective mode is in fact a secure determin-
istic encryption scheme in our sense. Indeed, this follows straightforwardly un-
der our indistinguishability-based security notion by the Leftover-Hash Lemma
(LHL) [23,6]. We extend the connection between lossy TDFs and deterministic
encryption schemes to the CCA setting as well: our general CCA-secure con-
struction can be viewed as a “deterministic” version of the general IND-CCA
scheme of [26]. Unlike the latter it does not use a one-time signature scheme
but rather a hash function H that is both target-collision resistant (TCR) [24,5]
and universal. It also uses a lossy TDF F and an all-but-one (ABO) TDF G
(the latter is a generalization of the former introduced in [26] whose first input
is drawn from a set of branches, one of which is lossy), where as before lossiness
must be strengthened to universality. The encryption of message m under our
scheme has the form (H(m), F (m), G(H(m), m)).

DDH-based instantiations. We obtain instantiations of our general construc-
tions based on the decisional Diffie-Hellman assumption (DDH) rather straight-
forwardly. In fact, we show that the DDH-based lossy and ABO TDF constructs
of [26] already suffice; that is, they indeed have “universal” lossy modes. To
construct an appropriate hash function for our CCA-secure scheme, we use the
discrete-log-based, collision-resistant (and thus TCR) construct of [11] and show
that it is also universal. However, some care needs to be taken about its choice
of parameters, because the range of the hash must be “compatible” with the
ABO TDF in our construction. Nevertheless, we demonstrate ways to achieve
compatibility for two popular choices of groups where DDH is believed hard.

Extending our general constructions. While our DDH-based instantia-
tions fit neatly into a conceptual framework of “deterministic encryption with
universal hash mode,” they are not particularly efficient. Moreover, the other
instantiations of lossy and ABO TDFs in [26] do not (at least immediately) give
universal lossy modes. Our solution to this problem is to extend our general
constructions in an efficient way such that the extra universality requirement
on the underlying primitives is eliminated. These extensions derive from a novel
application of a “crooked” version of the LHL due to Dodis and Smith [19],
which tells us that if one applies an invertible, pairwise-independent hash func-
tion (e.g. the usual Ha,b(x) = ax + b construct over a finite field) to a message
before encrypting it under our general constructions, then “lossiness” of the un-
derlying primitives (in addition to TCR for hash function H in the CCA case)
alone suffices for security.

Efficient Paillier-based schemes. In particular, the above extensions allow
us to instantiate our schemes using the “more-efficient” Paillier-based [25] lossy
and ABO TDFs of [26]. However, these constructs are still far from optimal.
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Borrowing a technique of Damg̊ard and Nielsen [14,15], we devise new Paillier-
based constructs of lossy and ABO TDFs having public-key size on the order of
(instead of quadratic in) the message length and essentially no ciphertext expan-
sion; moreover, they compare to standard Paillier encryption computationally.
In order to encrypt messages with potentially-small min-entropy (relative to the
length of a message), our constructs actually use a generalization of Paillier’s
scheme due to Damg̊ard and Jurik [13]. Under this generalization, we also con-
struct a hash function for H in the extended CCA-secure construction that is
provably TCR based on the same assumption (decisional composite residuosity),
and whose range is compatible with the ABO scheme. However, for practical ef-
ficiency one can instead use a TCR cryptographic hash function such as SHA256
or the constructs of [5,29] for H . This is in fact another pleasing consequence of
extending our general constructions, since before H was required to be both TCR
and universal, which seems to preclude using a cryptographic hash function.

1.3 Concurrent Work

Concurrently and independently, Bellare, Fischlin, O’Neill and Ristenpart [3]
define several multi-message, semantic-security-style definitions for determinis-
tic encryption and prove them equivalent to PRIV definition of [1]. They also
propose and prove equivalent an indistinguishability-based definition, but their
proof techniques are different from ours. Namely, they consider an “intermedi-
ate” definitional variant that we do not. Also, they propose a new deterministic
encryption scheme based on general assumptions, whereas our constructions are
based on number-theoretic assumptions and are efficient. No constructions secure
against chosen-ciphertext attacks are given in [3].

Our efficient Paillier-based instantiations of lossy and ABO TDFs were inde-
pendently discovered by [27].

2 Preliminaries

Algorithms, probabilities and sources. Algorithms implicitly take as ad-
ditional input the unary encoding 1k of the security parameter k; they may be
randomized and must run in poly-time in k unless indicated otherwise. Integer
parameters are also implicitly polynomial functions of k. Adversaries are non-
uniform and as such receive an auxiliary input of polynomial-size in k, which we
also usually leave implicit. For a random variable Y , we write y $← Y to denote
that y is sampled according to Y ’s distribution; furthermore, for an algorithm A,
by y

$← A(x) we mean that A is executed on input x and the output is assigned
to y. (In the case that A gets no input we slightly abuse notation and write y $← A

instead of y
$← A().) We denote by Pr

[
A(x) = y : x

$← X
]

the probability that
A outputs y on input x when x is sampled according to X . We say that an ad-
versary A has advantage ε in distinguishing X from Y if Pr

[
A(x) = 1 : x

$← X
]

and Pr
[
A(y) = 1 : y

$← Y
]

differ by at most ε.



On Notions of Security for Deterministic Encryption 339

When more convenient, we use the following probability-theoretic notation
instead. We write PX for the distribution of random variable X and PX(x) for
the probability that X puts on value x, i.e. PX(x) = Pr[X = x]. Similarly, we
write PX|E for the probability distribution of X conditioned on event E , and
PXY for the joint distribution of random variables X, Y . The statistical distance
between X and Y is given by Δ(X, Y ) = 1

2

∑
x |PX(x) − PY (x)|. It is well-

known that if Δ(X, Y ) is at most ε then any (even computationally unbounded)
adversary A has advantage at most ε in distinguishing X from Y .

The min-entropy of a random variable X is H∞(X) = − log(maxx PX(x)).
The worst-case conditional min-entropy of X given Y is defined as H∞(X |Y ) =
− log(maxx,y PX|Y =y(x)), and the average conditional min-entropy of X given
Y as H̃∞(X |Y ) = − log(

∑
y PY (y)maxx PX|Y =y(x)). A random variable X over

{0, 1}� is called a (t, �)-source if H∞(X) ≥ t, and a list X = (X1, . . . , Xn)
of random variables over {0, 1}� is called a (t, �)-block-source of length n if
H∞(Xi|X1 . . . Xi−1) ≥ t for all i ∈ {1, . . . , n}.

A value ν ∈ R depending on k is called negligible if its absolute value goes to
0 faster than any polynomial in k, i.e. ∀ c > 0 ∃ k◦ ∈ N ∀ k ≥ k◦ : |ν| < 1/kc.

Public-key encryption. An encryption scheme is a triple of algorithms AE =
(K, E , D), satisfying the usual syntax except that for convenience we also give
the decryption algorithm D the public key. For simplicity, we only consider a
message-space of {0, 1}�, and we say that AE is an �-bit encryption scheme if
for all messages in the message space {0, 1}�

Pr
[
D(sk, E(pk, m)) �= m : (pk, sk) $← K

]

is negligible. We say that AE is deterministic if E is deterministic. Note that
we require the message-space to depend only on the security parameter and
not on the specific public key; as in [1] this is somewhat crucial to our security
definitions.

