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ABSTRACT.  The nullity concept of Riemannian manifolds is extended
to affine manifolds.   Results obtained by Chern and Kuiper and Maltz on
Riemannian manifolds are generalized to affine manifolds. A structure theorem
for affine symmetric spaces is obtained.   Finally, the nullity concept is general-
ized to study the partial integrability of certain geometric structures.

1. Introduction. In [1], Chern and Kuiper define a distribution on a Rie-
mannian manifold M which assigns to each point m EM, the subspace

Nm = {X£ TMm\R(X, Y) = 0 for all YETMm}

where R is the curvature of the Riemannian connection on M.  It is called the
nullity space at m. The distribution defined by the subspace Nm at each point m
of M is called the nullity distribution N of the Riemannian manifold M.  Set p(m)
= dimension Nm. The number p(m) is called the index of nullity at m.  Chern
and Kuiper showed that if p(m) is constant in a neighborhood then N constitutes
a completely integrable distribution there, and that the leaves of the resulting
foliation are flat. Later, Maltz [5] showed that the leaves are also totally geodesic.

In §§2 and 3, we extend the definition of nullity to affine manifolds and
show that the resulting nullity distribution is still integrable. We show also that
the leaves are totally geodesic and flat with respect to an induced connection on
the leaf if the curvature tensor is parallel.  In §4, we investigate the nullity distri-
bution on symmetric spaces and obtain a structure theorem (Theorem 4.6) for
affine symmetric spaces. This type of structure theorem is well known for simply
connected Riemannian symmetric spaces (§5). In §7, distributions generated by
isometric actions of a compact Lie group are discussed. It is shown that such Lie
group actions define a metric connection on the manifold with nullity index at
least the dimension of the Lie group. Finally in §8, we observe that the study of
nullity distributions is indeed a study of partial integrability of the underlying
geometric structures. Thus, we can extend this concept to study the nullity
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324 SIN-LENG TAN

distributions of certain type of tensors which characterize the underlying geomet-
ric structures.

This paper was motivated by the following problem. If the ordinary char-
acteristic ring Pont*(iM) of the manifold M fails to give much information about
the manifold M, how do we produce a set of secondary invariants such as to
supplement the ordinary characteristic ring? By using the generalized character-
istic map constructed by Kamber and Tondeur [3], the author was able to produce
such a set of secondary invariants [8].

The author would like to express his gratitude to his advisor, Professor F.
Kamber, for his encouragement and forbearance during this work. The results in
this paper are contained in the author's thesis [8].

2. Nullity distribution on affine manifolds. Let (M, V) be an affine mani-
fold, namely a manifold M on which V is the connection on the tangent bundle
TM. Let R and 7" be the curvature and torsion tensors of V. The curvature ten-
sor 7? can be considered as a bundle map R:TM—>Hom(7M, End(TM)). The
nullity distribution TV of the affine manifold (M, V) can be defined as the kernel
of the map 7?. The nullity space at a point m of M is the subspace Nm which is
equal to Ker Rm. The following proposition is similar to those in [5].

Proposition 2.1. (i) The function p(m) is upper semicontinuous.
(ii) The set V where p(m) assumes its minimum value is open in M.

Proof.  Statement (ii) follows from (i). Statement (i) follows from the
fact that TV is the kernel of a bundle map, and the dimension at each fibre is al-
ways upper semicontinuous.   Q.E.D.

The above proposition says that the distribution TV is nonsingular only on
the set V. In general TV is singular. The index p at any point will not take the
value n - 1, where n is the dimension of the manifold M. Since if p(m) > n - 1,
then there exist linearly independent vectors Xx, X2,..., Xn_x in TMm such
that X¡ENm, i.e., R(X¡, -) = 0, for i = 1, 2,..., n - 1. Take X„ G TMm so
that Xv X2,...,X„ form a basis in TMm. Since R(X,, X„) = 0 for í = 1, 2,
..., n - 1, it follows that R(X„, -) = 0. Hence p(m) = n.  Consequently, if TV
is nonsingular, then TV cannot have codimension 1.

Considering a possible singular nullity distribution TV on M, we say that TV
is involutive if and only if the presheaf of cross sections over open sets of M is
involutive.

Theorem 22. The distribution TV is involutive.

