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Summary 

ON NULL-HYPOTHESIS LIMITING DISTRIBUTIONS OF KOLMOGOROV-SMIRNOV TYPE STATISTICS 

WITH ESTIMATED LOCATION AND SCALE PARAMETERS 

We treat the "goodness of fit" problem of testing whether the distribution 

F of a random sample x1, ..• , Xn belongs to a specified location and scale fami­

ly, with the particular values (a,~) of the location and scale parameters not 

both specified. A foundation for testing such a composite hypotheis is provided 

by an associated "empirical" stochastic process, based upon the sample distribu­

tion function corresponding to x1, ... , X and upon estimates (a ,S) of (a,B). 
n n n 

In particular, statistics of Kolmogorov-Smirnov type may be represented as well-

behaved functionals of the empirical process. It follows that the limit distri-

butions of such test statistics are given by applying the corresponding function-

als to the limit in distribution of the empirical process, provided that such a 

convergence result holds. We prove such a convergence theorem for the behavior 

of the empirical process under the null hypothesis. The result overlaps with 

theorems of Durbin (1973) and Neuhaus (1976), but presents conditions which are 

more readily verified. Regarding the test statistics, the asymptotic distri-

butions so obtained serve as a basis for Monte Carlo studies for determination 

of appropriate critical points. These methods are also used to derive a "large-

sample" test for normality for Completely Randomized Designs. 



1. Introduction. Testing "goodness of fit" is a standard statistical 

problem having broad application. Here we consider the case of testing whether 

the distribution F of a random sample X · · · X belongs to a specified location 
1' ' n 

and scale family, with the particular values of the location and scale parameters 

n.o;t bo;th fmown. More precisely, denoting by G the class of c. d.f. 's G{~ of the 

form 

fx - a\ 
G\ ~ ;, all x, 

where G is a specified ~ontinuo~ c.d.f. and 8 is a specified set of possible 

pairs e = (a,t3), the "null-hypothesis" to be tested is 

It is assumed that e contains more than one element (a,t3), so that H0 is a 

~ompo~~e hypothesis. 

A foundation for testing H0 is provided by an associated "empirical" sto­

chastic process based upon the sample distribution function corresponding to 

x1 , · · ·, Xn and upon estimates (~n'~n) of (a,t3). A variety of relevant test 

statistics may be represented as well-behaved functionals of this empirical pro-

cess. In particular, we shall consider statistics of Kolmogorov-Smirnov type. 

It will be shown that under H0 the empirical process converges in distribution 

(in the sense of weak convergence of probability measures on a suitable metric 

space of functions) to a certain limit stochastic process, of Gaussian type. It 

follows that the asymptotic distributions of the relevant test statistics may be 
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obtained ac the di::.;tributions of the correr:;ponding functiona.ls of the limit pro-

cess. The actual computation of such limit distributions is another problem, not 

dealt with here. 

The results just described in connection with the composite hypothesis H0 

extend well-known results for the case of H0 ~~mpfe, i.e., where 8 consists of a 

single element (a, (3) . He shall review this case as a preliminary to precise 

formulation of the extended results. 

For H0 simple, and thus (a,(3) specified, it is equivalent to test the 

hypothesis that the independent random variables 

have common uniform (0,1) distribution. The popular Kolmogorov-Smirnov test is 

based on the statistic 

(l.l) IG (t)- tl, 
n 

where 

n 

(l. 2) G (t) 
n ! L r(G[(xi- a)/13] ~ t), 0 ~ t ~ l, 

i=l 

and I(E) denotes the indicator of the event E. In terms of the "empirical" sto-

chastic process 

~ 

(l. 3) W (t) = n2[G (t) - t], 
n n 

0 :;; t s l, 

the statistic (l.l) is given by the functional sup0St~1 1x(t)l applied to 

x(·) = Wn(·). Under H0 the empirical process Wn(·) satisfies 

(1.4) 
d 0 w --> w 

n 
in V[o,lJ, 
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where V[o,l] denotes the space of functions x(·) on [O,l] which are right-continuous 

d 
and have left-hand limits, ~ denotes convergence in distribution, and Wo denotes 

the 11tied-down Wiener 11 process on [O,l], namely, the Gaussian process determined by 

(1. 5) o, 0 ~ t :s; l, 

and 

(1. 6) min ( s , t ) - st , 0 :s; s,t s; l. 

(The convergence (1.4) is proved as Theorem 13.1 of Billingsley (1968).) 

