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Summary 

A few recent theoretical papers have been devoted to the effect of the 
elastic properties of a fluid upon die swell. A rapid survey might suggest that 
the range of Weissenberg numbers covered by the calculations and the values 
of swelling ratio and exit pressure loss depend upon the numerical algorithm. 
In the present note, we show the importance of mesh refinement on the 
analysis; we also show that mixed and displacement techniques lead to 
slightly different results. 

1. Introduction 

Several results on die swell have been obtained since 1974 by means of the 
finite element method. The Newtonian creeping jet was investigated by 
Nickel1 et al. [ 11, while inertia and surface tension effects were incorporated 
into the previous method by Reddy and Tanner [2]. Shear-thinning effects 
were studied by Tanner et al. [3] who considered the exit flow of a power-law 
fluid. 

Elastic effects have been considered only recently. Reddy and Tanner [4] 
studied swelling of a sheet of second-order fluid, while Chang et al. [5] were 
able to apply the collocation and Galerkin method to slit and circular die 
swell of a generalized Maxwell fluid. Crochet and Keunings [6] studied slit, 
circular and annular die swell of an upper convected Maxwell fluid. More 
recently, Coleman [7] obtained results on slit die swell, while Viriyayutha- 
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korn and Caswell[8] have solved the problem of circular die swell of a fluid 
of the integral. type. 

The methods used in [4] to [8] fall essentially into two categories: [4], [5] 
and [8] use an extension of the classical displacement (or u-v-p) finite 
element method, while [6] and [7] utilize a mixed finite element method. 

Creeping flow of a Maxwell fluid in the absence of surface tension 
depends upon a single parameter which we choose to be Xv,, i.e. the product 
of the relaxation time and the wall shear rate in the upstream fully developed 
flow. A synoptic study of the results contained in [4] to [8] reveals that all 
available techniques fail to converge beyond some value of Xy,. 
Coleman [7] obtained the highest value allowing convergence, i.e. 1.25; on 
the other hand, Chang et al. [5] obtained the highest swelling ratio (although 
for a moderate value of 0.6 for Xj,). It is striking to observe that these 
authors used very coarse meshes for obtaining their results. In particular, 
Chang et al. [5] use for the analysis of slit die a mesh which is only one 
element wide and four elements long, with Hermite cubic interpolating 
functions for velocity components and pressure. 

The present note collects numerical experiments showing that mesh effects 
have a dominant influence in die swell calculation. We will show that the 
mixed method used by Crochet and Keunings [6] allows us to consider the 
same relatively high value of Xi;, as Coleman [7], provided we use a similarly 
coarse mesh. We will also use an extended (u-v-p) method [9] for showing 
that the swelling ratio depends upon the coarseness of the mesh when it is 
calculated with that method. 

2. Mixed methods 

Let T denote the extra-stress tensor, p the pressure, v the velocity vector, L 
the velocity gradient tensor, D the rate of deformation tensor, p the specific 
mass, p a constant shear viscosity, X a relaxation time, and f a body force per 
unit volume. The conservation of mass, momentum balance and constitutive 
equations for steady flow of an upper convected Maxwell fluid are given as 
follows, 

divv=O, (1) 

-gradp+V.T+f=pv.Vv, (2) 

T+A;=2yD, (3) 

where V is the gradient operator, and 
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Finite element methods for solving this system of non-linear partial 
differential equations consist in selecting an approximation o* for the 
velocity field and p* for the pressure; some methods also use an approxima- 
tion T* for the extra-stress tensor. These approximations are given as 
follows, 

v* = i vjqj, p* = $j pjri, 
j=l j=l 

T*= i TJcpj, (5) 
j=l 

where vi, p ‘, Tl are nodal values and #,, 7~,, +, are shape functions. Most 
available techniques apply Galerkin method for solving eqns. (1) and (2); we 
write 

(q,; divv*)=O, 1 GjGN, (6) 

((~4;)~; -p*I+T*)+($,;pv*.Vv*)=F,, lGj<L, (7) 

where ( ; ) denotes the scalar product in the L’ space over the domain of 
integration, F, is the nodal force resulting from volume and contact forces, 
while an integration by parts has been performed for obtaining eqn. (7). 