Hashing. An �-bit hash function H = (K, H) with domain {0, 1}� consists of a
key-generation algorithm and a hash algorithm.1 Again, we omit the well-known
syntax and restrict to domain {0, 1}� for simplicity. We say H has a 2r-bounded
hash range if its range R = {H(K, x) | K ∈ K, x ∈ D} is bounded by |R| ≤ 2r

in size. We say that H with range R is universal if for all x1 �= x2 ∈ {0, 1}�

Pr
[
H(K, x1) = H(K, x2) : K $← K

]
≤ 1

|R| ,

and we say it is pairwise-independent if for all x1 �= x2 ∈ {0, 1}� and all y1, y2 ∈ R

Pr
[
H(K, x1) = y1 ∧ H(K, x2) = y2 : K $← K

]
≤ 1

|R|2 .

We say H is collision-resistant (CR) if for every poly-time A the CR-advantage

Advcr
H(A) = Pr

[
H(K, x1) = H(K, x2) : K $← K ; (x1, x2)

$← A(K)
]

1 Note that we are not only interested in “compressing” hash functions, e.g. images
and pre-images might have the same bit-length.
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is negligible. Similarly, we say H is target-collision resistant (TCR) if for every
poly-time A the TCR-advantage

Advtcr
H (A) = Pr

[
H(K, x1)=H(K, x2) : (x1, st)

$← A ; K
$← K ; x2

$← A(K, st)
]

is negligible. As discussed in [5] TCR has some potential benefits over CR, such
as being easier to achieve and allowing for shorter output lengths.

3 Security Definitions

The PRIV notion of security for deterministic encryption introduced in [1] asks
that it be hard to guess any partial information2 of a list of messages given their
encryptions, as long as the list has component-wise high (super-logarithmic)
min-entropy. We introduce a slight weakening of this notion where each message
must have high min-entropy conditioned on values of the other messages. This
notion seems to nevertheless suffice in some practical applications, for example in
the encryption of high-entropy data containing phone or social security numbers
that can share prefixes but are otherwise uncorrelated. We then consider two
other security definitions in order of increasing simplicity and ease-of-use; in the
next section we prove that they are all equivalent.

PRIV for block-sources. The following is a semantic-security-style definition
that considers the encryption of multiple messages under the same public-key.
For an �-bit encryption scheme AE = (K, E , D) and list m = (m1, . . . , mn) of
messages, we write E(pk, m) below as shorthand for (E(pk, m1), . . . , E(pk, mn)).

Definition 1. An �-bit encryption scheme AE = (K, E , D) is PRIV-secure for
(t, �)-block-sources if for any (t, �)-block-source M = (M1, . . . , Mn) of polyno-
mial length n, any function f : {0, 1}n� → {0, 1}∗ and all poly-time adver-
saries A, the PRIV-advantage

Advpriv
AE (A, f, M ) = RealAE(A, f, M ) − IdealAE(A, f, M )

is negligible, where

RealAE(A, f, M ) = Pr
[
A(pk, E(pk, m))=f(m) : (pk, sk) $← K ; m

$← M
]

and

IdealAE(A, f, M ) = Pr
[
A(pk, E(pk, m′))=f(m) : (pk, sk) $← K; m, m′ $← M

]

A single-message definition. Consider Definition 1 with the restriction that
only (t, �)-block-sources of length n = 1 are allowed; that is, a (t, �)-source M re-
places block-source M in the definition. Call the resulting notion PRIV1-security
for (t, �)-sources, where we define RealAE (A, f, M) and IdealAE (A, f, M) as well
as the PRIV1-advantage Advpriv1

AE (A, f, M) accordingly.
We note that (an alternative formulation of) PRIV1 was already considered

in [1], and it was shown to be strictly weaker than their multi-message notion
2 To make the definition achievable, the partial information must not depend on the

public key. This is reasonable since real data does not depend on any public key.
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PRIV. We will show that in the setting of block-sources the single- and multi-
message definitions are equivalent.

An indistinguishability-based formulation. We also consider the follow-
ing indistinguishability-based formulation of PRIV1 inspired by [20], which is
handier to work with. It asks that it be hard to distinguish the encryptions
of two plaintexts, each drawn from a different (public-key-independent) high-
entropy distribution on the message-space.

Definition 2. An �-bit encryption scheme AE = (K, E , D) is PRIV1-IND -
secure for (t, �)-sources if for any (t, �)-sources M0 and M1 and all poly-time
adversaries A, the PRIV1-IND-advantage

Advpriv1-ind
AE (A, M0, M1) = GuessAE (A, M0) − GuessAE(A, M1)

is negligible, where for b ∈ {0, 1}

GuessAE(A, Mb) = Pr
[
A(pk, E(pk, mb)) = 1 : (pk, sk) $← K ; mb

$← Mb

]
.

We note that concurrently and independently, [3] gives an indistinguishability-
based formulation of the multi-message PRIV definition from [1] (that does not
restrict to block-sources).

Extension to chosen-ciphertext attacks (CCA). For simplicity, the pre-
sented definitions only consider the case of chosen-plaintext attacks (CPA).3 To
extend the definitions to the chosen-ciphertext-attack (CCA) setting, we can
additionally provide the adversary A in each definition with access to decryp-
tion oracle D(pk, sk, ·), which it may query on any ciphertext not appearing in
its input. We denote the resulting notions with “-CCA” (e.g. PRIV-CCA for
block-sources). Our equivalence results in the following also hold in the CCA
setting.

Remark 1. The PRIV definition (and similarly the PRIV1 definition) in [1] re-
quires the pair (m, s) of message-list m and partial-information s on m to be
poly-time samplable. We do not have such restrictions in our definitions. On the
other hand, we ask s to be a deterministic function s = f(m) of m; this latter
restriction, however, is without loss of generality, as we argue in Remark 1 below
(as long as we allow f to be unbounded). Thus, our definitions remain at least
as strong as their corresponding formulations in the style of [1]. The reason for
omitting samplability restrictions is for generality and to simplify our results
and proofs, and because they are actually not required for the security of our
constructions. Furthermore, this strengthening of the definitions is not crucial
for our equivalence results; see Remark 4.

Remark 2. PRIV1 (similarly PRIV for block-sources) remains equivalent if we
allow f to be randomized; i.e., on input m the function f is evaluated as f(m; r)
3 Actually, the plaintexts themselves in the definitions are not chosen by the adversary.

This is a minor semantic point that we ignore.
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for r chosen independently according to some fixed probability distribution (typ-
ically uniform) on a finite domain. This equivalence holds for both the “private
seed” model, where adversary A does not learn r, and the “public coin” model,
where r is given to A (or in a combination of the two). Indeed, if for some
adversary, randomized function and block-source, the advantage of A is in ab-
solute value lower-bounded by ε on average over the random choice of r, then
the same lower-bound holds for some specific choice of r. (The other direction
is trivial.)

Note that the “private seed” model covers the case, similar to [1], where a
message-and-partial-info pair (m, s) is chosen according to an arbitrary joint
probability distribution PMS (with H∞(M) ≥ t and a finite domain for s), as
we can always understand the message m as instead sampled according to its
distribution PM and then the partial-information s computed with conditional
distribution PS|M=m by means of a randomized function (which can always be
done since we do not require f to be efficient4). Thus, if in the “private seed”
model we restrict the message-and-partial-info pair to be poly-time samplable,
then our PRIV1 definition is equivalent to that from [1].