Returning to the case of H0 composite, we consider an analogous approach 

based on estimates (a ,~ ) for (a,~). Put 
n n 

y . = 
nl 

A 

X. -a 
1 n l :s; i s; n, 

and, by analogy with G (·)and W (·),define 
n n 

(1. 7) 

and 

(1.8) 

n 

Hn(t) = ~ I r(G(Yni) :s; t), 

i=l 

1.. 
V (t) = n 2 [H (t) - t], 

n n 

0 :s; t s; l, 

0 :s; t :s; l. 

We shall generalize (1.4) by proving that under H0 the process Vn satisfies 

d 0 v _, v 
n 

in V[O,l], where Vo is a Gaussian process that depends upon G and upon 

properties of the estimates (a ,~ ). The precise formulation of Vo is given in n n 
A A 

Section 2, along with assumptions on G and (ex ,13 ) , and with a formal theorem 
n n 

stating this convergence result. The proof of the theorem will be given in 

Section 3· 
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A similar convergence theorem has been established by Durbin ( 1973), under 

narrower restrictions on the parameter set e and the estimates (a ,~ ), but 
n n 

allowing parameters other than location and scale, and under local parametric 

alternatives to H0 as vrell as under H0 . (These results were extended by Neuhaus 

(1976) to a wider class of local alternatives.) Such extensions of our results 

will be considered elsewhere. In particular, both authors require that an 

estimator (e ) of an unknown parameter (e) be of the form 
n 

n 

n-i"cen- e)= n-i I .e(xi,e) + op(l) 

i=l 

where E[£(X,e) 2 ] < oo. In fact, this representation is required to evaluate the 

covariance function of the limiting Gaussian process. Even though many estima-

tors can be given such a representation, £(·,·)is often hard to determine in 

practice. In order to obtain the limiting Gaussian process we only require 

that, jointly with the sample c.d.f., the estimators have an asymptotic normal 

distribution, a condition usually known or readily verified; in which case 

only the asymptotic covariance matrix need be derived. 

More importantly, the class of estimators considered previously exclude 

estimators which use auxillary information on the unknown parameters. In partie-

ular, considering the problem of testing for normality in the Completely Random-

ized Design, previous results would not allow mean square for error to be used 

as an estimator of experimental error for one particular treatment. An applica-

tion of our results to this problem is given in the last section. 
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Some statistics of interest in connection with H0 are the one-~ided Kofmogo~ov-

(1. 9) 

and 

(1.10) 

(1.11) 

and the KuJ.p~ ~:t~uc. 

(1.12) 

D 
n 

D 
n 

sup V (t) 
Qs;ts:l n 

max(D+,-D-), 
n n 

D 
n 

The corresponding functionals sup x(t), inf x(t), suplx(t)l, and sup x(t)- inf x(t) 

are c.ontinuouo with respect to the Skorokhod metric on V[O,l] (see Billingsley 

( + - ± 1968), Section 18). Hence the limit laws of D , D , D and D under H0 , and pro-
n n n n 

A A d 0 

vided that G and (a ,~ ) are such that V ~ V , are given, respectively, by the 
n n n 

laws of the random variables 

( 1.13) 

(1.14) 

D + sup Vo ( t), 
O~t:s;l 

D inf Vo ( t), 
~t:s;l 
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and 

(Ll6) 
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( + -
maxD ,-D), 

D 

( d Q 

These results are consequences of V ~ V by the continuous mapping theorem. 
n 

See Billingsley (1968), Section 5.) The results provide a basis for :Monte Carlo 

studies of the null hypothesis asymptotic distributions of the Kolmogorov-Smirnov 

+ ± 
type statistics D, D-, D and D. n n n n 

Monte Carlo simulations of these distributions with G = '!, the standard 

normal distribution function, are given in Section 4. In the last section, it is 

shown that these distributions also provide appropriate "large-sample" critical 

valuec for testing for normality in Completely Randomized Designs. 

2. The convergence theorem. The various conditions to be imposed on G are 

given by 

ASSUMPTIONS A. 

(i) G'(x) is continuous in x and positive on the support of G; 

(ii) xG'(x) ~ 0 as lxl 

(iii) G" is bounded. 

~ COo 

' 

We shall suppose that under H0 the estimates (a ,& ) are asymptotically normal 
n n 

jointly with the empirical process W, i.e., 
n 

ASSUMPTION B. Under H0 , for all k = l, 2, ···and 0 < t 1 , 

vector 

tk < 1, the 
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converges in distribution to multivariate normal with mean 0 and (k + 2) x (k + 2) 

covariance matrix ~(t 1 , ···, tk). 