In [6] and [7], the system is closed by applying the Galerkin method to 
eqn. (3), i.e. 

(c$~;T*+A;*-~/AD*)=o, 1 <j<M; (8) 

the resulting algorithm follows the philosophy of mixed variational princi- 
ples in solid mechanics. 

A modified mixed method used in [5] and [8] consists in splitting the 
extra-stress as follows, 

T=~/LD+X. (9) 

Eqn. (7) becomes 

((V #j)T; -p*I + 2pD* + X*) 

+(Gi; pv*-Vv*) =I$, 1 GjGL. 00) 

In [8], X is calculated on the basis of the integral representation of eqn. (3) 

while in [5] it is obtained by solving eqn. (8). In [9], I: is replaced by -X ; 

in view of eqn. (3), and eqn. ( 10) becomes 

((v#j)=; -P*I+~/JD*) -A((v$~)=; $*) 



When X vanishes, this finite element algorithm then reduces to the classical 
displacement, or u-u-p technique. 

In the next section, we will compare results obtained on the basis of the 
following methods: 

MIXl: eqns. (6),(7),(8); qj = $ E P2, 7~~ E P, 

MIX2: eqns. (6),( 1 l),(8); \cli = +j E P2, rj E P, 

MIX3: eqns. (6),(7),(8); \cj = +j E P,, vrj E P,,+ ; 

P, and P2 denote the spaces of first and second degree complete polynomials 
over triangles, while P,,+ denotes the space of discontinuous functions with a 
constant value over a rectangle formed by two triangles. Methods MIX1 and 
MIX2 use Newton-Raphson procedure for solving the non-linear system in 
the nodal values while MIX3 uses an alternate iterative scheme (see [7]). 

The boundary conditions used in the present work are similar’ to those 
used in [6] with the exception of boundary conditions on the stress compo- 
nents. It may be shown that the nodal values of the shear stress component 
must vanish on a plane of symmetry; moreover, numerical experiments have 
confirmed the need of imposing fully developed values of the extra-stress 
components in the entry section. 

3. Slit die swell: mixed methods 

The swelling of a jet at the exit of slit and circular dies was studied in [6] 
with method MIXl; the amount of elasticity of the flow was characterized 
by a non-dimensional number Xi;, which is the product of ,the relaxation 
time and the maximum shear rate on the wall in the fully developed 
upstream flow. The Weissenberg number Wused by other authors is equal to 
X5/h,, where 6 is the average velocity and h is the half-width of the die; one 
finds easily that, for slit dies, A?,,, = 3W. It was found that the iterative 
technique does not converge for values of Ayw higher than 0.75; even for that 
value, we found that the stress and velocity fields lacked the smoothness 
which is usually encountered for such value of A?, in other flows. In a recent 
paper [7], Coleman has obtained a solution for slit die swell up to a value of 
Xv, equal to 1.25 with the use of method MIX3. Coleman imputes this 
success to a modified iterative technique which enjoys a larger radius of 
convergence than the Newton-Raphson method. 

Although using a modified iterative technique was necessary for reaching 
a value of 1.25 with method MIX3, we do not believe that lack of conver- 
gence is in general due to a poor choice of iterative algorithm. Rather, we 
want to show by means of numerical experiments that the maximum value of 
A?,,, allowing convergence is related to the coarseness of the mesh used in the 
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Fig. I. Finite element meshes used by various authors: 1, Crochet and Keunings [6]; 2,3, 
present paper; 4, Coleman [7]; 5, Reddy and Tanner [4]. 

finite element analysis. The reason is that a fine mesh in the neighborhood of 
the edge enhances the stress singularity while a coarse mesh smoothes the 
stress field; the mixed method, in its present form, imposes stress continuity 
which is incompatible with the singularity at the edge. 