Remark 3. It also suffices in the above definitions to consider predicates f , i.e.,
binary functions to {0, 1}. This actually follows from Lemma 3 of [16] (and
verifying that their proof also works in our poly-time-adversary setting). The idea
is to consider the Goldreich-Levin (i.e. inner-product) predicate of the partial
information with a random string, and use Remark 2. The resulting adversary
loses a factor 2 in its advantage and its running-time increases by O(n�). (The
technique also works for definitions in the style of [1]; i.e., it suffices to consider
partial information of length 1 there.)

4 Equivalence of the Definitions

We show that all three definitions, namely PRIV for block-sources, PRIV1 and
PRIV1-IND, are equivalent. Our strategy is as follows. We take PRIV1 as our
starting point, and we first show that it is equivalent to PRIV1-IND. Later we
show that it is also equivalent to PRIV for block-sources.

Theorem 1. Let AE be an �-bit encryption scheme. Then for any (t, �)-sources
M0, M1 and any adversary A, there exists a (t, �)-source M , an adversary B and
a function f such that

Advpriv1-ind
AE (A, M0, M1) ≤ 2 · Advpriv1

AE (B, f, M) ,

and the running-time of B is that of A. And, for any (t + 1, �)-source M , any
function f and any adversary A, there exists an adversary B and (t, �)-sources
M0, M1 such that

4 E.g., r could consist of a list of suitable choices for s, one choice for each possible
m, and f would select and output the right entry.
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Advpriv1
AE (A, f, M) ≤ 2 · Advpriv1-ind

AE (B, M0, M1) ,

and the running-time of B is that of A plus O(�). ��

The proof borrows and combines ideas from [20] and [16,17], used for showing
the equivalence between entropical security for information-theoretic symmetric
(quantum) encryption schemes and an indistinguishability-based notion.5

The proof of the first claim relies on Remark 2 and is straightforward, since
distinguishing M0, M1 given their encryptions is equivalent to guessing b from
the encryption of Mb where b is a random bit. For the second claim, note that
if f(M) is easy-to-guess given the encryption of M , then M conditioned on
f(M) = 0 and M conditioned on f(M) = 1 are easy to distinguish. However,
one of these distributions may have much smaller min-entropy than M (if f
is unbalanced). To avoid (almost all of) this entropy loss we can “mix” them
appropriately with M . Moreover, the resulting distributions become poly-time
samplable if the pair (M, f(M)) is (see Remark 4).

Proof. We start with the first claim. Let M0, M1 and A be as given. Let M to be
the balanced “mixture” of M0 and M1, and f be the corresponding “indicator
function;” i.e., M is sampled by choosing a random bit b and then outputting
m sampled according to Mb, and the partial information f(m) is defined as b.
Such a joint probability distribution on m and b is allowed by Remark 2. Let
B be the PRIV1-adversary that on inputs pk, c runs A on the same inputs and
outputs the result. Then H∞(M) ≥ t and we have

Advpriv1
AE (B, f, M) = RealAE(B, f, M) − IdealAE(B, f, M)

=
(1

2
(1−GuessAE (A, M0)) +

1
2
GuessAE(A, M1)

)
− 1

2

=
1
2
(
GuessAE (A, M1) − GuessAE(A, M0)

)

=
1
2
Advpriv1-ind

AE (A, M0, M1) ;

this proves the first claim.
For the second claim, let A, f, M be as given. We first note that by Remark 3,

we may assume that f : {0, 1}� → {0, 1}, at the cost of losing at most a factor 2 in
A’s advantage and increasing its running-time by O(�). Consider the independent
random variables M0 and M1, with respective distributions

PM0 = r0PM|f(M)=0 + r1PM and PM1 = r1PM|f(M)=1 + r0PM ,

5 Note that the definition of entropic security may come in different flavors, named
ordinary and strong in [16]. The (ordinary) notion used in [20] makes their proof
much more cumbersome since Remark 3 does not apply (directly). Our definition of
PRIV corresponds to the strong flavor.
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where r0 = Pf(M)(0) and r1 = Pf(M)(1). Then for any m ∈ {0, 1}�

PM0(m) = r0PM|f(M)=0(m) + r1PM (m) = PMf(M)(m, 0) + r1PM (m)

≤ 2−t−1 + r12−t−1 ≤ 2−t ,

and similarly PM1(m) ≤ 2−t, so that H∞(M0), H∞(M1) ≥ t as required. Let
B be the PRIV1-IND adversary that runs the same code as A. It remains to
argue that B can distinguish M0 and M1. In order to simplify notation, we
let Y , Y0 and Y1 be the random variables defined by Y = A(PK, E(PK, M)),
Y0 = A(PK, E(PK, M0)) and Y1 = A(PK, E(PK, M1)), where PK describes a
public key generated by K.6 We have

Advpriv1-ind
AE (B, M0, M1) = GuessAE (B, M1) − GuessAE(B, M0)

= PY1(1) − PY0(1) = PY1(1) − (1−PY0(0)) = PY1(1) + PY0(0) − 1 , (1)

where the second equality is by construction. Note that PY0 = r0PY |f(M)=0 +
r1PY and similarly for PY1 . It follows that

PY0(0) + PY1(1)

=
(
r0PY |f(M)=0(0) + r1PY (0)

)
+

(
r1PY |f(M)=1(1) + r0PY (1)

)

=
(
r0PY |f(M)=0(0) + r1PY |f(M)=1(1)

)
+

(
r0PY (1) + r1PY (0)

)

=
(
r0PY |f(M)=0(0) + r1PY |f(M)=1(1)

)
+ 1 −

(
r0PY (0) + r1PY (1)

)

=
(
PY f(M)(0, 0) + PY f(M)(1, 1)

)
+ 1 −

(
Pf(M)(0)PY (0) + Pf(M)(1)PY (1)

)

= Pr[Y =f(M)] − Pr[Y =f(M ′)] + 1
= RealAE (A, f, M) − IdealAE(A, f, M) + 1 = Advpriv1

AE (A, f, M) + 1 ,

where M ′ is an independent identically-distributed copy of M . Note that we use
r0 + r1 = 1 and PY (0) + PY (1) = 1 in the third equality and in the second-
to-last we use that we can switch the roles of m and m′ in the definition of
IdealAE(A, f, M). Substituting into equation (1), we obtain

Advpriv1-ind
AE (B, M0, M1) = Advpriv1

AE (A, f, M) .

Taking into account the factor-2 loss, this proves the second claim. ��

Next, we show that PRIV1 for (t, �)-sources implies PRIV for (t, �)-block-sources;
the reverse implication holds trivially.

Theorem 2. Let AE = (K, E , D) be an �-bit encryption scheme. For any (t, �)-
block-source M of length n, any function f : {0, 1}n� → {0, 1}∗ and any adver-
sary A, there exists a (t, �)-source M , a function g and an adversary B such
that

Advpriv1
AE (A, M , f) ≤ 10n · Advpriv

AE (B, M, g) .

6 It makes no difference for the upcoming argument whether we consider the same or
a fresh public key for Y , Y0 and Y1.
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Furthermore, the running-time of B is at most that of A plus O(n�). ��

Interestingly, the proof is not a straightforward hybrid argument, but makes in-
tensive use of Theorem 1. The idea is to consider the probability of the adversary
A in guessing f(M) when given the encryption of a list of independent and uni-
formly distributed messages and compare this both to IdealAE(A, f, M ) and to
RealAE(A, f, M ), making use of hybrid arguments and the PRIV1-IND-security
of AE (which follows from its assumed PRIV1-security).