Under H0 and Assumptions A and B, we may define the stochastic process 

vlhere (Y,Z) are jointly normal with the tied-down Wiener process W0 in the sense 

of Assumption B. That is, Vo is the Gaussian process determined by 

(2.1) 0 ::;; t ::;; l, 

and, for all 0 ::;; s,t ::;; 1, 

-1( I -1( \ -1 ( -1( ) + G s)G'\G s) )G (t)G' G t) o22 

(2.2) 

AMwnp.tion B. Then, undeJt H0 , 

(2.3) V ~ Vo ~n V[O,l]. 
n 
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Note that the constants a .. appearing in (2.2) implicitly 
lJ 

depend upon ;:; , t. 

(ii) Note that terms of (2.2) drop out if either a or 13 are known, making 
/'. A 

a or 13 degenerate. 
n n 

(iii) Note that Vo, like Wo, is continuous with probability 1. 

3· The proof. Let all random variables x1 , x2, ···be defined on a proba­

bility space (O,A,P). 

Note that H ( · ) may be written 
n 

(3.1) H (t) = G {G[(~ /13)G-1(t) + (~ - a)/13J}, n n n n 
0 s t :5: l, 

inf[X : G(X) > t} and thus 

(3.2) 0 s t :5: l, 

where 

(3-3) ¢ ( t) 
n 

0 :5: t :::; l. 

Note that¢ (t) is increasing in t and hence is a "random change of time'' in the 
n 

sense of Billingsley (1968), p. 144. With this notation, we have 

(3.4) 

where 

(3-5) 

(3.6) 

v (t) 
n 

/::, 0 ¢ (t), 
n n 

0 :5: t :s:: l, 

QStSl. 

Our plan of attack is to establish, under appropriate conditions, that 

p 
¢ ~I in V[O,l], 

n 
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-where I is the identity :f\mction I( t) = t on [0, l]; that 

( 3· 7) 

-where 

(3.8) 

and that 

D. 
n 

d~ :£ o l·n V[o 1] 
u ' ' n 

o< d o J 6ft - V in V[O,l . 
n 

0 s; t ::;; l; 

Given (3.6), (3.7), and (3.9), it follows by Billingsley (1968), Theorem 4.4, 

that 

(3.10) 
d 

(D. ,¢ ) - (Vo ,I) in V[O,l]. 
n n 

Consequently, since P(Vo E C[O,l]) = l, where C[O,l] denotes the space of continuous 

functions on [O,l], we have by Section 17.1 of Billingsley (1968) that 

(3.11) d 0 

D. 0 ¢ - v n n 
o I = Vo in V[0,1]. 

By ( 3. 4) , we thus have ( 2. 3 ) . 

LEMMA 1. 

(3.12) nisup!G(e2nx + eln) - G(x) - G'(x)[(e2n- l)x + elnJI = op(1), n- 00 • 

X 

PROOF. Write 

( 3.13) G(ax +b) - G(x) - G'(x)[(a- 1)x + b] = A(a,b,x) + B(a,x) + C(a,b,x), 

where 
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A(a,b,x) = G(ax +b) - G(ax) - bG 1 (ax), 

B(a,x) = G(ax) - G(x) - (a - l)xG 1 (x) 

and 

C(a,b,x) = b[G 1 (ax)- G 1 (x)]. 

First, by Taylor expansion, sup !A(a,b,x) I ~ ~b 2 sup IG"(x) I. By A (iii) and 
X X 

( 3 .14) 

Next we establish 

(3.15) 

Let 0 < E < l be given. Then there exist M and N such that 
E E 

(3.16) 

Also, by A ( ii), 

Now, for Ia - 1! 

n>N 
E 

there exists M1 such that lxG 1 (x)l < E(1- E)/M for lxl > M 1 • 
E E E 

< E and lxl > Mj (1 - E) = M~, and using 

IB(a,x)!::::: !(a- l)xG 1 (X~~)I +!(a- l)xG 1 (x)l, 

where x~~ lies between x and ax, we have M1 < (l- E)lxl < lx~~~ and thus 
E 

::.:;; Ia 

Consequently, for n > N 1 , we have 
E 

(3.17) 
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M" vle have by Taylor expansion 
E 

