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Abstract. A reliable efficient general-purpose method for automatic digital com-
puter integration of systems of ordinary differential equations is described. The
method operates with the current values of the higher derivatives of a polynomial
approximating the solution. It is thoroughly stable under all circumstances, in-
corporates automatic starting and automatic choice and revision of elementary
interval size, approximately minimizes the amount of computation for a specified
accuracy of solution, and applies to any system of differential equations with deriva-
tives continuous or piece wise continuous with finite jumps. ILLIAC library sub-
routine #F7, University of Illinois Digital Computer Laboratory, is a digital
computer program applying this method.

1. Introduction. A typical common scientific application of automatic digital
computers is the integration of systems of ordinary differential equations. The
author has developed a general-purpose method for doing this and explains the
method here. While it is primarily designed to optimize the efficiency of large-scale
calculations on automatic computers, its essential procedures also lend themselves
well to hand computation. The method has the following characteristics, all of
which are requisite to a satisfactory general-purpose method:

a. Thorough stability with a large margin of safety under all circumstances.
(Instabilities in the subject differential equations themselves are, of course, re-
flected in the solution, but no further instabilities are introduced by the numerical
procedures.)

b. Any integration is started with only the essential initial conditions, i.e.
there is a built-in automatic starting procedure.

c. An optimum elementary interval size is automatically chosen, and the choice
is automatically revised either upward or downward in the course of an integration,
to provide the specified accuracy of solution in the minimum number of elementary
steps.

d. The derivatives need be computed just twice per elementary step, which is
the minimum consistent with controlling accuracy.

e. Any system of equations

-^ = fiix,yi,y,---) i = 1,2, • • • n

(1) / d \I often written -j- = fix, y) for short )

can be treated for which the /< are either continuous or piecewise continuous func-
tions with finite jumps.

f. The solution is computed at (although not necessarily only at) equally spaced
values of the independent variable x, with specifiable spacing.
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Further useful though perhaps not indispensable characteristics of the method
are:

g. Enough numerical information is developed to make interpolation or evalua-
tion of functions (e.g., roots) of the solution possible with accuracy equivalent to
the solution accuracy.

h. The sense of integration can be reversed.
Characteristic a) is essential for getting trustworthy results in lengthy auto-

matic computations because the number of elementary steps may be as large as 10s
or 106 or more, and disturbances in unstable methods typically grow exponentially
with the number of steps. Characteristic b) is not only a convenience but also
insures that in the integration of intrinsically unstable equations, in which early
errors tend to be strongly magnified, the starting errors do not dominate. Charac-
teristic c) relieves the human being of the often difficult task of determining the
correct interval in advance. Where the human being must specify the interval for a
computation not to be performed by himself he tends to make up for uncertainty by
a conservatively small interval choice. Characteristics c) and d) together thus make
for efficient use of computer time, and the saving in computer time can easily be a
factor of 10 or even much more in the handling of problems in which the interval
should vary.

In regard to the question of relating our method to previously available methods,
we wish to make clear at the outset that it is equivalent to a reformulation of the
method of Adams [1, p. 53-55], [2, p. 81-82] for it uses effectively the same quadra-
ture formula as does Adams. However, the formulation and the point of view are so
different that it is instructive and seems appropriate to explain the method starting
from first principles, as we shall do below, rather than starting from Adams' quad-
rature formula.

Presently available methods may be divided into two classes: those involving no
memory and those involving some memory, of the past behavior of the solution.
The Runge-Kutta methods [1, p. 72-75], [2, p. 59-74] are typical of the first class,
the Milne methods [1, p. 64-70], [2, p. 84] and the Adams methods of the second.
It has been clear for some time that the methods with memory are superior in
accuracy for a given elementary interval size and a given amount of computational
labor since they permit a better approximating curve to be fitted over the elemen-
tary interval. Our method involves such memory. In return for this superiority of
the methods with memory we must cope with two problems quite foreign to the
memoryless methods: how to start off, since at the beginning there is nothing to
remember; and how to prevent the remembered numerical information from behav-
ing unstably.

Two further problems must be dealt with in order to implement the automatic
choice and revision of the elementary interval, namely, choosing which quantities to
remember in such a way that the interval may be changed rapidly and conveniently
and developing an appropriate set of rules for controlling the interval size. Thus the
four major problems are: automatic starting, stability, choice of quantities to
remember and interval control logic. The last of these four is the most intricate.

As with most methods, there exist lower and higher "order" versions of this
method. The author prefers to use the term "degree" rather than "order", since all
methods are ultimately equivalent to finding a polynomial of some given degree
approximating the solution of the system of equations, and since the term "order"
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is already standardized usage for the number of equations n in (1). We have chosen
and recommend degree 5, which corresponds to a truncation error 0(/i7) per elemen-
tary step of length h, for large-scale digital computer operations. This represents an
advantageous return in accuracy per step with quite large steps, while still not
overdoing the accuracy when the choice of h is limited to inverse powers of 2, as is
natural in a binary computer.

The order n of the system (1) is immaterial to a large part of our discussion, so
that we can advantageously use the simpler notation dy/dx = fix, y) for (1),
regarding y and / as vector-like objects with n real numbers as components. The
independent variable x is, of course, a single real number. Whenever the multi-
component character of y and / makes a significant difference in the discussion we
shall so note.

In Section 2 the choice of quantities to be remembered is discussed, in 3 the
numerical procedure and the associated stability theory are developed, in 4 certain
parameters of the method are adjusted for optimum stability and accuracy, in 5
the procedure for modifying the interval is given, in 6 the characteristic behavior of
the remembered quantities is described, in 7 error estimation is discussed, in 8 the
automatic interval control logic is developed, in 9 automatic starting is described
and finally in Section 10 the results of certain test problems done by this method
are exhibited. In Appendix A are collected the working formulas and error estimates
for degrees 3 through 6 of the approximating polynomial. Appendix B contains a
schematic flow chart for programming the method for a digital computer, with com-
puting time estimates. Appendix C is a discussion of control of roundoff errors in
iterative numerical procedures.