Proof. Let A, M , f be as given. By Remark 3, we may assume that f is binary, at
the cost of losing a factor 2 in A’s advantage and increasing its running-time by
O(n�). Furthermore, we may assume the PRIV1-advantage to be non-negative
(otherwise we flip A’s output bit). To simplify notation, we write Adv(A) below
as shorthand for Advpriv1

AE (A, M , f). Consider the probability

uAE (A, M , f) = Pr
[
A(pk, E(pk, u))=f(m) : (pk, sk)←K ; m←M ; u←U

]

with U = (U1, . . . , Un) being n independent copies of the uniform distribution
on {0, 1}�. Note that we can re-write Adv(A) as
(
RealAE(A, f, M ) − uAE(A, f, M)

)
+

(
uAE(A, f, M ) − IdealAE(A, f, M )

)
.

Intuitively, this implies that if Adv(A) is “large” then one of the above two
summands must be as well. We show that in either case we can construct a
(t, �)-source M , a function g and an adversary B as claimed. We start with the
latter case. Specifically, suppose that

uAE (A, f, M) − IdealAE(A, f, M ) ≥ 2
5
Adv(A) .

We construct a PRIV1-IND adversary B with running-time that of A plus O(n�)
and two (t, �)-sources with resulting PRIV1-IND advantage lower bounded by
2Adv(A)/5n; Theorem 1 then implies the claim (taking into account the factor-
2 loss by our initial assumption that f is binary). We use a hybrid argument.
For i ∈ {0, . . . , n} consider the probability

h1,i
AE(A, f, M ) = Pr

[
A(pk, E(pk, (m′

1,..., m
′
i, ui+1,..., un)))=f(m) :

(pk, sk) $← K ; m, m′ $← M , u
$← U

]

.

It follows that there exists a j such that h1,j
AE (A, f, M) − h1,j+1

AE (A, f, M) is
at least 2Adv(A)/5n. Furthermore, this lower-bound holds for some specific
choices ṁ′

1, . . . , ṁ
′
j of m′

1, . . . m
′
j and some specific choice ṁ of m. We assume

for simplicity that f(ṁ) = 1; if it is 0 the argument is similar. This implies that
there exists an adversary B, which on inputs pk, c samples u

$← U and returns

A(pk, E(pk, ṁ′
1), . . . , E(pk, ṁ′

j), c, E(pk, uj+2), . . . , E(pk, un)) ,

and two (t, �)-sources, namely Mj+1 conditioned on M1 = ṁ′
1, . . . , Mj = ṁ′

j

and Uj+1, such that the resulting PRIV1-IND advantage is lower bounded by
2Adv(A)/5n, as required.
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We move to the other case, where we have

RealAE(A, f, M) − uAE(A, f, M ) ≥ 3
5
Adv(A) .

We use another hybrid argument. Specifically, for i ∈ {0, . . . , n} consider the
probability

h2,i
AE(A, f, M ) = Pr

[
A(pk, E(pk, (m1,..., mi, ui+1,..., un)))=f(m) :

(pk, sk) $← K ; m
$← M , u

$← U

]

.

Again it follows that there exists a j such that h2,j+1
AE (A, f, M)−h2,j

AE(A, f, M ) is
at least 3Adv(A)/5n, and that this lower-bound holds for some specific choices
ṁ1, . . . , ṁj of m1, . . . , mj . Let us denote the corresponding probabilities with
these choices by ḣ2,j+1

AE (A, f, M ) and ḣ2,j
AE(A, f, M ). Consider now the (t, �)-

source M with distribution PM = PMj+1|M1=ṁ1,...,Mj=ṁj
. By assumption we

have H∞(M) ≥ t. Also, consider the “randomized” function g (in the “private
seed” model) defined as

g(m; mj+2, . . . , mn) = f(ṁ1, . . . , ṁj, m, mj+2, . . . , mn) ,

with mj+2, . . . , mn chosen according to the distribution of Mj+2, . . . , Mn, con-
ditioned on M1 = ṁ1, . . . , Mj = ṁj and Mj+1 = m. By Remark 2, it indeed
suffices to consider such a function. Let B be the PRIV1 adversary that on input
pk, c, samples u $← U and outputs

A
(
pk, E(pk, ṁ1), . . . , E(pk, ṁj), c, E(pk, uj+2), . . . , E(pk, uk)

)
.

Now by construction, RealAE (B, g, M) coincides with ḣ2,j+1
AE (A, f, M) and thus

RealAE(B, g, M) − ḣ2,j
AE(A, f, M ) ≥ 3Adv(A)/5n. We consider two cases. If

ḣ2,j
AE(A, f, M )− IdealAE(B, g, M) ≥ Adv(A)/5n then the claim follows. Other-

wise, ḣ2,j
AE(A, f, M )−IdealAE(B, g, M) is at least 2Adv(A)/5n. Then this lower-

bound also holds for some particular choices ṁj+1, . . . , ṁn of mj+1, mj+2, . . . ,
mn in the definition of ḣ2,j

AE(A, f, M ) and the same choices of m, mj+2, . . . , mn

in the definition of IdealAE(B, g, M). Let us denote the corresponding prob-
abilities with these choices by ḧ2,j

AE(A, f, M ) and IdėalAE(B, g, M). Further-
more, let us assume for simplicity that f(ṁ1, . . . , ṁn) = 1. Then re-using B as
a PRIV1-IND adversary, by construction GuessAE (B, Uj+1) = ḧ2,j

AE(A, f, M)
and GuessAE(B, M) = IdėalAE(B, g, M), so the claim follows by Theorem 1
(though now with different choices of B, g, M in the statement). ��

Remark 4. Our proof of Theorem 1 also works if as in [1] we require message-
and-partial-info pairs (M, S) in the PRIV1 definition, and message-sources M0
and M1 in the PRIV1-IND definition to be poly-time samplable (allowing S to
depend probabilistically on M). Indeed, in the proof of the first claim, note that
if M0 and M1 are poly-time samplable then so is the pair (MB, B) where B is a
random bit. In the second, note that if the message-and-partial-info pair (M, S),
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where S is a bit, is poly-time samplable then the following is a poly-time sampler
for M0 (the sampler for M1 is symmetric): Sample (m, s) and output m if s = 0;
else, sample (m′, s′) and output m′. (Specifically the running-time of the sampler
is at most twice that of the original one in this case.) As such, essentially the
same proof can be used to obtain equivalence between the multi-message PRIV
and IND definitions shown in [3] as well.

Similarly, our proof of Theorem 2 also works when restricting to such poly-
time samplable message-and-partial-info pairs, where though in the PRIV def-
inition for block-sources we need that (M , S) can be sampled by a poly-time
algorithm conditioned on any fixed choice for M1, . . . , Mj and for any j. Indeed,
in the reduction we fix a particular choice ṁ1, . . . , ṁj for M1, . . . , Mj (for some j)
and construct a PRIV1 adversary based upon the message-and-partial-info pair
(Mj+1, S) conditioned on (M1, . . . , Mj) = (ṁ1, . . . , ṁj). This is poly-time sam-
plable under the above samplability condition on (M , S).

5 General CPA- and CCA-Secure Constructions

We propose general constructions of deterministic encryption that are CPA- and
CCA-secure under our security notions. The constructions derive from an inter-
esting connection between deterministic encryption and “lossy” trapdoor func-
tions introduced by Peikert and Waters [26]. These are trapdoor functions with
a (un-invertible) “lossy” mode in which the function loses information about its
input, and for which the outputs of the “normal” and “lossy” modes are (com-
putationally) indistinguishable. Viewing trapdoor functions as deterministic en-
cryption schemes in our context, we develop a similar framework of deterministic
encryption with hidden hash mode.