Proof.  Let U be an open set, and Y, Z G r(U, TV). It is sufficient to
show that R([Y, Z], X) = 0 for all X E r(U, TV). Since
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VX(R(Y, Z)) = Vy(R(Z. X)) = VZ(R(X, Y)) = 0,
therefore,

0 = S(VX(R(Y, Z))) = S{(VXRXY, Z) + R(vxY, Z) + R(Y, VXZ)},

where S denotes cyclic sum. Recall the following Bianchi second identity:

S{(VXR)(Y, Z) + R(T(X, Y), Z)} = 0.

Therefore, when we substitute (V^FX^, Z), we have

0 = S{-R(T(X, Y),Z) + R(VXY, Z) + R(Y, SjxZ)}.
By actually carrying out the cyclic sum, and noting that Y, Z E r(U, N), we
obtain

0 = -R(T(Y, Z)+VYZ-VZY,X).

Since T(Y, Z) = 1YZ- VZY- [Y, Z], we find that R([Y, Z],X) = 0. This
proves the theorem.   Q.E.D.

The following corollary extends a Chern-Kuiper result in [1] to the affine
case.

Corollary 23.   If p(m) is locally constant on an open submanifold K of
M, then N is integrable on K.

At this point, unlike the Riemannian case, we cannot conclude that the
leaves of AT are 'flat' because the affine connection 7 on M does not induce con-
nections on the leaves.

Let /: M —► Ai' be a smooth map between two manifolds. We recall that
a vector field X on M is f-related to a vector field X' ofM' iff\Xm) = X'^m^
for all m E M.

Proposition 2.4. Let f: M —*■ M be an (local) affine transformation of
the affine manifold (M, V). 77ien p(m) = p(f(m)).

Proof.  Since / is a transformation, every vector field X is /-related to
f*X.  Since /is an affine transformation, f*R(X, Y)Z = R(f*X, f*Y)f*Z ( see
[4, Proposition 1.2, Chapter VI]). Now the proposition follows immediately be-
cause /«, is an isomorphism.   Q.E.D.

Consequently, if the manifold M is locally affine homogeneous, i.e., the
pseudogroup of local affine transformations is locally transitive, then A7 is a non-
singular distribution.

3. Leaves of nullity distributions. Throughout this section, we assume that
the nullity distribution N on an affine manifold (M, V) is nonsingular, and that
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326 SIN-LENG TAN

the curvature tensor is parallel with respect to TV, that is, VXR = 0 for all X G TV.
We note that for a Riemannian manifold, the curvature tensor of its canonical
connection is already parallel with respect to its nullity distribution.

Let M' be a submanifold of M.  In general, the connection V on M does
not induce a connection on M'.  In the case of Riemannian manifold, it is easy
to see that the canonical Riemannian connection on M does induce a connection
V' on the submanifold M'. But if M' is an auto-parallel submanifold of the affine
manifold (M, V), that is, for each vector XE TM'm, and each curve t in M' start-
ing from m, the parallel displacement of X along t (with respect to the affine
connection of the ambient space M) yields a vector tangent to M', then the affine
connection on M induces a connection of M' in a natural manner.

Lemma 3.1.   TJie submanifold M' of an affine manifold (M, V) is an auto-
parallel submanifold if and only if V XY is tangent to M' for all X, Y E X(M').
Hence V induces a connection v' on M' in a natural manner.

Proof.  See [4, §8, Chapter 7].

Proposition 3.2. Every leaf of N is auto-parallel

Proof. Let L be an integral submanifold of TV. From the preceding lem-
ma, we need to show that VXY is tangent to L for X, Y E 1(7,). It is sufficient
to prove the following.

Lemma 3.3. If X, Y are two vector fields which lie in the nullity distribu-
tion TV, rAen VXY E T(N).

Proof.  We need to show R(VXY, Z) = 0 for all Z G X(M). Since X, Y E
r(N), we have Vx(F(y; Z)) = 0 and R(Y, VXZ) = 0. Therefore,

R(VXY. Z) = JVXR)(Y, Z) + VX(R(Y, Z))-R(Y, 1XZ)

= -(VxR)(Y,Z) = Q,

since 7? is parallel with respect to TV.    Q.E.D.

Lemma 3.4.   Every auto-parallel submanifold M'ofM is totally geodesic.

Proof.  See [4, §8, Chapter 7].

Theorem 3.5. Every leaf L of N is totally geodesic and flat with respect
to the induced connection v' on L.

Proof.  The proof follows easily from the above lemma and Proposition
3.2.