Fig. 1 shows five meshes designed for calculating slit die swell, while 
Table 1 gives the associated numbers of degrees of freedom. MESH1 was 

TABLE 1 

Number of degrees of freedom for five finite element meshes 

Velocities Pressure Stresses 

MESH 1 1038 140 1557 
MESH2 294 44 441 
MESH3 150 24 225 
MESH4 192 75 288 
MESH5 494 68 - 

Total 

2735 
779 
399 
555 
562 
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used in [6], while MESH2 and MESH3 were designed for comparison with 
MESH4 used by Coleman [7]. MESH5 was used by Reddy and Tanner [4] 
for obtaining results which will be discussed in Section4. The mesh used by 
Chang et al. in [5] contained 120 degrees of freedom in velocity components 
and pressure. 

The maximum values of Xv, allowing convergence in slit die swell with a 
mixed method are as follows: 

MESH1 and MIX1 : 0.75 MESH2 and MIX1 : 0.85 
MESH3 and MIX1 : 1.25 MESH4 and MIX3: 1.25 

It is obvious that MIX1 with MESH3, and MIX3 with MESH4, with almost 
the same number of degrees of freedom, allow us to reach the same 
maximum value of AyW, despite the use of the Newton-Raphson method in 
MIXl. 

Significant numbers arising from die swell calculations are the value of the 
swelling ratio SW, and the quotient of the exit pressure loss Sp to the shear 
stress T,,, at the wall in the upstream flow. Fig. 2 shows the values of SW and 
6p/r, as a function of A?, for the four cases we have just described. It is 
surprising to see that the swelling ratios obtained with method MIX1 depend 
very little upon the mesh, although we observe a significant difference 
between results obtained with MIX1 and with MIX3 based on different 
approximating functions. On the other hand, we observe on Fig. 2 that 
methods MIX1 and MIX3 exhibit good agreement for the exit pressure 
losses. 

Fig. 2. Swelling ratio and exit pressure loss as a function of the non-dimensional shear rate 
Xi;; mixed methods; *, Crochet and Keunings [6]; 0, present paper, MESHZ, MIXl; X, 

present paper, MESH3, MIXl; A, Coleman [7]. 
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4. Slit die swell: alternate mixed method and displacement method 

The mixed method MIX1 described in Section 2 reduces, in the linear 
case, to an application of the Reissner-Hellinger- Washizu variational prin- 
ciple; it is not used in general for solving Newtonian problems since the 
velocity field obtained with the displacement (or u-v-p) method is smoother, 
and also cheaper to obtain. Method MIX2 extends the u-v-p technique 
(described in [9]) by adding a stress field which is Co continuous over the 
domain of integration. Fig. 3 shows Newtonian contour lines obtained on 
MESH2 with methods MIX1 and MIX2 for the streamlines, the pressure, the 
longitudinal velocity component and the shear stress. These results are 
typical of observations made on other problems: 

(i) the strea m ines 1 are usually smooth since the stream function integrates 
the velocity field; 

(ii) the velocity field is smoother for MIX2 (u-v-p) than for MIX1 (mixed); 
(iii) the pressure contours are almost identical. 
The stress field is smoother for MIX2 than for MIXl; we must point out 
however that with MIX2 (u-v-p) the stress field is a continuous representa- 
tion which is calculated a posteriori from the velocity field. One should not 
conclude from the Newtonian results shown on Fig. 3 that MIX2 is superior 

0. 0.4 0.8 

1-1 

-3. -2. -1. 0. 

f’ 1 1 / 
Fig. 3. Comparison between mixed and u-o-p methods for the Newtonian case. Streamlines 
and contour lines for the pressure, the longitudinal velocity component, and the shear stress 
component (divided by p). 
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Fig. 4. Swelling ratio and exit pressure loss as a function of the non-dimensional shear rate 
Xi;; u-o-p methods; 0, present paper, MESH2, MIXZ; a, present paper, MESH3, MIX2; 
h, Reddy and Tanner [4]. 

to MIX1 ; while this last assertion is true for the Newtonian case, we have 
shown in [9] that the opposite is true in the non-Newtonian case in the 
absence of stress singularities. 