IB(a,x) I $ ~(a. - l) 2 (M~) 2 su:p IG"(x) I, 
X 

so tha.t, for n sufficientl~r large, say n :2: N" :2: N' we ha.ve 
E E' 

(3.18) J.l A P[ sup n2 B( e2 ,x) I > 3E] < 2E. 
lxi:eM" n 

E 

By (3.17) and (3.18), (3.15) follows. In similar fashion we may establish 

(3.19) 

By ( 3.13), ( 3.14), ( 3 .15), and ( 3.19), we have ( 3 .12). 0 

COROLLARY. UndeA .the. c.onc:Utionl.l oo Le.mma l, 

(3.20) 

PROOF. Clearly we have 

which immediately, via ( 3 .12), yields ( 3. 20) . 0 

We are now ready to prove (3.6) a.nd (3.7). 

0 (l)' :p 

[3 > o, bo.th have. no n.de.g e.neJta.te. Um{;t .f.aw-6, we. have. ( 3. 6) and ( 3. 7). 
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PROOF. Recalling (3.3) and making the substitutions e = (2 - a)/~ and ln n 

e2n = ~n/~ in the preceding Corollary, we have 

(3.21) 

Therefore, since convergence in the uniform topology implies convergence in the 

Skorokhod topology in V[O,l] (see Billingsley (1968), Section 18), (3.6) follows. 

To obtain ( 3. 7), we first consider 6~H< defined by 
n 

A A 

, " .1.r f -1 \[ -1 (~ - ~\ a - ~} 
( 3 . 22) 6~''" ( t ) = n 2 l_ G n ( t ) - t + G \ G ( t ) ) G ( t ) n f3 ) + n ~ - J , 0 :s: t ::; l. 

Setting eln = -(2 - a)/~ and e2n = ~~~ , we have n n n 

0 :s: t ::; 1, 

and it follows by Lerruna 1 that 

(3.23) 

But 

(3.24) 

o (1), n-+co. 
p 

~ (~n - f3)2 (a - a)(~ - $) 
sup n G 1 (x)lx A + _n __ A __ n __ , 

-co<x<oo f3nf3 ~nf3 

~ (~ - ~) 2 ~ (a - a)(~ - f3) 
:s: sup n 2 1 xG 1 (x) 1-n-A ___ + sup n2 G 1 (x) 1-n __ A __ n ___ , 

x ~nf3 x f3n~ 

o(l), n->oo.O 
p 
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We now establish ( ~;. 9). 

LEM.MA 3. Un.deJL Ao.6u.mp.:Uo no A ( i), ( ii) on G and AM wnp.:Uon B on ( (;n, ~n), we_ 

have_ ( 3 . 9) . 

PROOF. First we note that the finite-dimensional distributions of t·:"~ converge 
n 

to those of Vo. This is easily established using (3.24) and the "Cram~r-Wold device" 

(see Billingsley (1968), Theorem 7.7). We omit the details. 

Secondly, we turn to the question of tightness of the process 6.~~ in V[O,l]. 
n 

By A ( ii), we have 6.,~ ( 0) = 0. Therefore, by Theorem 15. 5 of Billingsley ( 1968), it 
n 

::mffices to show that, given E > 0 and 11 > 0, there exist a o, 0 < o < 1, and an 

integer N0 such that 

(3.25) 

To obtain (3. 25), we show the existence of o0 , o1 , o2, N1 and N2 for which 

(3.26) P[ syp I W ( s ) - W ( t) I > E/ 3 J < 11/3, 
ls-ti<o0 n n 

(3. 27) 

and 

A 

(3.28) 
~ [3 - [3 

P[ n2 l n I sup I b ( s) - b ( t) I > E/ 3 J < 1V' 3, 
[3 ls-tl<o 

2 

•;~here 

O~t:S:l. 
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I~ollowing Billingsley (1968), Section 13, we introduce a continuous process 

W (•) which is the analogue of W (·)produced by replacing, in the definition 
n n 

(1.3), the step function G (•) by a continuous version. For this process we have n 

(J.JO) 

Further, by Billingsley's Theorems 13.1 and 8.2, there exist 0 < o0 < l and 

integer N~ such that 

(3-31) P[ sup lw (s) - w (t)l > E/6] < ~/3, 
ls-tl<o n n 

0 

By (3.30), for n > (12/E) 2 , we have 

(3.32) ::mp I W (::;) - W ( t) I :o; sup I W ( s) - W ( t) I + E/6. 
ls-tl<o n n ls-tl<o n n 

0 0 

Consequently, (3.26) holds with N1 = max£lt{,(l2/E) 2 }. 