5.1 CPA-Secure Construction

For our CPA-secure construction, we introduce the following notion.

Deterministic Encryption with Hidden Hash Mode. We say that AE =
(K, K̃, E , D) is a deterministic �-bit encryption scheme with hidden hash mode
(HHM), or simply HHM deterministic encryption scheme, with a 2r-bounded
hash range if (K, E , D) is an �-bit deterministic encryption scheme, and the
following conditions are satisfied:

– (Algorithm K̃ induces a hash.) There is an induced hash function HE =
(K̃, HE) with domain {0, 1}� and a 2r-bounded hash range, where algorithm
K̃ outputs p̃k, and HE on inputs p̃k, m returns E(p̃k, m). (Typically r  �.)

– (Hard to tell p̃k from pk.) Any poly-time adversary A has negligible advan-
tage, denoted Advhhm

AE (A), in distinguishing the first outputs of K̃ and K.

The “alternate” key-generation algorithm K̃ is used only for security proofs; we
assume it produces only a public key and no secret key. In the case that the
induced encryption scheme HE in the first property is universal, we say that
scheme AE has a hidden universal-hash mode (HUHM).



348 A. Boldyreva, S. Fehr, and A. O’Neill

HUHM implies CPA-security. We show that a deterministic encryption
scheme with hidden universal-hash mode is in fact PRIV-secure for block-sources.
In other words, if the lossy mode of a lossy trapdoor function is universal, then
it is a CPA-secure deterministic encryption scheme in our sense.

Theorem 3. Let AE = (K, K̃, E , D) be an �-bit deterministic encryption scheme
with a HUHM and a 2r-bounded hash range. Then for any adversary A, any
(t, �)-sources M0, M1 and any ε > 0 such that t ≥ r + 2 log(1/ε), there exists an
adversary B such that

Advpriv1-ind
AE (A, M0, M1) ≤ 2 ·

(
Advhhm

AE (B) + ε
)

.

Furthermore, the running-time of B is that of A. ��

The idea of the proof is simple: in the experiments for the PRIV1-IND adver-
sary A, the alternate key generation algorithm K̃ of AE may be used instead of
K without A being able to tell the difference; then, the Leftover Hash Lemma
(LHL) [23,6] implies that “encryptions” are essentially uniform, so it is impos-
sible for A to guess from which source the encrypted message originated. (Note
that it is not crucial here that the output distribution be uniform, but merely
independent of the input distribution.)

Proof. For b ∈ {0, 1}, by definition of Advhhm
AE , the probability

GuessAE(A, Mb) = Pr
[
A(pk, E(pk, mb)) = 1 : (pk, sk) $← K ; mb

$← Mb

]

differs from the probability

Pr
[
A(p̃k, E(p̃k, mb)) = 1 : p̃k $← K̃ ; mb

$← Mb

]

by at most
∑

m PMb
(m)Advhhm

AE (Bm), where Bm on any input pk simply runs
and outputs A(pk, E(pk, m)). By the universal property of the hash mode and
applying the LHL, it follows that the above probability is within ε of

Pr
[
A(p̃k, c) = 1 : p̃k $← K̃ ; c $← R

]

where R denotes the range of the induced hash function HE . But now, this
probability does not depend on b anymore, and thus

Advpriv1-ind
AE (A, M0, M1) ≤

∑

m

(
PM0(m)+PM1(m)

)
Advhhm

AE (Bm) + 2ε

from which the claim follows by a suitable choice of m. ��

5.2 CCA-Secure Construction

In order to extend the connection between lossy TDFs and deterministic en-
cryption to the CCA setting, we first generalize our notion of deterministic en-
cryption with HHM in a similar way to the all-but-one (ABO) TDF primitive
defined in [26].

All-but-one deterministic encryption. An all-but-one (ABO) determinis-
tic encryption scheme AE = (K, E , D) with a 2r-bounded hash range is such that
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each of K, E , D takes an additional input b from an associated branch-set B. (For
E it is given as the second input.) In particular, each b∗ ∈ B yields particular
algorithms Kb∗ , Eb∗ , Db∗ . If no branch input is specified, it is assumed to be a
fixed “default” branch. The following conditions must hold:

– (One branch induces a hash.) For any b ∈ B, there is an induced hash function
HEb

= (Kb, HEb
) with a 2r-bounded hash range, where algorithm Kb returns

pkb, and HEb
on inputs pkb, x returns E(pk, b, x).

– (Other branches encrypt.) For any b1 �= b2 ∈ B, the triple (Kb1 , Eb2 , Db2) is a
deterministic encryption scheme.

– (Hash branch is hidden.) For any b1, b2 ∈ B, any adversary A has negligible
advantage, denoted Advabo

AE (A), in distinguishing the first outputs of Kb1

and Kb2 .

In the case that for all b ∈ B the induced hash function HEb
in the first condition

is universal, we say that scheme AE is universal-ABO.

The construction. For our general CCA-secure construction, we show how to
adapt the IND-CCA probabilistic encryption scheme of [26] to the deterministic-
encryption setting. In particular, our construction does not use a one-time sig-
nature scheme as in [26] but rather a TCR hash function.

Let AEhmm = (Khmm, Ehmm, Dhmm) be an �-bit deterministic encryption
scheme with a HHM and a 2rhmm-bounded hash range, let AEabo = (Kabo, Eabo,
Dabo) be an �-bit ABO deterministic encryption scheme with branch set B and
a 2rabo -bounded hash range, and let Htcr = (Ktcr, Htcr) be a �-bit hash function
with a 2rtcr -bounded hash range R ⊆ B. Key-generation algorithm Kcca of the
associated deterministic encryption scheme AEcca = (Kcca, Ecca, Dcca) runs Ktcr,
Khhm, and Kabo to obtain outputs Ktcr, (pkhhm, skhhm), (pkabo, skabo), respec-
tively; it then returns (Ktcr, pkhhm, pkabo) as public key pk and skhhm as secret
key sk. The encryption and decryption algorithms of are defined as follows:

Algorithm Ecca(pk, m)
h ← Htcr(Ktcr, m)
c1 ← Ehhm(pkhhm, m)
c2 ← Eabo(pkabo, h, m)
Return h‖c1‖c2

Algorithm Dcca(pk, sk, h‖c1‖c2)
m′ ← Dhhm(skhhm, c1)
c′ ← Ecca(pk, m′)
If c′ = h‖c1‖c2 then return m′

Else return ⊥

We show that if the HHM and ABO schemes in fact induce universal hash
functions, and hash function Htcr is universal as well, then the construction
indeed achieves PRIV-CCA-security for block-sources.

Theorem 4. Let AEcca = (Kcca, Ecca, Dcca) be as above, and suppose that
AEhhm has a HUHB, AEabo is universal-ABO, and that Htcr is universal. Then
for any adversary A, any (t, �)-block-sources M0, M1, and all ε > 0 such that
t ≥ rtcr + rhhm + rabo +2 log(1/ε), there exists adversaries Btcr, Bhhm, Babo such
that
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Advpriv1-ind-cca
AEcca

(A, M0, M1)

≤ 2 ·
(
Advtcr

Htcr
(Btcr) + Advhhm

AEhhm
(Bhhm) + Advabo

AEabo
(Babo) + 3ε

)
.