In view of these comments, we found it instructive to solve the slit die 
swell problem with method MIX2 on meshes MESH2 and MESH3. These 
results are compared with those obtained with MIXl, and those obtained by 
Reddy and Tanner [4] for the flow of a second-order fluid with the u-v-p 

method; for the low Weissenberg numbers reached at the present time, one 
should not indeed expect major differences between the flow of an upper 
convected Maxwell fluid and the flow of a second-order fluid endowed with 
identical viscometric functions. 

The maximum values of Xyw allowing convergence are as follows: 

MESH2 and MIX2: 0.6, 

TABLE 2 

Swelling ratio and exit pressure loss for the Newtonian case obtained with different meshes, 
u-o-p method 

MESH MESH3 MESH2 MESH5 MESH 1 

Degrees of 
freedom 

Value of 
SW 

Value of 
~P/TV 

174 338 562 1178 

1.227 1.207 1.200 1.196 

0.36 0.34 0.3 1 0.3 1 



MESH3 and MIX2: 0.7 

MESH5 second-order fluid: 0.75; 

for a second-order fluid, we have selected X = V, /277 (see [4]). It appears that 
the maximum values of A?, obtained with the u-v-p technique and its 
extension MIX2 are lower than those obtained with method MIXl. 

Fig. 4 shows the values of SW and 6p/r, as a function of A?, for these 
three cases, together with the results of MIX1 on MESH1 which extend over 
the same range of X7,. We have also calculated the Newtonian values of SW 
and 6p/r, with the u-v-p method on the dense mesh MESHl. Let us first 
observe that, even in the Newtonian case, the values of SW and 6p/r, show a 
significant dependence upon the number of degrees of freedom; this is best 
seen in Table 2. This dependence remains the same when Xy, increases. The 
swelling ratios obtained with MIX2 and MESH2 compare remarkably well 
with those of Reddy and Tanner [4]; although the Newtonian value differs 
by only 0.02 from the value found with MIXl, the discrepancy increases 
with Av,. Finally, we note that the difference between results on 6p/r, 

obtained by Reddy and Tanner [4] and those obtained with MIX2 and 
MESH2 corresponds to the discrepancy between the Newtonian values 
obtained with these methods. 

5. Conclusions 

We have carried out numerical experiments on slit die swell with three 
finite element meshes and two different techniques, and we have compared 
our results with those obtained by other authors on comparable meshes. 

A first conclusion is that, for a given finite element method, the maximum 
value of Xtw allowing convergence is highly dependent upon mesh refine- 
ment. A coarse mesh allows us to reach a high value of AP,, because the 
stress singularity is smoothed. A second conclusion is that, for a given mesh, 
the mixed method leads to higher values of Xv, than a u-v-p method. 

For a given value of A?,,,, it was found that the swelling ratio depends little 
upon mesh refinement when the mixed method is used; the swelling ratio 
appears to depend more upon mesh refinement with the u-u-p method. Our 
comparisons show that the swelling ratio depends upon the method used for 
its calculation, while all available techniques show good agreement on the 
value of the exit pressure loss. 

Finally, there is no way at the present stage of singling out ‘the best 
method’. The range of Xl;, covered by the available methods is so small that 
the differences which we have pointed out between various results may not 
be significant; moreover, comparisons with experiments are not possible on 
such a small range of Weissenberg numbers. At the present stage it seems 
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that further progress requires devising a numerical algorithm for treating the 
stress singularity, although the nature of the singularity for a Maxwell fluid 
is not known at the present time. 
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