Theorems 2.2 and 3.5 generalize the theorems of Chern and Kuiper and
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Maltz for Riemannian nullity distributions. It is quite possible that what Maltz
did in his thesis could also be generalized to affine cases.

4. Symmetric spaces. We follow the definitions and notations in [4, Chap-
ter XI].

Proposition 4.1.   77ie nullity distribution N of an affine locally symmetric
space (M, V) is nonsingular.

Proof.   By Proposition 2.4, this amounts to showing that (M, V) is affine
locally transitive. But the set of local symmetries is clearly locally affine trans-
itive, and this proves the proposition.    Q.E.D.

Consequently, the assumption that N is nonsingular is naturally satisfied on
(local) symmetric spaces. The leaves of N are of course flat and totally geodesic
submanifolds of M (Theorem 3.5), since the curvature tensor is parallel here.

We shall now assume that (M, V) is connected (globally) affine symmetric.
Thus, (M, V) can be identified with the reductive homogeneous space G/77 with
the canonical G-invariant connection V, where G is the identity component of
the group of affine transformations of M, and 77 is the isotropy subgroup of G at
a fixed point OEM. The symmetries on M induce an involution a on G such
that 77 consists of elements fixed by a.

Let g, f) be the Lie algebras of G, 77 respectively. Since G/77 is reductive,
the Lie algebra g may be decomposed into a vector space direct sum of % and an
ad 77-invariant subspace m. Moreover, at 0 £ M,

R(X, YyZ = -[[X, Y],Z],   for X, Y, Z E TM0.

Here, TM0 is identified with m in the decomposition g = f) + m.

Proposition 4.2. 7,ef m' =N0. Then, m' is fAe largest abelian ideal of g
in m. Moreover, m' satisfies

(i)  [m\ m] = 0;
(ii)  [m\ [m,m]] =0.

Proof. We first prove a lemma.

Lemma 43.   The isotropy representation of Hin M = G/H is faithful

Proof.  We claim that for A,, A2 £ 77, (hx,)0 = (A2,)0 implies hx = h2
on G/77. But this fact follows from [4, Lemma 4, p. 254] since hx, h2 are a
fortiori affine mappings. Clearly, G acts effectively on M, therefore hx =h2.
Q.E.D.

Proof of proposition.  We first prove (i). From the definition of m', we
have
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m' = {X £ m[R(X, YyZ = O for all Y, Z E m}

= {XEm\ad[X, Y]Z = 0}.
Thus, for XEm'.YEm, we have ad[X Y] = 0. Since [X, Y] E Í) and also 77
acts faithfully on m (lemma above), we have [X, Y] = 0. This proves (i).

It follows from (i) that m' is an abelian Lie algebra. To show that m' is an
ideal of g, We need to show that [X, Y] E m', for X E m', Y £ h. Now

[X, Y]Em'*=*[[[X, Y],Z], W] = 0   forallZ, WEm
*=* [[[Y, Z],X], W]- [[[Z, X], Y], W] = 0.

Since [Y, Z] E m, therefore by (i), we have [[Y, Z], X] = 0. Hence, the first
term vanishes. Similarly, the second term also vanishes. This proves m' is an
abelian ideal of g in m.

Property (ii) can be proved by using (i) and the Jacobi identity. Finally,
the fact that m' is the largest abelian ideal of g in m follows immediately because
these properties characterize m'.   Q.E.D.

The following corollary is immediate.

Corollary 4.4.   (i) TAe center i of g is contained in m'.
(ii) If [m, m] = b, then m' = J.

It is now clear that we can prove a structure theorem on symmetric spaces.
Let G' be the connected normal abelian Lie subgroup of G which has m' as its
Lie algebra.

Lemma 4.5.   77ie subgroup G' is a closed subgroup of G.

Proof.  Let G' be the closure of G' and let in be its Lie algebra. G' is
closed if and only if ñü = m'. Clearly, m is an abelian ideal of g. By Proposition
4.2, if in Cm, then in = m'. Thus, it is sufficient to show that do(X) = -X, for
X £ iñ, where a is the involutive automorphism of G.  Since G' has Lie subalgebra
m' which is contained in nt, we have o(g) = g~l, for g E G'. Now G' being the
closure of G' in G, we also have o(g) = g~l, for g E G'. Consequently, we have
da(X) = -X, for X E m. This proves the lemma.   Q.ED.