~A ~A 
Since n 2 (a - a) and n2 (~ - ~) have limiting distributions, there exist 

n n 

(3-33) 

and 

(3-34) 

,Now let €1 and € 2 satisfy E/3Ei > Mi' i = 1, 2. Then, since by A (i) the functions 

a(·) and b( ·) are uniformly continuous on [O,l], there exist o1 and o2 such that 

(3-35) I sup la(s)- a(t)l 
s-tl<o1 

< € 
1 
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syp I b ( s ) - b ( t ) ] < E2 . 
ls-ti<o2 

The relations (3.27) and (3.28) now follow easily. 0 

4. Applications to tests for norma.li ty. As an example we consider the 

Kolmogorov-Smirnov statistics given in (1.9) - (1.12) for testing normality, i.e., 

G(x) = ~ x ~ fl.), -00 < x < co, for some fl. and a > 0. The unknown parameters, fl. and a, 

v1ill be estimated by the sample mean (X ) and sample standard deviation (s ) , re-
n n 

spectively. Monte Carlo methods were used to simulate the distributions of the 

limiting r.v. 's given in (1.13) - (1.16). The procedure 1-1as to approximate the 

Gaussian Process Vc = Va(1l) by its finite-dimensional distributions, corresponding 

to evaluation of the process at 119 eg_ually spaced points in the unit interval. 

One thousand UTIJ.ltivariate normal random vectors ~olith this covariance structure 

v1ere generated using a program from the International Mathematical and Statistical 

Library. The empirical distributions for the supremum, the infimum, and the 

difference between the supremum and the infinnJ.m of the resulting multivariate 

+ -
normal vectorG were then tabal.stted, thus approximating the limit laws of D , D , 

n n 

D n' 
± 

and D . 
n 

In particular, since 

Cov[H ( t), X ] 
n n 

~-l(t) 

J xd( ~(x)) 
_co 
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a24 = cov(Hn(t), sn) 

~-l(t) 

~- (2r1t[_ I x 2 d( <P(x)) - tJ 
_oo 

0 ~ t ~c 1, 

und X and s2 are uncorrelated, from (2.2) we have for 0 ~ s,t ~ 1 
n n 

E[vo(s)Vo(t)J = min(s,t) - st 

- [1 + ~<P- 1 (s)2- 1 (t)J<P·[~-1 (s)J<P·[~- 1 (t)J, 

a result originally derived by Kac, Kiefer, and Wolfowi tz ( 1955). Various sample 

'j_Uantilc::; for i,he generated frequency distribution:::; are shovm below: 

[INSERT TABLE 4.1] 
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In order to investigate the validity of the above approximations, the 

empirical distributions were also generated for multivariate normal vectors corre-

sponding to the finite-dimensional distributions of Vo at 20, 30, 40, 60, and 180 

equally spaced points. Since the differences in the observed quantiles diminished 

rapidly as the nurriber of evaluation point., increased and, in fact, some reversals 

were observed, the approximating procedure was terminated at 120 equally spaced 

intervals. 

5. Model validation in completely randomized designs. A frequently occurring 

problem is that of testing the validity of the generally assumed linear model for 

data arising from a. completely randomized design, i.e., 

(5.1) Y .. = J.l+CX. +E .. , 
lJ l lJ 

j l, n. and i 
l 

l, a, 

a 
where ex. is the non-stochastic effect of the ith treatment with E n.cx. = 0 and 

l i==l l l 

E •• , the experimental error as soc ia.ted with the j t h experimental unit in the it h 
lJ . 

treatment group, is normally distributed with zero mean and unknown variance o2 . 

The relevant departures from these assumptions are (i) a non-additive error 

structure resulting in heteroscedasticity of the experimental errors and (ii) non-

normality of the experimental errors. If both (i) and (ii) are of concern, then 

the development in Section l suggests basing a test of the hypothesis that ().1) 

is the correct model on the combined modified empirical c.d.f. 

n. a l 

(n. f 1 
,- I r[c{Yij 

- y 
t ], H ( t) = \ i•J ~ 0 ::>; t s: l, 

n· L 
i=l j==l s 

p 

a 
vlhere n ~ n. and s 2 is the usual pooled variance estimator of o2 . (We will 

i=l l p 

employ the usual dot notation in the remainder of this paper.) In turn, V and n· 
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the statistics D , D + , D- , and D± can be defined analogously to (l. 8) and 
n· n· n· n· 