2. Choice of Quantities to Remember. It is immediately clear that quantities like
differences yix) — yix — h), yix — h) — yix — 2h), etc., and/or higher differences
would constitute a poor choice to remember, for changing the interval in terms of
these is a cumbersome process involving much interpolation and/or extrapolation.
(Ignoring the remembered quantities whenever the interval is to be changed and
starting again "from scratch" would entail serious loss of accuracy and of time).

We take our cue from the remark above to the effect that all methods of numeri-
cal integration are equivalent to finding an approximating polynomial for
yix). Of the many ways of specifying a polynomial of degree m by m + 1 constants
there is one way which is interval-independent, namely: to specify the 0th to with
derivatives of the polynomial evaluated at the current value of x. These particular
m + 1 quantities specify the same polynomial no matter what the interval is,
being in fact defined with no reference to an interval at all. They would be ideal
from the point of view of interval modification. However, they are not suitable for
automatic computation because the higher derivatives may vary enormously in
magnitude and are thus not conveniently stored in a "fixed-point" arithmetic
operation.*

* The discussion in the present paper is limited to "fixed-point" arithmetic procedures.
The question whether a "floating-point" version of the method could be made safe against loss
or illusory gain of significance of the quantities in the course of a long computation, and other-
wise trustworthy, is for future investigation. The possible freedom to store just the higher
derivatives of the approximating polynomial and the increased freedom from scaling problems
certainly suggest that one investigate the floating-point possibility.
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In order to see how to modify our choice so as to cure the latter difficulty, we
consider how the m + 1 derivatives would actually be used in the computation. A
typical important use is, in the first phase of the integration step from x to x + h,
to "predict" a trial value of yix + h) from the formula:

y'ix + h) = yix) + hifix,yix)) + | P*"(x)
(2)

+ £,P"'ix) + £*»•""(*) + |tP6'""(x)|

where m has been made 5 and Ptix) = yix), P&'ix) = fix, yix)), P5" • • • Pb'""
are the 6 aforementioned derivatives of the approximating polynomial evaluated
at x. Formula (2) is written in the special way shown, with one factor h external to
the { }, because we may expect / to be computed to full register accuracy on occa-
sion, which suggests that the remaining terms in the [ } be kept to the same
accuracy; and because for the case of small h and many steps (many successive
applications of formulas like (2)) we can minimize the accumulation of roundoff
errors in y by keeping log (| h |_1) more places in h{ } than we keep in the { ¡
itself. Formula (2) in the form written then suggests that the appropriate quantities
to store in the computer registers are, besides the always necessary yix) and
Six, yix)), the four quantities

aix) =^Ps"ix)      bix)=^P'"ix)

(3) »» l«
dx) =tL.iPb""ix)    dix) -Lp»»'ix)

We may reasonably expect these quantities to stay within register capacity since an
appropriate choice of h will just cause the successive terms in the j j to decrease
in magnitude no matter how large the P^ themselves become. Although the
quantities (3) are not completely interval-independent, they depend on the interval
in such a simple way that interval change involves merely multiplying each by a
constant, and in the important practical case of a binary computer and intervals
restricted to inverse powers of 2 the change is achieved simply by shifting the
numbers. Formula (3) seems accordingly to be essentially the unique sensible
choice, at least for a fixed point arithmetic procedure.

We emphasize that the quantities y, f, a, b, c, d as they exist in the computer
registers and appear in our discussion are formally defined from successive deriva-
tives of an approximating polynomial, so that they always exist since an approxi-
mating polynomial always exists, whether or not the exact solution of the original
problem (1) has five derivatives. If the original problem involves a discontinuous/,
the quantities a • ■ ■ d tend to get large because of that, but concurrently tend to
get small because of interval decrease, with the overall result that they stay within
register capacity. While the existence of an approximating polynomial is assured,
its quality as an approximation of the exact solution of (1) depends on how it is
developed ; in subsequent sections we discuss how to develop it in an optimum way.

3. Taylor's Theorem Procedure Modified for Stability. In order to have a com-
pletely defined integration procedure we must have rules for determining all of the
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quantities yix -\- h), fix + h), a{x -f- h) ■ • • dix + h) when given yix),
fix), aix) • ■ • dix) and the differential equation (1). (The starting problem, namely
to determine y, f, a, b, c, d at x + h given only yix) and fix) and the differential
equation, is discussed below in Section 9). Consider first the ordinary Taylor's
series formulas terminated at h6, which in terms of a, b ■ • ■ • read:

y(x + h) = y(x) + h{f(x) +   a(x) +   b(x) +   c(x) +     d{x) +     e(x)J
f(x + h) = f(x) + 2a(x) + 36(x) + 4c(x) +   5d(x) +   6e(x)

(4)    a(x + h) = a Or) + 36 (x) + 6c (x) + 10á(x) 4- 15e(x)
b(x + h) = b(x) + 4c (x) + 10d(x) + 20e(x)
c(x + h) = c(x) +   5d(x) + 15e(x)

d{x + h) = d(x) +   6e(x)

Here we have introduced one more quantity e(z) analogous to a ■ ■ ■ d, which we
eliminate forthwith by using the differential equation. The system (4) as it stands
is incomplete, having one less equation than it involves quantities. But by identify-
ing the second formula of (4) with/(x + h, yix + h)) calculated from the differen-
tial equation, we can eliminate e(x) and get:

y{x + h) = y{x) + h\f(x) +   a(x) +   b(x) +   c(x) +     d(x)

+   »[/(* + *, y(x + h)) -fp]l
f(x + h) = f(x) + 2o(x) + 36(x) + 4c(x) +   5d(x)

+   1 [fix + h, y{x + h)) - fp]
a{x + h) = a{x) + 36(x) + 6c(x) + 10d(x)

+ V U(x + h, y{x + h)) - fp]
b{x + h) = b{x) + ic{x) + 10á(x)

+ V [fix + h, y{x + h)) - fp]
c{x + h) = c(x) +   5ti(x)

+ ¥ L/(x + h, yix + A)) -fp]
dix + h) = d{x)

+   1 [fix + h, y{x + h)) - fp]

where f m fix) + 2a(z) + 36(a;) + 4c(z) + 5ci(x), the "predicted" value of
fix + h).