If 77' = G' n 77, a = o|G, then from the lemma above, (G\ 77', a) is a
closed normal symmetric subspace of (G, 77, a). If we put G* = G/G', 77* =
77/77', and define a* to be the involutive auotmorphism of G* induced by a, then
(G*, 77*, a*) is a symmetric space, and moreover, M is a fibre space over the
affine symmetric space G*/77* with fibre G'/77' in a natural manner. Summing
up we have the following.

Theorem 4.6.   Let M = G/77 be an affine symmetric space.  Then M is a
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fibre bundle over G*/H* with fibre isomorphic to G'/H'. Moreover, the base
manifold has trivial nullity distribution.

Proof. It remains to show that G*/H* has zero nullity distribution. We
first note that 77' = H n G' is a discrete group, since m' n 6 = 0. Hence, the
Lie algebra g* of G* is equal to fj + m*, where m* = m/m'. We identify m*
with the tangent space at Ô" = eH* G G*/H*. It is sufficient to show that G*/H*
has zero nullity space TVg at 0 with respect to the unique C*-invariant connection
in G*/H*. Let XENq C m*. Since G* acts effectively on G*/77*, it follows
from Proposition 4.2 that [X, rn*] =0. Let X G m represent X in m*. Then
[X, m] Ç m', which implies that [X, m] Ç f) n m' = 0. Hence, we have XEN0
= m\ This proves that X = 0.   Q.E.D.

Corollary 4.7.  The fibres of the above bundle are flat and totally geo-
desic submanifold s of M.

Proof.   Follows immediately from Theorem 3.5.
5. Riemannian symmetric spaces. Let (M, g) be a Riemannian symmetric

space and 7 the corresponding Riemannian connection with respect to the metric
g. A Riemannian symmetric space is associated with a symmetric space (G, H, a)
where G is the identity component of the Lie group of all isometries on M, and
H here is the compact subgroup of G which leaves a point OEM fixed. We re-
called that (Ai, g) is said to be of compact type (respectively noncompact type) if
G is compact (respectively noncompact) and semisimple. It is said to be of
Euclidean type if m is an abelian ideal in g, where g = f) + m is such that h is
the Lie algebra of 77, and m is the eigenspace of da for the eigenvalue -1.

Proposition 5.1. Let (M, g) be a Riemannian symmetric space of the com-
pact or noncompact type.  Then (M, g) has zero nullity distribution.

Proof.  We have from Proposition 4.2 that m' = TV0 is an abelian ideal of
g. Since g is semisimple, m' equals zero. The proposition now follows since
/V, s TV0 for all x G M.   Q.E.D.

Proposition 5.2. Let (M, g) be a simply connected Riemannian symmetric
space.  Then M is a product, M = M0 x M_ x M+, where M0 is a Euclidean
space, M_ and M+ are Riemannian symmetric spaces of the compact and non-
compact type, respectively.

Proof.  See [2, p. 208].
It is clear that the nullity distribution TV of a Riemannian symmetric space

(M, g) of Euclidean type is equal to the whole tangent bundle TM. Thus, it fol-
lows from Proposition 5.1 that the nullity distribution TV of a simply connected
Riemannian symmetric space (M, g) is just the Euclidean part of the manifold as
in Proposition 5.2. If we compare Theorem 4.6 and Proposition 5.2, we see that
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in the affine symmetric space (we do not make the assumption that it is simply
connected), we can also 'factor' out the flat part of the manifold, and the remain-
ing part has zero nullity distribution.

6. An application. Let G be a compact Lie group, and B be an ad G-invar-
iant positive definite symmetric bilinear form on the Lie algebra g of the Lie
group G.  Then B induces a G-bi-invariant Riemannian metric g on G  Let V be
the unique Riemannian connection of (G, g). It is clear that V is bi-invariant and
for X, Y E g, we have VXY = K[X, Y] and R(X, Y) = -Kad[X, Y] (see [4,
Vol. II, p. 204]).

Since V is G-bi-invariant, the nullity distribution TV of the Lie group G is bi-
invariant. Hence TV gives a regular distribution on G.  Moreover, considered as a
bundle over G, it is trivial.

Proposition 6.1. The compact Lie group is semisimple if and only if the
nullity distribution is zero.

Proof.  It is easily shown that the nullity at identity TVe is equal to zero.
By virtue of the invariant property of TV, we have TV = 0.