Furthermore, the running-times of Btcr, Bhhm, Babo are essentially that of A. ��

The formal proof is in the full paper [7]. The idea is that, in the experiments
for the PRIV1-IND-CCA adversary A, we may first replace the input branch
to AEabo by the hash (under HTCR) of “challenge message” m; then, using the
secret key of AEabo to answer A’s decryption queries, we may replace Khhb by
the hash-inducing generator K̃hhb. Crucial to this is that A cannot produce a
valid decryption query that contains a hash h′ colliding with the hash h of m, but
this is guaranteed by the TCR property of Htcr and the fact that each message
has exactly one possible encryption. Now, the only information A sees on m are
universal hashes of it. If m has enough min-entropy, then, intuitively, the LHL
implies that each of these hashes are close to uniform, independent of the specific
distribution of m, bounding A’s advantage to be small.

One technical subtlety is that although the concatenation of independent in-
stances of universal hash functions is again universal, in our case the universal
hash function HEabo coming from the ABO scheme depends (via the branch) on
the outcome of the universal hash function Htcr. We overcome this by using the
Generalized Leftover Hash Lemma and several observations from [18].

Application to witness-recovering decryption. We remark that our con-
struction (as well as for that in Section 7), when converted into an IND-CCA
probabilistic encryption scheme using the KEM-DEM-style conversion of [3],7

yields, to the best of our knowledge, the first such scheme without ROs that is
truly witness-recovering; that is, via the decryption process the receiver is able
to recover all of the randomness used by a sender to encrypt the message. The
constructs of [26] technically do not achieve this since, as the authors note, in
their IND-CCA scheme the receiver does not recover the randomness used by
the sender to generate a key-pair for the one-time signature scheme.

6 Schemes Based on DDH

In this section, we give instantiations of our general CPA- and CCA-secure con-
structions based the well-known decisional Diffie-Hellman assumption (DDH) in
the corresponding groups. The “hidden branches” of the presented HHM and
ABO schemes, as well as the TCR hash function in the instantiations are indeed
universal, so Theorem 4 applies to show that they are PRIV-CCA-secure for
block-sources. (Our CCA-secure construction uses the CPA one as a building-
block, so we focus on instantiation of the former here.)
7 Note that security of the resulting probabilistic scheme only requires the base deter-

ministic scheme to be secure for the encryption of a single high-entropy message.
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HHM and ABO schemes. In fact, the deterministic encryption scheme with
HUHB and the universal-ABO deterministic encryption schemes are precisely the
corresponding DDH-based constructs from [26] of lossy and ABO (with branch-
set Zp where prime p is the order of group G in which DDH holds) trapdoor
functions with 2k-bounded hash ranges, where k is the bit-size of p. It suffices to
observe that the “lossy branches” of these functions are in fact universal. These
constructs are recalled in Appendix A, where this observation is justified. Our
results demonstrate that these constructs have stronger security properties than
were previously known.

Universal-TCR hash. To fully instantiate our CCA-secure construction, it re-
mains to design an �-bit hash function whose range is contained in the branch-set
Zp of the DDH-based ABO scheme, and which is both universal and TCR (we
will call such hashes “universal-TCR”). We accomplish this slightly differently
for two popular choices of group G in which DDH is believed to hold, giving rise
to two possible concrete instantiations of the construction.

Instantiation 1. Let G be a group of prime order p = 2q+1, where q is also prime
(i.e. p is a so-called safe prime). Let p have size k. This covers the case of G as an
appropriate elliptic-curve group where DDH is hard. Let QR(Z∗

p) = {x2 | x ∈ Z
∗
p}

be the subgroup of quadratic residues modulo p. Note that QR(Z∗
p) has order

(p−1)/2 = q. (Also note that we can sample from QR(Z∗
p) by choosing a random

x ∈ Z
∗
p and returning x2.) In this case we can use the following hash function,

based on the general construct from [11]. Define the key-generation and hash
algorithms of �-bit hash function H1 = (K1, H1) as follows:

Algorithm K1

R1, . . . , Rl
$← QR(Z∗

p)
Return (R1, . . . , Rl)

Algorithm H1((R1, . . . , Rl), x)
π ←

∏l
i=1 Rxi

i

Return π

Above, xi denotes the i-th bit of string x.

Proposition 1. Hash function H1 defined above is CR assuming the discrete-
logarithm problem (DLP) is hard in QR(Z∗

p), and is universal with a 2k−2-
bounded hash range QR(Z∗

p) contained in Zp.

The proof is in the full paper [7]. Note that the hardness of the DLP is a weaker
assumption than DDH (although it is made in a different group).

Instantiation 2. Now let G be QR(Z∗
p′ ), where p′ = 2p + 1 is as before a safe

prime, so that |G| = p is also prime. This is another popular class of groups
where DDH is believed hard. To instantiate the universal-TCR hash function in
this case, we would like to use H1 from Instantiation 1, but this cannot (imme-
diately) work since QR(Z∗

p′) is not a subset of Zp. However, we can modify hash
algorithm H1 to output encode(π) instead of π, where encode is an bijection from
QR(Z∗

p′) to Zp. Namely, we can use the “square-root coding” function from [12]:
encode(π) = min { ±π(p′+1)/4 }. Here ±π(p′+1)/4 are the two square-roots of π,
using the fact that for any safe prime p′ > 5 we have p′ is congruent to 3 mod 4.
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While our DDH-based schemes are a definite proof of concept that secure
deterministic encryption can be constructed from a widely-accepted number-
theoretic assumption, they are rather inefficient. In particular, the constructs
of [26] follow a “matrix encryption” approach and have public keys with order
�2 group elements and ciphertexts with order � group elements. We seek more
efficient schemes. However, the other instantiations of lossy and ABO TDFs
given in [26] do not (immediately) give universal lossy branches. To overcome
this difficulty, we first show how to extend our general constructions in an efficient
way to provide security when any lossy and ABO TDFs are used.

7 Extended General Constructions

Generalized “Crooked” LHL. In our security proofs we used the fact that
the “lossy modes” of the underlying primitives, unlike those defined in [26], act as
universal hash functions, allowing us to apply the LHL. However, the conclusion
of the LHL was actually stronger than we needed, telling us that output of the
lossy modes are uniform (and not merely input-independent). We show that the
extra universality requirement can actually be avoided, not only for the HHB
and ABO schemes but also the TCR hash function, by slightly extending our
constructions. The extensions derive from a variant of the LHL due to Dodis
and Smith [19, Lemma 12]. We actually need the following generalization of it
analogous to the generalization of the standard LHL in [18].

Lemma 1. (Generalized “Crooked” LHL) Let H = (K, H) be an �-bit
pairwise-independent hash function with range R, and let f : R → S be a func-
tion to a set S. Let the random variable K describe the key generated by K, and
U the uniform distribution over R. Then for any random variable X over {0, 1}�

and any random variable Z such that H̃∞(X |Z) ≥ log |S| + 2 log(1/ε) − 2, we
have Δ

(
(f(H(K, X)), Z, K), (f(U), Z, K)

)
≤ ε.

The proof is the full version [7]. Intuitively, the lemma says that if we compose
a pairwise-independent hash function with any lossy function, the output of the
composition is essentially input-independent (but not necessarily uniform), as
long as the input has enough (average conditional) min-entropy. This suggests
the following extension to our CCA-secure construction. (We treat the CCA case
here, since the extension to our CPA-secure construction is evident from it.)