Now the system (5) augmented by the differential equation is complete, for the
first equation of (5) and the differential equation together constitute an implicit
system determining yix + h) and fix + h); the second equation of (5) is an identity
and the next four then determine aix -j- h) ■ • • dix + h) straightforwardly.

Having arrived at the scheme (5) quite directly from Taylor's theorem we enter-
tain the possibility of using it for numerical integration. A small amount of hand
computation using (5) establishes that it is : a) very accurate indeed, and b) very
unstable indeed, with small disturbances growing approximately as ( — 10)* in s
steps.

(5)
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These two phenomena are closely related. The high accuracy derives from basing
the scheme directly and exactly on Taylor's theorem; however, just because it is so
based it has another property, namely reversibility. If we apply (5) to go from x to
x + h and reapply (5) with reversed h to retrace from x + h to x, we recover the
original quantities y,f • • • d precisely. Now a process reversible in this sense cannot
be stable, for it cannot damp out small disturbances (i.e., "forget" or "lose informa-
tion") as it must to be stable. Stated in terms of the eigenvalues of the stability
matrix M discussed later, reversibility implies that the matrix for backward integra-
tion is the inverse of the matrix for forward integration, which is inconsistent with
the condition for stability, namely that for both these matrices all eigenvalues
except one must he inside the unit circle. (The only exception to the last statement
occurs when the stability matrix is 1 X 1, which corresponds to the trapezoidal
method m = 1 with no "memory.")

We search then for such a modification of (5) as will provide stability with mini-
mum degradation of accuracy. The following discussion will establish that a usable
and in fact essentially optimum modification of (5) consists of replacing the series
of six coefficients 1/6, 1, 15/6, 20/6, 15/6, 1 multiplying the [ ] by new constant
coefficients F = 95/288,1, A = 25/24,5 = 35/72, C = 5/48, D = 1/120 respectively
and leaving (5) otherwise unaltered. It is interesting to note that the ratios of the
new coefficients to the old form a rather strongly decreasing sequence: 1.98, 1, 0.42,
0.15, 0.042, 0.0083, which reminds one of the well known technique for stabilizing
electrical filters involving feedback by somewhat enhancing the low frequency gain
and strongly depressing the high frequency gain.

In searching for an appropriate modification of (5) it is inadvisable to tamper
with the coefficients not pertaining to the [ ], and this will be borne out by later
analysis, for these coefficients are clearly just such as to make the integration of a
5th degree polynomial yix) come out exact (the [ ] will vanish for yix) a 5th degree
polynomial). However, the coefficients multiplying the [ ] have no such unique
significance and we are free to modify them to suit our purpose.

To dispose of the possibility of generalizing the coefficient 1 in the second equa-
tion of (5) : So long as this coefficient remains 1 we can delete the second equation
entirely from the considerations as being merely an identity, and we ultimately do
just that. In the interests of generality the author has experimented some with
modifying this particular coefficient numerically and has indeed found that any
value other than 1 for it, beside costing an additional multiplication, degrades both
the accuracy and the stability.

The remaining 5 equations of (5) with the coefficients 1/6, 15/6, • ■ • 1 replaced
by arbitrary constants Y,A,B, C, D, may then be studied for stability by introduc-
ing a small variation of each of the 5 independent quantities iy, ha, hb, he, hd),
namely (&/, 8ha, 8hb, She, Shd), and studying how this latter quintuple changes as
we integrate from x to x + h [3]. The quantity/is to be regarded as not independent
but a function of y in virtue of the differential equation. After some calculation we
find that the quintuple i&y, hôa, hôb ■ • • hSd), regarded as a 5-component vector
Vix), obeys the equation

(6) Vix + h) = MVix)
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where M is a 5 X 5 matrix:

M =

(7)

1+Y(p-2)       1 + Y(p-3)       1 + F(p-4)       1 + Y(p-S)1-Yp 1 - Yp 1 - Fp 1 - Fp 1 - Fp

¿j>»             ,   , Ajp - 2)       n  , Ajp - 3)       a  , Ajp - 4)      in,^(p-5)1 +-Z=—        3 +-r—        O +-=T~       10 +1 - Yp 1 - Yp 1 - Fp 1 - Fp 1 - Fp

ßp2 B(p - 2) .  , Bip - 3)       , , Bip - 4) ß(p - 5)
1 4--r—       4 + -—-—-     10 4-1 - Fp 1 - Fp 1 - Fp 1 - Yp 1 - Fp

Cp* dp - 2) dp - 3) ,  , Cjp - 4)       .     C(p - 5)1 + --—      &H—1 - Fp 1 - Fp 1 - Fp 1 - Fp 1 - Fp

Dp1 Dip - 2) Dip - 3) ß(p - 4) ¿>(p - 5)
Fp 1 - Yp 1 - Yp 1 - Fp 1 - Fp

d/(z, 2/)

with

(8) p^h ày
We note that the 5-dimensional vector space of V and M is a different space from
the n-dimensional space of y, f, a, etc.

We have treated p as though it were a scalar quantity even though for n > 1
it is really an n X n matrix hidfi/dy¡) ; but it is only the smallness of p, insurableby
appropriate choice of h, which is important in our argument, not its matrix charac-
ter. The difference between pix + h) and pix) has also been neglected, for it gives
rise to errors involving one factor h more than we need consider.