(1.13) - (1.16), respectively. 

v!e 'dill now ;.;hovl that the null hypothesis asymptotic distributions of D , 
n· 

+ - ± D , D , and D are identical to the limiting distributions for the analogous 
n· n· n· 

one-sample statistics for testing normality given in Section 4. First define 

n. 
l -

I r[<P[Yij 
- Y. I l 

H . ( t) -1 l· ..- 0 ~ t $ l, i l, ::= n. J t} a. 
Til l s 

;j==l p 

~3imilarly define V and 6~~ i 
ni ni' l, a. Then it follows that 

a 

H ( t) 
n· I (:~) Gni ( t)' 0 $ t $ l, 

i=l 

v ( t) 
n· 

0 $ t $ l, 

and 

O"'t..-l. 

For fixed i, i = 1, ···,a, we may apply the results of Section 3· In fact, from 

(3.6) and (3.7) it follows that 
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sup I A"'~. ( t) - V . ( t)) 
0:!;~1 ill ill 

sup IL:i*. (t) -b.(¢ (t))l 
C¥tsl nl n n 

!":: sup I b.~~.(¢ ( t )) - 6*. ( t) I 
O!;:i:.!":l Dl n nl 

+ sup I t:. . ( t) - 6 -~~ . ( t) I 
~t!":l ill nl 

converges to zero in probability as n. ~ oo 
l 

From (5.3) and (5.4) it is irmnedi-

ately obvious that 

(5.5) v 
n· 

!: 0 as min ( n. ) ~ oo 

· ~i<a l 

In particular, for 0 ::;;; t !":: l, 

a jn-l r I _j_</n:IG .(t) 
·-1 n. I lli Dl 
l-. I 

' 

l 
[

Y. - ( t-t +a. ) 
- t + <P'(<P- (t)) l· a l + 

r 
J 

-~· (Y. - t-t) s 0 l-1 
- t + ,P'(~-l(t)-l-· __ + ~-l(t)[ ~ J I 

l a 0 ! I -J 

where G is the combined empirical c.d.f. of the standardized i.i.d. r.v. 's n· 

{
y .. - ( tl + 0:. ) 
lJ l . 1 . 1 ~ , J = . , · · ·, ni, l = . , ... , aJ . We may make similar interpretations 

(J 
s -a 

of (Y .. - 1.1) and (-P--), from which the desired result follows. 
(J 

However, if we are concerned only about the non-normality of the errors, 

i.e., we wish to test H : [E .. : j =1, · · ., n., i =1, ... , a} are independently nor-
a lJ l 

mally distributed with zero mean and unknown variance a;;., against the general 
l 

alternative, it is appropriate to base the test on 
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H' (t) 
n· 

= (n. )-1 L 
i=l 

~ rl !P( Yij - Yi.) 

J._1 I s. 
- L l 

l 
I 

:s: t I' 

J 
o~t~l, 

where s~, i = 1, · · ·, a, is the sample variance of' the i th treatment group. Argu-

ments similar to those given above show that the Kolmogorov-Smirnov statistics 

based on this modified empirical c.d.f'. have the same limiting H -distributions 
0 

as given before. 

Remark. The result given in (5.5) remains valid under H if' ~ is replaced by any 
0 

G satisf'ying Assumptions A with any consistent estimator of' (a., f3. ) , i = 1, ... , a, 
l l 

replacing (Y. , s.). 
l• l 
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TABLE 4.1 

SAMPLING DISTRIBUTIONS OF APPROXIMATE KOLMOGOROV-SMIRNOV TYPE STATISTICS 

FOR TESTING NORMALITY WITH MEAN AND VARIANCE ESTIMATED (X ,82 )":< 
n n 

-· 
:P t h Quantile 

:P 
D+ D± D - D n n n n 

.010 0.249 -0.926 0.327 0.614 

.025 0.268 -0.841 0.351 0.670 

.050 0.293 -0.768 0.381 0.704 

.100 0.319 -0.698 0.409 0.770 

.250 0.383 -0.583 0.469 0.880 

.500 0.469 -0.478 0.555 1.033 

·750 o. 573 -0.394 0.659 1.221 

.900 0.685 -0.333 0.752 1.414 

.950 0.746 -0.300 0.835 l. 576 

. 975 0.826 -0. ~~72 0.910 1.698 

. 990 0.926 -0.237 0.991 1.853 

~\- k = 120. 