Extended CCA-secure construction. Let Ecca = (Kcca, Ecca, Dcca) be as
defined in Section 5.2, and let Hpi = (Kpi, Hpi) be an �-bit invertible pairwise-
independent hash function with range {0, 1}�. Invertibility of Hpi means that
there is a polynomial-time algorithm I such that for all Kpi that can be out-
put by Kpi and all m ∈ {0, 1}� we have I(Kpi, Hpi(Kpi, m)) outputs m. The
key-generation algorithm K+

cca of the associated composite scheme AE+
cca =

(K+
cca, E+

cca, D+
cca) is the same as Kcca except it also generates three indepen-

dent hash keys Kpi,1, Kpi,2, Kpi,3 via Kpi which are included in the public key
pk. The encryption and decryption algorithms are defined as follows:
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Alg E+
cca(({Kpi, i}, pkAE), m)

For i = 1 to 3 do hi ← Hpi(Kpi,i, m)
h ← H(Ktcr, h1)
c1 ← Ehhm(pkhhm, h2)
c2 ← Eabo(pkabo, h3)
Return h‖c1‖c2

Alg D+
cca(({Kpi, i}, pkAE ), skAE , c)

Parse c as h‖c1‖c2
h′

1 ← Dhhm(skhhm, c1)
m′ ← I(Kpi,2, h

′
1)

c′ ← E+
cca(({Kpi, i}, pkAE), m′)

If c′ = h‖c1‖c2 then return m′

Else return ⊥

Concretely, viewing �-bit strings as elements of the finite field F2� , we can use
for Hpi the standard construct H� = (K�, H�) where K� outputs a random
a, b ∈ F2� and H� on inputs (a, b), x returns ax + b, which is clearly invertible.8

Using Lemma 1, we obtain the following result.

Theorem 5. Let AE+
cca = (K+

cca, E+
cca, D+

cca) be as defined above. Then for any
adversary A, any (t, �)-block-sources M0, M1 and any ε > 0 such that t ≥ rtcr +
rhhm + rabo + 2 log(1/ε) + 2, there exist adversaries Btcr, Bhhm, Babo such that

Advpriv1-ind-cca
AE+

cca
(A, M0, M1)

≤ 2 ·
(
Advtcr

Htcr
(Btcr) + Advhhm

AEhhm
(Bhhm) + Advabo

AEabo
(Babo) + 3ε

)
.

Furthermore, the running-times of Btcr, Bhhm, Babo are essentially that of A. ��

Decreasing the key size. A potential drawback of the extended CCA-secure
scheme is its public-key size, due to including three hash keys for Hpi. But in
fact we can usually re-use the same key, i.e. take Kpi,1 = Kpi,2 = Kpi,3. For the
security proof to go through, we just need the minor technical condition that
the range of the hash function HEabo

9 induced by the lossy branch of the ABO
scheme be independent of the particular branch b.This condition is met by all
known instantiations. In the proof, this condition allows us to apply Lemma 1
to the “concatenation” of the hash functions Htcr, Hhhb and Habo. Details are
provided in the full paper [7].

Advantages. In our extended CCA-secure construction, we can use any lossy
and ABO TDF, as defined in [26]. In particular, we can use the Paillier- and
lattice-based constructs of [26], although we obtain even more efficient Paillier-
based schemes in the next section. Also, since Htcr in the extended scheme
need only be TCR and “lossy,” it can be a cryptographic hash function such
as SHA256 or the efficient TCR constructs of [5,29] in practice. (Security of the
basic scheme required Htcr to be both TCR and universal, whereas cryptographic
hash functions fail to meet the latter.) Such instantiation of Htcr is compatible
8 Note that K� must compute a representation of F2� , which can be done in expected

polynomial-time. Alternatively, a less-efficient, matrix-based instantiation of Hpi

runs in strict polynomial time and is invertible with high probability (over the choice
of the hash key).

9 Technically, HEabo should have a third subscript “b,” but we drop it here and in
similar instances for ease of notation.
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with any ABO scheme with branch-set B for which {0, 1}n ⊆ B for n sufficiently
large (so that the probability of hashing to the “default” lossy branch of the
ABO scheme is small). Again, this is satisfied for all known instantiations.

8 Efficient Schemes Based on Paillier’s DCR Assumption

To improve on efficiency over their DDH-based constructs, [26] suggests bas-
ing their matrix-encryption approach on Paillier encryption [25] (which uses the
group ZN2 for an RSA modulus N) instead. One then obtains HHM (or lossy
TDF) and ABO schemes with an N -bounded hash range and offering roughly a
factor log N savings in public-key and ciphertext size, namely public keys contain
order (�/ logN)2 group elements and ciphertexts order �/ logN group elements
for �-bit messages, and for which encryption requires the latter amount of expo-
nentiations. Based on a technique introduced by Damg̊ard and Nielsen [14,15],
we propose new Paillier-based schemes that use an entirely different (i.e. non-
matrix-encryption-based) approach and have even better efficiency: they are
essentially length-preserving, have about �-bit public keys, and compare to stan-
dard Paillier encryption computationally.

Setting. Let K be an algorithm that outputs (N, (p, q)) where N = pq and p, q
are random k/2-bit primes. Paillier’s decisional composite residuosity (DCR)
assumption [25] states that any poly-time adversary A has negligible advantage
in distinguishing a from aN mod N2 for random (N, (p, q)) output by K and
random a ∈ Z

∗
N2 . Let s ≥ 1 be polynomial in k. Our schemes actually use a

generalization of Paillier encryption, based on the same assumption, to the group
ZNs+1 due to Damg̊ard and Jurik [13], with some modifications in the spirit
of [14,15]. The schemes have message-space {0, 1}(s+1)(k−1) (i.e. � = (s + 1)(k −
1)), where we regard messages as elements of {0, . . . , 2s(k−1)}×{1, . . . , 2k−1+1},
chosen so that it is contained in the “usual” message-space ZNs × ZN for any
possible N output by K.

The new deterministic encryption scheme with HHM. Define scheme
AEhhm = (Khhm, K̃hhm, Ehhm, Dhhm) as follows (decryption is specified below):

Alg Khhm

(N, (p, q)) $← K
a

$← Z
∗
N

g ← (1 + N)aNs

mod Ns+1

Return ((g, N), (p, q))

Alg K̃hhm

(N, (p, q)) $← K
a $← Z

∗
N

g̃ ← aNs

mod Ns+1

Return (g̃, N)

Alg Ehhm((g, N), (x, y))
If gcd(y, N) �= 1
Then abort
c ← gxyNs

mod Ns+1

Return c

Decryption algorithm Dhhm on inputs (g, N), (p, q), c uses standard Paillier-
decryption as in [13] to recover x, then computes y by taking the Ns-th root of
c/gx (which can be done efficiently given p, q) and returns (x, y). The fact that
the scheme indeed has a HHM, i.e. that the first outputs of Khhm and K̃hhm
above are indistinguishable, follows under DCR by security of the underlying
“randomized” encryption scheme of [13]: g output by Khhm is an encryption of
1 under this scheme and g̃ output by K̃hhm is an encryption of 0.
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Note that the hash range is isomorphic to Z
∗
N , hence the scheme has a 2k-

bounded hash range. Also note that the size of this range does not depend on
parameter s; in hidden hash mode the encryption function “looses” a 1−1/(s+1)
fraction of the information on the plaintext, so by increasing s we can make
the scheme arbitrarily (i.e. 1 − o(1)) lossy as defined in [26]. This has some
useful consequences. First, it allows to securely encrypt long messages with small
min-entropy relative to the length of the message. Second, it permits a purely
black-box construction of an ABO scheme with many branches having the same
amount of lossiness, via the reduction in [26, Section 3.3]. (The latter applies in
the lossy TDF context as well.) However, we obtain a much more efficient ABO
scheme directly in the following.