The characteristic equation 0 = | Xôrs — M„ \ of M turns out to be :

0 = (1 - Yp)iX - l)6

+ [2A + SB + 4C + 5D - (1 + A + B + C + D)p]iX - l)4

(9) + [6£ + 24C + 70Ö - (2A + 6B + UC + 30Z))p](X - l)3

+ [24C + 180Z) - (6ß + 36C + 150D)p](X - l)2

+ [120D - (24C + 240Z))p](X - 1) - (120Z>)».

One root of this equation, which may be found by substituting a power series in p
into it, and which we shall call the principal root X0, is essentially a function of p
only, depending but slightly on F, A, B, C and D:

,   ,   6F - 3 + A - jl/5)C p6Xo - e   + ^ gj

(10)
,   -49 + 105F + 14A + (7/5)B - (14/5)C - D p7        f ,

+-3-y\ + 0(p }-
This is a consequence of retaining the coefficients in (5) not pertaining to the [ ].
The root Xo is thus essentially a property of the differential equation system (1),
and whether or not it lies inside the unit circle in the complex X plane determines

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



NUMERICAL   INTEGRATION   OF  ORDINARY  DIFFERENTIAL  EQUATIONS 29

whether the subject system, as distinguished from our numerical method, is stable
or not. On the other hand, the four further roots of (9), which we shall call "ex-
traneous" roots, depend strongly on A, B, C, D and only weakly on p and F; their
location relative to the unit circle determines the stability of the integration method
itself. These roots must lie inside the unit circle for stability of the method, and the
nearer they are to the origin the more stable the method will be.

4. Determination of Parameters. The parameters Y ■ • ■ D are now to be chosen,
primarily to optimize the stability of the method and secondarily, if any freedom is
left over, to optimize the accuracy within the restriction of optimum stability. The
author regards optimum stability as essential to an automatic general-purpose
method, for the rapid elimination of disturbances characteristic of good stability not
only makes an automatic starting process feasible and permits accurate integration
across finite discontinuities of /, as we shall see below, but also minimizes the error
due to interaction of disturbances with non-linearities of the differential equations.!
Since there are four extraneous eigenvalues whose locations in the complex plane we
wish to control and we have five parameters free, we can expect to have considerable
control over stability and accuracy. What actually happens is that A, B, C, D
determine stability and Y is left free to optimize accuracy. Thus we can arrange for
a truncation error of 0(/i7) even though we are using 5th degree polynomials, the
explanation being that in each integration step we use both the 5th degree poly-
nomial available at the beginning and the one available at the end of the step.

Now it is easy to bound | p | (bound the magnitudes of its eigenvalues if it is a
matrix) by control of h during the numerical integration process, while it is much
more difficult actually to compute p for n > 1. Therefore it seems best and is cer-
tainly simplest to choose Y, A, B,C,D independent of p, i.e. as absolute constants,
in such a way that stability is guaranteed for as large a range of p as possible. This
is substantially accomplished by considering (9) with p = 0 (whereupon Y drops
out, indicating that it has little influence on the stability of the method) and then
choosing A, B, C, D so that the four extraneous roots coincide at 0. Thus, we require
(9) for p = 0 to take the form (X - 1)X4 = 0, and it does that for A = 25/24,
B = 35/72, C = 5/48, D = 1/120. The choice of F is then made to nullify the
coefficient of p6 in (10), which has no effect on the stability but optimizes the
accuracy. This determines Y = 95/288. For stability for p ==■* 0 we then depend on
the fact that the extraneous roots are continuous functions of p, so that they cannot
move very far from the origin provided p is appropriately limited.

In order to get a better picture of the behavior of the extraneous roots as func-
tions of p, we first note that for small p they are the roots of

(11) X< = "loo *
as can be read off from (9) with the chosen values of the parameters inserted. It is

t A report by E. Fehlberg [4], has just come to the author's attention. Fehlberg exhibits
other choices of parameters which produce smaller truncation error than Adams' and the
author's choice, but at the expense of much poorer stability, cf. Fehlberg's tables 3 and 4. For
m = 5 the gain in computing speed for the same error is greatest and is (1/0.0801)"7 = 1.43,
which the author considers not worth the risks incurred with the much poorer stability.
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fortunate that the numerical coefficient in (11) is so small, for the pm dependence
of the roots is a rather strong dependence. The roots have also been computed for
p a real number between — 1 and +1, and these are shown in Figure 1. We see that
stability will be guaranteed with a comfortable margin of safety if the interval is so
chosen that p lies effectively inside the dashed curve. This boundary corresponds
to | Fp | ^ 1/8, which is a convenient form of test for a computer.

The author has done considerable searching for other favorable choices of A, B,
C, D with the thought in mind that if the extraneous roots never coincided they
might move away from the origin more slowly as | p | increased, than they do
according to (11). However, all other choices tried were inferior in point of both
stability and accuracy.

The choice of parameters made above seems optimum among choices restricted
to constants independent of p. The potential advantage of a more elaborate pro-
cedure in which the matrix p is numerically computed at every step and F, A • • • ,D
are made chosen functions of p, implying a nonlinear process tailored to the subject
differential equation system, is an interesting topic for future investigation, for it
might lead to faster (though less accurate) methods of solving some classes of
equations.

The working equations of the method have now been determined completely and
they are summarized in Appendix A, equations (44).