Conversely, if G is not semisimple, then we have a nonzero centre J of g.
Therefore, there exists X ± 0 in i such that [X, Y] = 0 for all Y E g. Thus
ad[Jf, Y] = 0 for all Y E g. Consequently, Ne contains the nonzero vector X,
and this implies that TV is nonzero.   Q.E.D.

Corollary 62.   Let G be a compact Lie group.  Then Ne is the centre
of g.

Proof.   Follows immediately from above proposition.
Proposition 6.1 gives another geometric characterization of semisimple Lie

groups. It says that if the compact Lie group has 'flat' leaves with respect to any
bi-invariant metric, then it is not semisimple.

7; Compact Lie group actions. Let F: G x M —► M be an action of a
compact connected Lie group on a manifold M. Every point m EM determines
the map Am: G —► M given by Ama = am, for a G G and m EM. Throughout
this section, we assume that G acts almost freely on M so that Image(<A4m)e C
TM has the same dimension for all m E M. These subspaces define a distribution
E on the manifold M.

Proposition 7.1. The distribution E is integrable. Moreover, E is trivial

Proof.  The C(M)-mod\Ae T(E) is generated by the fundamental vector
fields X*, where

xm " dAm(X),   for X E g and m G M.
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Since [X*, Y*] = [X, Y] *, for X, Y E g, it follows that E is integrable. The
distribution E is trivial because £sMx g.   Q.E.D.

Since G is compact, it induces a Riemannian metric g on M. Moreover g
can be chosen such that G acts as a group of isometries. With respect to g, let
Q be the orthogonal complement of E so that TM = E © Q. It is clear that both
E and Q are both G-invariant, and the metrics induced on E and Q are also G-
invariant.

Next, we want to construct a metric connection V on Q such that the
curvature R satisfies R(X, -) = 0 for X £ r(E). We can do this by first construc-
ting a G-invariant metric connection D on Q.  Let D' be any metric connection
on Q, and set

DXZ = f a~1 (D'aX(aZ)) da,   for X £ TMm and Z £ T(Ô).

Then it is clear that D remains a metric connection, and becomes G-invariant;
that is

Da YaZ = aDxZ,   for Y E X(M), Z E T(0 and a EG.

Differentiating the above equation, we have

Dlx*,Y)Z + DY[X*,Z] = [X*,DYZ],   forX£ g, Y E X(M) and Z E T(ß).

Let i, /, p and u be the natural maps of the following split exact sequence

(71) 0-yE-^TM-^Q->-0

We now can construct the required metric connection V on Q by setting

-   Y\DXY,        for X, YET(Q),
x       I ir[X, Y],    for X E r(E) and Y E r(Q).

It is clear that V extends to a connection on Q.

Proposition 7.2. 77ie connection V on Q is a metric connection. More-
over, the curvature R satisfies

(7.2) R(X,-) = 0   forXET(E).

Proof.  The first part of the proof is similar to [7, §6] and follows easily
from the above construction. To prove the second statement, we first show that

R(X, Y) = 0,   for X, Y E T(E).

In fact, fix W E T(Q), and define Z £ T(E) by

VYW=[Y, W]+Z.
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Since E is integrable, [X, Z] G Y(E). Hence it[X, Z] = 0, and so

VxVyW = it([X,[Y,W]]).

From this and the Jacobi identity, it follows that

R(X, Y)W= VXVYW- VyV^W- Vj^yjrV

= it{[X, [Y, W]} - [Y, [X, W]] - [[X, Y],W]}

= 0.

Hence, we have R(X, Y) = 0, for X, Y E r(E). Consequently, to show (7.2), it
is sufficient to show that

R(X, Y) = 0,    for X E T(E), Y G r(ß).

Since the fundamental vector fields span the fibres of E, it is sufficient to show
that

R(X*, Y) = 0    for Y E r(Q), X E g.

But for W E r(0,

(7.3) R(X*, Y)W = it{[X*,DYW]- DY[X*, W] -D{x^YiW).

Since g is G-invariant, we see that [X*, Z] E T(Q), for Z G T(Q). Therefore,
(7.3) becomes

R(X*, Y)W = [X*,DYW]-Dy[X*,W]-D[x,tY]W = 0.

This completes the proof of the proposition.   Q.E.D.

Theorem 7.3.  Given an almost free action of a compact Lie group G on M,
then there exists an affine structure on M with nullity index at least the dimen-
sion of G.

Proof.  Let us first prove a lemma.