The new ABO deterministic encryption scheme. Define scheme AEabo =
(Kabo, Eabo, Dabo) with branch-set ZNs as follows:

Algorithm Kabo(b∗)
(N, (p, q)) $← K
a $← Z

∗
N

g ← (1 + N)b∗
aNs

mod Ns+1

Return ((g, N), (p, q))

Algorithm Eabo((g, N), b, (x, y))
If gcd(y, N) �= 1 then abort
h ← g/(1 + N)b mod Ns+1

Else c ← hxyNs

mod Ns+1

Return c

where decryption works essentially as in the previous scheme. A similar analysis
shows that under DCR it is indeed an ABO scheme with 2k-bounded hash range.

TCR hash. To instantiate our extended CCA-secure construction, it remains
to specify a TCR hash function with range the branch-set ZNs of the above
ABO scheme. One way is to use a “heuristic” cryptographic hash function,
as discussed in Section 7. This approach also yields, via the KEM-DEM-style
conversion of [3], a quite efficient, witness-recovering IND-CCA (probabilistic)
encryption scheme. However, for completeness, we give below an alternative con-
struction of a provably CR hash function based on the computational analogue
of DCR, which dovetails nicely with our ABO scheme for s ≥ 2.

We now regard the (s+1)(k− 1)-bit messages as elements of (x1, . . . , xs, y) ∈
{0, . . . , 2k−1}s × {1, . . . , 2k−1+1} and define hash function H2 = (K2, H2) as:

Algorithm K2

(N, (p, q)) $← K
For i = 1 to s do:

ai
$← Z∗

N ; gi ← aN
i mod N2

Return (g1, . . . , gs)

Algorithm H2((g1, . . . , gs), (x1, . . . xs, y))
π ← gx1

1 · · · gxs
s yN mod N2

Return π

Proposition 2. Hash function H2 defined above is CR assuming the computa-
tional composite residuosity assumption [25] holds (relative to K).

Proof. Given an adversary A that produces a collision, we construct an adver-
sary A′ which computes an N -th root of a random N -th power h = aN in
ZN2 . On input h, A′ chooses a random index i∗ ∈ {1, . . . , s} and runs K2 but
replaces gi∗ by gi∗ ← h. Then, it runs A on inpt (g1, . . . , gs, y) and obtains a
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collision with probability AdvCR(A), i.e., (x1, . . . , xs, y) �= (x1, . . . , xs, y) such
that gx1

1 · · · gxs
s yN = g

x′
1

1 · · · gx′
s

s y′N . In this case, note that xj �= x′
j for some j,

as otherwise yN = y′N modulo N2 which implies that also y = y′ modulo N ,
and with probability 1/s: i∗ = j. Furthermore, note that we may assume that
xi∗ − x′

i∗ is co-prime with N , as otherwise A′ can immediately factor N . It fol-
lows that if indeed i∗ = j then A′ can efficiently compute integers σ and τ such
that 2σ(xi∗ − x′

i∗) + τN = 1. Raising both sides of

g
xi∗−x′

i∗
i∗ =

s∏

i=1
i�=i∗

g
x′

i−xi

i ·
(y′

y

)N

to the power σ and multiplying both sides with gτN results in

gi∗ =
( s∏

i=1
i�=i∗

a
x′

i−xi

i · y′

y
gτ

)N

.

Thus, with probability AdvCR(A)/s, A′ obtaines a N -th root of gi∗ = h. ��

Note that the hash function is “compatible” with the above ABO deterministic
encryption scheme in that a hash value it produces lies in ZNs as long as s ≥ 2
and the N from the hash function is not larger than the N from the ABO scheme;
in fact, it is not too hard to verify that the hash function and the ABO scheme
may safely use the same N , so that the latter condition is trivially satisfied.
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A DDH-Based Lossy and ABO TDFs of Peikert-Waters

In [26] the authors introduce a form of “matrix encryption” that they use to
realize lossy and ABO TDFs based on encryption schemes allowing some linear-
algebraic operations to be performed on ciphertexts. We briefly recall this and the
resulting schemes here (using our terminology of HHM and ABO deterministic
encryption schemes rather than lossy and ABO TDFs). For concreteness we
describe the schemes based on DDH. Moreover, although this was not shown
in [26], the “lossy branches” of the DDH-based schemes are universal, so we can
use them towards instantiating our basic CPA- and CCA-secure constructions.
Throughout the description we fix a group G of prime order p with generator g
in which DDH is believed to hold.

ElGamal-based matrix encryption. We first review the ElGamal-based
method of [26] for encrypting �× � boolean matrices. The public key is (gs1 , . . . ,
gs�), where s1, . . . , s� ∈ Zp are random, and (s1, . . . s�) is the secret key. The
encryption of an � × � boolean matrix A = (aij) is the matrix C = (cij) of
pairs of elements in G, where cij = (gaij gsi·ri , gri) for random r1, . . . , r� ∈ Zp.
Note that the same randomness is re-used for elements in the same row and the
same component of the public key is re-used for elements in the same column.
Under the DDH assumption, the encryption of any matrix using this scheme is
indistinguishable from the encryption of any other one [26, Lemma 5.1].

The schemes. We briefly describe the DDH-based deterministic encryption
scheme with HHM from [26]. The (normal) key-generation algorithm of the
scheme outputs an encryption of the (�×�) identity-matrix I under the above
scheme as the public key, and the sj ’s as the secret key. To encrypt a message
x = (x1, . . . , x�) ∈ {0, 1}� one multiplies x (from the left) into the encrypted
public-key matrix by using the homomorphic property of ElGamal: ciphertext
c = (c1, . . . , c�) is computed as

cj =
( ∏

i

uxi

ij ,
∏

i

vxi

ij

)
.
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It is easy to verify that cj =
(
gρ, gxj hρ

j

)
with ρ =

∑
i rixi ∈ Zp, so that standard

ElGamal decryption allows to recover xj when given sj (using the fact that
xj ∈ {0, 1}). The alternate key-generation algorithm of the scheme outputs an
encryption of the (�×�) all-zero matrix rather than of the identity matrix, so
that the encryption of a message x results in the ciphertext c with cj =

(
gρ, hρ

j

)

where, as before, ρ =
∑

i rixi. Thus, c only contains limited information on x,
namely ρ =

∑
i rixi ∈ Zp. This makes the encryption function lossy, as required

in [26], but it is also easy to see that it also makes the encryption function a
universal hash function. Indeed, the encryptions c and c′ of two distinct messages
x and x′ collide if and only if the corresponding ρ =

∑
i rixi and ρ′ =

∑
i rix

′
i

collide, which happens with probability 1/q (over the choices of the ri’s). Thus,
for any �, we obtain an �-bit deterministic encryption scheme with HHM having
2k-bounded hash range, where k is the bit-size of p. We omit the description of
the corresponding DDH-based �-bit ABO scheme with 2k-bounded hash range
obtained from [26]. Essentially the same analysis applies to show that its lossy
branch is universal as well.
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