The working equations having been determined, the precise connection with

\
Fig. 1.—The extraneous roots of the characteristic equation as functions of p for real p,

plotted in the complex X plane. As p departs from zero these roots depart from the origin along
the loci shown. Loci marked + correspond to positive p and loci marked — to negative p.
Counting outward from the origin along each locus, the points plotted represent in order,
\p\ — tV, h i, è, 1- The real positive extraneous root coalesces with the principal root at p =
—0.88, producing a conjugate pair. The dashed curve encloses all extraneous root values per-
mitted by the interval control tests, which limit lp| to values S .38.
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other methods can be deduced by ascertaining the equivalent quadrature formula
for the method. This can be done by expressing the part h{ } of the first working
equation in terms of past values Six — h),Six — 2h), etc., by repeated application
of the working equations. We find that the equivalent quadrature formula is

(12)   *<*■+»-»W-iaö {475/(a; + h) + 1427/(x) - 798/(x - A)

+ 482/(x - 2A) - 173/(a: - 3A) + 27/(* - 4A)}
which agrees exactly with the Adams formula of corresponding degree. By way of
confirmation of this conclusion we observe that the characteristic equation for
small variations in the Adams method coincides with (9) when the chosen values
of the parameters are inserted into (9).

5. Change of Interval. We indicate how to perform the three useful changes of
interval: h' = —h,h' = ßh and h! = ß~\ (where in binary computer operations ß
is preferably taken equal to 2):

(13)

Reversal
-A

y
S

— a
b

—c
d

Increase
ßh
y
S
ßa
ß2b
ß3c
ß*d

Decrease
ß-*h
y
S
ß~xa
ß-*b
ß~h
ß~*d

replaces h
y
f
a
b
c
d

The rules for changing a, b, c, d are clear from (3).
The simplicity of the rules for changing the interval is evident here.
Every change of interval of any of the three types induces a disturbance in the

system, but the disturbance affects mainly the higher derivatives and clears out in
a few steps because of the choice of parameters. These transient phenomena will be
described in more detail in the next following section.

6. Behavior of a, b, c, d. A qualitative understanding of the behavior of the
quantities constituting the method's "memory" is required in order correctly to
design the interval control logic and the starting procedure.

We first describe the "normal" or steady behavior which prevails when no
transients have been induced by interval change or /-discontinuity or otherwise,
within the preceding 4 to 8 steps or so. Then the quantities a, b, c, d "lag" behind
the current value of x, a a little, b more, c still more, and d most, in the sense that
they equal the "true" higher derivatives of y evaluated at points x — 6h, where
0 < 6 £ 2. This lagging behavior is related to, and is in fact a necessary consequence
of stability. A close analogy exists between this and the "stable physically realizable
filter" of electrical engineering theory, and likewise the causality discussions in
physics. The indicated behavior may be established (and incidentally some formulas
of later use for deriving the truncation error found) by assuming that a 7th degree
polynomial y = Piix) satisfies the differential equation exactly and that/, a, b, c, d
are corresponding polynomials of 6th • • • 2nd degree, and solving the working
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equations i A4) for the coefficients by some rather lengthy algebra. The result is
l 5

(14)

aix) = | y"ix) - 72 JL /'(*) + 840 ̂  /"(z)

bix) = | z/w(x) - 100 ^ yriix) + 1110 2/3 £ /"(*)

eix) = 12/""(.r) - 52 1/2 j£ /'(*) + 525 £ /"(x)

d(x) = j£ 2/'""(x) - 12 j£ ^(*) + 91 ^ /"(x).

These formulas are then in error by 0(A7) for any general y which is differenti-
able sufficiently many times. The last of the four formulas shows that dix)  =
A4— y'""ix — 2A) + 0(A6), so that d lags by very nearly two steps.
5!

We may describe this "normal" behavior in another way, namely, by observing
that the polynomial evaluated at x is always essentially the polynomial fitted to
the values of y at x, x — A, x — 2A, x — 3A, x — 4A. The 5th derivative of this
polynomial naturally agrees best with the 5th derivative of the true solution y at the
mid-point of the fitting interval, which explains the last equation of (14). The close
relation of our method to the Adams method also becomes clear from this point of
view. When we advance from x to x + A the working equations in effect change the
old polynomial fitted at x — 4A ■ • • x into one fitted at x — 3A • • • x -f- h. In the
approximation that the 4th powers of the extraneous characteristic roots may be
neglected, all disturbances clear out in precisely 4 steps, corresponding to the
memory of the method having a "time-span" of just 4 steps. Thus, we have ar-
ranged effectively to keep and use what Adams actually keeps and uses, namely the
last four previous ordinates, whereas actually we keep quantities much more suit-
able for interval modification.

As for "abnormal" behavior of the remembered quantities, the simplest im-
portant case of this occurs upon reversal. The quantities exhibit a hysteresis after
reversal, most pronounced in the case of d(x) which has the most lag. The behavior
of d in reversal is illustrated in Figure 2, which shows essentially that d stays quite
strictly constant for four steps after a reversal, then abruptly resumes normal be-
havior. Since what was a backward-fitted polynomial before reversal becomes a
forward-fitted polynomial after reversal, we may say that d and indeed the poly-
nomial as a whole "freezes", remains the same and marks time until enough steps
have been executed for it to become normal for the current point x, then behaves
normally.

The other important type of abnormal behavior is the response to shock excita-
tion. Shock excitation occurs severely in starting, when the normal a ■ ■ ■ d are not
known ; mildly enough to be harmless in increasing or decreasing the interval, when
the main terms but not the "lag" terms in (14) are correctly modified by the simple
rules (13) ; and more or less severely when/ has a discontinuity so that the change in
the polynomial is large in one step. Here again d(x) shows the most violent behavior
and its behavior in all shock-excited transients is essentially an oscillation lasting
just four steps.
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Table 1
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Xo + A

xo + 2A
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xo + 4A
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3 j_  217 Ua2 + 144öJM

2 - Ï4Ïo/A+iah

o
A

A

A

A

A

24a

0
25A

-23A

+ 13A

-3A

0

72b

O
35A

-69A

+45A

-11A

O

48c

O
5A

-13A

11A

-3A

O

120d

O
A

-3A

3A

-A

0

In order to become familiar with the detailed behavior of such a transient, we
treat a simple case which approximates the general case of an isolated discontinuity
of / with finite jump : Let y = / s 0 for x ^ x0 and assume that a • • • d have their
normal values of zero for x ¿ x0. Let/ = A = constant for x > x0 and apply the
working equations (14) five times in succession and Table 1 results.