Lemma 7.4.   Let F = E © Q, and let D (respectively D') be a connection
on E (respectively on Q).  We define V as follows:

VXW = Dx(pW) + D'x(irW),   for XG X(M) and WE T(F),

where p, it are as in (7.1). Then V is a connection on F. Moreover, the curva-
ture Rofy satisfies

R(X, Y)W = k(X, Y)pW + k'(X, YptW,

where ft, ft' denote the curvature ofD, D' respectively.
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Proof.  It follows from routine verification.
Proof of theorem.   Since E is trivial, there exists a flat metric connec-

tion D on E.   From the preceding lemma, D and the connection V in Proposition
7.2 define a connection V on TM. It is easy to verify that V is metric. From
Lemma 7.4, we have

R(X, YyZ = k(X, Y)(pZ) + R(X, Y)(nZ),   for X.Y.ZE X(M).

Since D is flat, we therefore have

R(X, Y)Z = R(X, Y)(*Z).

Suppose X E T(E), then, from Proposition 7.2, we have

R(X, Y)Z = R(X, Y)(nZ) = 0.

This shows that E CN.  Hence this completes the proof.   Q.E.D.

8. Partial integrability. A G-structure on a manifold M is called integrable
(locally flat) if it is locally equivalent to the canonical flat G-structure. Quite
often, the integrability of a certain G-structure can be expressed by the vanishing
of certain tensors on M.  The following are a few examples.

G-structure tensor
(1) Affine or Riemannian structure Curvature tensor
(2) Almost complex structure Nijenhuis torsion
(3) Conformai structure Conformai tensor

We can define nullity distributions for those G-structures characterized by tensors.
If the resulting nullity distribution is involutive, then we can use the theory devel-
oped to study the resulting foliated structure on the manifold M.

In the remainder of this section, we devote ourselves to studying the partial
integrability of an almost complex manifold. Let M be an almost complex mani-
fold with almost complex structure /.  The Nijenhuis torsion of the almost com-
plex manifold M can be regarded as the map T: TM —*■ Hom(rA7, TM). Then the
nullity distribution N of the almost complex manifold M is defined by setting
TV = Kernel T.

A connection V on the almost complex manifold M is said to be almost
complex if the almost complex structure J is parallel with respect to V, that is
VX(JY) = JVXY for all X, Y E Ï(A7). Every almost complex manifold M admits
an almost complex connection such that its torsion T' is given by T = ST' (see
[4, Vol. II, p. 143]). The following proposition summarizes some basic properties
of TV.

Proposition 8.1. (i) 77ie nullity index p(x) is upper semicontinuous.
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(ii) The nullity distribution N is invariant under the endomorphism J.
(iii) If T is parallel with respect to the almost complex connection V, f Aen

TV is involutive.

Proof.  Statement (i) is proved just like Proposition 1.1. To show (ii), let
XENX. We have

1\JX, Y) = -TQJX, JY),   for Y E TMX,

= T(X, JY) = 0

which implies that JXENX. This proves (ii). To prove (iii), let X, Y E T(£/, TV).
Then

0 = T(X, Y) = ST'(X, Y) = &(VXY - VYX - [X, Y]).

Thus [X, Y] = VXY- VrX  Therefore, for all Z £ r(U, TM), we have

T([X, Y],Z) = T(VXY- VYX, Z) = T(VXY, Z) - T(VYX, Z).

Since T is parallel, we have

0 = (VXT)(Y, Z) = VXT(Y, Z) - T(VXY, Z) - 1\Y, 1XZ) = ~T(VXY, Z)

since X, Y £ T(t/, TV). Hence, N(VXY, Z) = 0. Similarly, we can show that
N(VYX, Z) = 0. This shows that T([X, Y], Z) = 0 for all Z £ r(U, TM), which
implies that [X, Y] E T(U, TV). This completes the proof.   Q.E.D.

Theorem 8.2. 7/TV is nonsingular, then the leaves of the nullity distribu-
tion of the almost complex manifold M are complex manifolds which are totally
geodesic in M.

Proof.  Let L be a leaf of TV.  The almost complex structure JofM induces
an almost complex structure on L (Proposition 8.1(h)). Moreover, the Nijenhuis
torsion of the almost complex manifold L vanishes. Hence L is a complex mani-
fold. From the proof of the above proposition, we see that VXY E TV for X, YE
TV.  As in §3, we conclude that L is auto-parallel, which implies that L is totally
geodesic.   Q.E.D.
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