Evidently — a, -i b, r-' c and -' d are behaving like numerical approximations to the
A     A2     hä nr

"S-function" of x and its first, second and third derivatives respectively. Meanwhile
the transient in y, represented by the terms with denominator 1440, is a decreasing
oscillation also lasting just four steps, and the ultimate value of y is exactly what
one would get by connecting the last point sampled at which / = 0 with the first
point sampled at which / = A by a straight line segment. This essentially best per-
formance in integrating across a discontinuity is unique to our choice of parameters.
A reasonable upper bound for the magnitude of the error in y due to such a dis-
continuity is | | AA | where A is the jump in /. One can hardly do better without
sampling in between these two points, i.e. decreasing A; but by controlling A one can
bound this error.

7. Estimation of Errors. In discussing errors in the solution yix) we must distin-
guish between the error present at the beginning of an elementary step and the
error contributed by the execution of that step. The error present at the beginning
of a step, sometimes called inherited error, is the net result of all the errors con-
tributed by all the previous steps, each modified according to the action of the
differential equation between the point of origin x' of the error and the current
point x. Letting -ËJ(x') represent the error contributed by a step of length A taken
at x', we can write for the inherited error at x if the integration began at Xo :

(15) Eiix) =   Z Eix')  II Ao(x")

where Xo = ev is the principal root (10). The sum involves the summand once for
every elementary step taken and similarly the product. Equation (15) illuminates
the relation between inherited error and error contributed by an individual step.
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The product in (15) may also be written in adequate approximation as:

(16) ¿   Ao(x") = exp { (X % ix") dx'\
x"=x' iJx' °y i

which shows that the product is a property of the differential equation, independent
of integration method and of interval choice. It is clear then that although by careful
design of the method and choice of interval we may be able to reduce Eix') down
to about half the least count in the register (but no further because of inevitable
rounding), nevertheless such measures have no effect on (16). Consequently if A
is the largest eigenvalue of the matrix (16) the error at the conclusion of the inte-
gration will be in general at least about J [ A | times the least count. The number of
correct significant digits may at most be preserved through the calculation if the
magnitude of the solution increases by A or more; if not, the significance (i.e. the
number of correct significant digits) will decrease. If a problem has A > ßL, where
L is the number of base ß digits in the register, then it is useless to attempt the
problem at all by fixed point arithmetic, for there will be no correct significant
digits left at the end of the calculation. Floating point could help if the magnitude
of the solution increases meantime; if not, nothing will help except increased
register length.

We have dwelt on the above points because they show that the best that can
be done with any method is approximately to preserve the number of correct sig-
nificant digits in the solution, and this essentially defines a best or optimum method.
Some of the test examples exhibited in Section 10 below show nearly complete
preservation of significance through as many as 10 steps and with A as large as
106 or so.

Turning now to discussion of Eix), we assert that the contributions to Eix) are :
a) truncation error incurred by terminating the formulas (Al) to (A5) with a given
power of A; b) discontinuity error incurred in integrating past a discontinuity of/
(cf. Section 6); c) iteration error resulting from incomplete iterative solution of
the implicit equations for yix + h); and d) roundoff error resulting from using
registers of finite length to perform the arithmetic.

The truncation error may be found by making the same assumptions y = P-iix)
etc. as were made in deriving equations (14) and calculating yix + A) — Piix + A)
— yix) + Piix), using the first and second working equations and (14). We find
that the truncation part of E, which we call Et , is given by:

(17) EAx + A/2) = 72 ^ yV!Iix) + 0(A8).

It is interesting to note that the truncation error is closely related to the principal
root of the stability matrix. In fact, if we replace p arbitrarily by the operator

A—,f because the proof that p is precisely equivalent to A -j- is not apparent 1, then

epbecomesthe "true" displacement operator eh<-d,dx) and X0(p) becomes the approxi-
mate displacement operator of the method. Thus the difference X0(p) — ep with »re-

placed by A-j- , and applied to yix), would seem to yield the truncation error. The

term in A in the truncation error was determined by exploiting this relationship,
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yielding:

(18) EAx + A/2) = 72 £ yvnix) - 440 ̂  yv,"ix) + 0(A9)

The discontinuity error,, called Ed , is bounded by the inequality

(19) \EAx)\ g§|A(/(x+) -/(x_))|
as we saw in Section 6.

The iteration error, called Et, depends on how we solve the implicit equation
system, and we choose to solve it by doing just two iterations, or more precisely:
We calculate a first trial value ymix + A) from equation (1) of (A4) with the
[ ] term left off (the "predicted" yix + A) in Milne's terminology); calculate
/(1)(x + A) = fix + A, 2/(I)(x + A)) and insert it on the right of the complete
equation (1) of (A4) to give an improved ymix + A); and repeat the procedure
just once more, so that by definition in this method the final values of yix -f- A)
and/(x + A) are y(3)(x + A), respectively/(x + A, y 2 (x + A)). The reasons for
choosing so are that / need be calculated only twice, that the convergence of the
iterative procedure and the (related) bounds on p can be estimated from two
iterations but not from less than two, and that the iteration error is sufficiently
small. For the special case n = 1 (a single first-order differential equation) one can
do better by solving the implicit system by interpolative methods with the same
number of computations of the derivative; for general n, however, one would have
to compute the derivatives 2n times at least in order to apply interpolative methods,
which we regard as uneconomical. The convergence is determined by the equation

(20) y™ - y™ = Ypiy™ - y");        Y = J|
and the "iteration error" in yix + A) by
(21) E< = y™ - y™ = iYp)2iym - y') S -Y^hVix)
which is proportional to A8 with a small coefficient so long as | Yp | ^ § as we shall
require, and is therefore overshadowed in general by the truncation error. Equations
(20) and (21) follow from iterative treatment of equation 1 of (A4).

The roundoff error ET, finally, is determined by the care with which both the
computation of derivatives and the computations of (A4) are done, and with
sufficient care can be as small as about § the least count in the effective register used
and approximately statistically independent from step to step. The author has
found it best to keep log^d A |_1) extra "guard" digits in y, above and beyond the
number kept in /, a, • • • d, in order to minimize the accumulation of roundoff
errors in y when the number of elementary steps is large.

8. Automatic Interval Control Logic. In order to describe the interval control we
must first outline the 3 stages in which a step x —+ x + A is performed. Stage 1 con-
sists of "predicting" all six quantities y, /, • - • d at x + h, i.e. applying equations
(A4) without the [ ] terms, using a tentative value of A. The first tentative value
of A actually tried is the value which was accepted in the last previous step or the
next larger value if the conditions (given below) for increasing A were fulfilled. Note
that Stage 1 is exactly reversible in a digital machine, so that if A later turns out to
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be wrong the beginning values of y ■ ■ ■ d can be exactly recovered without the
need for additional registers for saving them. Stage 2 consists of solving the implicit
equation system for yix + A) and/(x + A) by iterating twice as explained in the
preceding section. This stage is not exactly reversible and 2n registers are therefore
provided for saving the beginning values of y and /. At the conclusion of Stage 2
enough information has been developed to decide whether the interval tentatively
being used is small enough; if it turns out to be not small enough the beginning
values of y ■ ■ • d are recovered, the interval is reduced (by a factor ß~l = § in a
binary computer) and Stage 1 is again entered. If the tentative interval is found
adequate we proceed to Stage 3, which consists of "correcting" a, b, c, d by adding
the [   ] terms.

Two tests are made at the conclusion of Stage 2 and failure of either signifies that
A is too large; the two tests are respectively

\¿¿<l) I  </» </j      | max   =   ï| ¡(i yt      I max

and
(22b) | SAX + A) - // |mai á ß~'/\ h I
where e is a specifiable positive integer and "max" means the largest of the n
components i = 1, 2, • • • n. It is clear that these tests are first possible at the
end of Stage 2, since they involve quantities developed only in that stage. While the
tests are being made it is also determined whether both tests are "over-satisfied",
i.e. so well satisfied that the next larger A would likely also satisfy them, and if so
the interval may be tentatively increased for the next following step.

Satisfying test (22a) insures that the largest eigenvalue of p does not exceed
0.38 in magnitude (cf. equation (20)) and, therefore, that the stability is good
(cf. Figure 1) and also that the iteration error is small enough to be overshadowed
by the truncation error (cf. equation (21)). The test is not formulated in the ideal
way, which would be to require the Euclidean norm of the difference vector to
decrease by | ; instead we require that the largest component of the difference vector
decrease by at least \, which is equally effective in insuring convergence, works for
any order n, and requires less computation and less registers.

Satisfying test (22b) then has the effect of roughly bounding the truncation
error and the discontinuity error in such a way that the accumulated error in inte-
grating a standard distance Ax (which we take equal to 1) is independent of the
elementary step-lengths used and about equal to ß~'. In effect, instead of having to
specify the elementary step-lengths to be used, the programmer tells the com-
puter he wants the eth digit in y to be correct after integrating a unit distance along
the x axis and the computer is expected to choose the elementary intervals to achieve
this result most economically. Note, however, that in this connection the discussion
of preservation of significance for unstable equations given at the beginning of
Section 7 must be kept in mind.

Test (22b) is derived from equation (17) by the following rough argument.
We divide the interval (x0, x0 + 1) into subintervals in such a way that within each
subinterval A is constant. Then summing (17) over the fcth subinterval gives:

(23) 8, = ]g E.ix) S ^ /J" yv" dx^ iylU - yl')
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Now the computation provides an estimate of h6yrI, namely, A[/(x + A) — f],
as may be deduced from the 6th equation of (A4). We use this estimate to bound
h6yVI for all x by requiring satisfaction of test (22b) in every elementary step.
Thus A61 yVI | ^ ß~e and the accumulated error is, roughly speaking, bounded by

(24) 1 E 8, | g n°- °f SU7bniDtervaIs . f
k 7U

which is not likely to be much greater than ß~e. We see also that the general effect
of bounding h6yVI is to cause each part of the total integration interval to con-
tribute to the error in proportion to its length, which tends to minimize the total
number of steps to achieve a given accumulated error. The argument is necessarily
somewhat crude, for we cannot do what one would ideally like to do, namely,
bound h*yVI1, because there is no estimate of it available (without increasing the
degree of the method). Test (22b) also bounds the discontinuity error, equation
(19), for a discontinuity if/ clearly appears directly in [/ — f*], so that bounding
h\f- ñ just bounds (19).

In addition to availability of an estimate there is a further practical reason for
formulating test (22b) in just the way shown, at least in a fixed point arithmetic
operation, namely, that it permits the widest possible range of choices of A without
either member of the inequality falling outside register range. If one wants to inte-
grate across large discontinuities of / and still be free to demand accuracy of the
order of the least count, it is clear from (19) that A must be reducible to or near the
least count; on the other hand, for maximum size steps when / varies slowly and
smoothly A must be increasable to or near the greatest count of the register. In
practice the author has had the interval vary all the way from 2~2 to 2-39 in a 39
binary digit machine.

In the main then, the interval is selected by requiring it to be the largest interval
satisfying both tests (22a) and (22b). However, four minor modifications of this
basic rule are introduced in order to improve the usefulness and efficiency of the
method and the smoothness of the automatic interval control, as follows:

Since the programmer cannot predict what intervals will be used he is given the
privilege of specifying a maximum interval Ao, so that he has assurance that the
solution will be available at least at the points xo + ( integer )Ao. The automatic
interval control then includes a feature preventing an increase in the interval
whenever such increase would result in skipping over one of the above points x0 +
(integer)Ao.

Next, when any considerable amplitude of shock excitation has occurred it seems
best, judging from Table 1, to choose the interval at the onset of the shock, then
leave it unchanged until the transient due to the shock has subsided. In fact, if the
interval is changed while the strong transient is still present this interval change
itself results in a new shock excitation, and the interval control tends to become
erratic in the sense that the interval is reduced too much and for too long, a phe-
nomenon which the author has observed experimentally. The interval control itself
contains feedback loops, we may say, which can cause erratic behavior, although
not genuine instability because the computer takes refuge in reducing the interval
in response to any uncomfortably large disturbance. The main rule, if not modified,
leads to just such behavior because, as we see from the last column of Table 1

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



38 ARNOLD  NORDSIECK

the change in ci is 4 to 6 times greater in steps subsequent to the first step after
onset of the disturbance than in the first. To avoid this misbehavior the computer
is programmed to recognize the characteristic A, —4A, +6A, —4A • • • pattern
and to leave the interval unchanged on the 2nd, 3rd and 4th steps provided they
conform to this pattern within certain tolerances. This effectively prevents the
interval control from interfering with the expeditious elimination of transients and
results in preserving the ideal accuracy and speed represented by Table 1.

Another form of undesirable interference from interval control occurs in connec-
tion with reversal. Suppose that reversal has just occurred and that test (22b) is
dominant in determining the interval, as it often will be. From Figure 2 we see that
just after reversal d stays constant for 4 steps. This means that (22b) will be over-
satisfied and the interval will be increased, whereas it should clearly not be increased
since we are retracing steps for which the interval was presumably already correctly
chosen earlier. The subsequent behavior would involve an unusually large shock
when the "slack" in d is eventually "taken up" and an unnecessarily large interval
decrease, again a phenomenon the author has observed in practice. The remedy for
this misbehavior is simple: we program in a rule preventing interval increase for
the first four steps after any reversal.

Finally a rather interesting type of misbehavior can occur when/ tends toward a
constant or indeed toward any 4th degree polynomial after an earlier more violent
behavior which required a small interval. In these circumstances we want and
expect the interval to increase rapidly, but if the parameter ß~e of test (22b) is very
small, say only a few times the least count, then such increase may be prevented
entirely by persistent roundoff noise in the "remembered" quantities. If / tends
asymptotically to a 4th degree  polynomial d should tend to a constant and
[fix + A) — f\ should tend to 0. What happens then is that so long as roundoff noise
persists either (22b) is barely satisfied and the interval is not increased, or if (22b)
is oversatisfied and an interval increase is attempted the roundoff noise in d is
magnified by a factor /34 according to (13) and causes test (22b) to fail on the next
step. Now, unless special measures are taken, the roundoff noise can indeed persist
and prevent interval increase indefinitely. Thus we may get into (and the author

dvhas actually got into) the absurd situation of taking 4000 steps to integrate -~ = 0
dx

from x = \ to x = 1 (provided/was non-zero for x < §). The remedy for this mis-

Fiq. 2.—Hysteresis behavior of the "remembered" quantity d. The dashed curve is the true
value ofd(x) ; the solid curves show the behavior of d in the computation.
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behavior is not modification of the rules for interval choice, but a peculiar, carefully
chosen rounding procedure for the multiplications by A, ■ ■ ■ D involved in the
working equations so as to guarantee that roundoff noise will disappear in a finite
(and minimum) number of steps just as other transients must and do because of the
stability. The discussion of choice of rounding is rather long and is also of interest
for other iterative procedures in numerical analysis, therefore, it is given sepa-
rately in Appendix C.

The main rule amended by the four modifications just described provides a
stable, non-erratic and generally reasonable behavior of the interval size in all
cases which have been investigated, and the cases investigated were purposely
chosen extremes in which the interval had to vary rapidly and widely. The interval
still does not increase as fast when it should increase as it decreases when it should
decrease, but this is hardly avoidable since both the finite rate of clearing of tran-
sients and the requirement of not skipping over the points x0 + ( integer )Ao act to
delay interval increase.

If, when A has been reduced to the least count, test (22b) still fails, a programmed
stop is encountered. Almost any major malfunction of program such as overflow
in the computation of derivatives or elsewhere leads quite immediately to this
programmed stop because of the extreme sensitivity of test (22b).

9. Automatic Starting. The essential idea which makes automatic starting feasible
is that if we set off with entirely abnormal values of a, b, c, d, say putting 0 for each
of them in the absence of any evidence as to their normal initial values, then upon
integrating a few steps they will assume approximately their normal values if the
stability is sufficiently good. Such a method of starting has the advantage of using
mostly the normal integrating program, which has to be supplied in any case,
requires very little extra programming of special nature, is of use only during
starting. Since a modern computer can execute at least about one step per second
in even rather complicated differential equation problems, the start can be accom-
plished blunder-free and accurately in a matter of seconds or at most minutes.

Several complications must be dealt with in providing a satisfactory automatic
start : the proper interval for the first step forward from x0 is not known in advance
any more than are a, b, c, d. There is a certain degree of incompatibility between
automatic starting and interval changing since the starting essentially involves
eliminating a very large transient and, as we saw in the preceding section, changing
the interval during a large transient can lead to erratic interval behavior. In any
case, application of test (22b) during the first few steps of the starting process
would be meaningless since the test was derived on the assumption that a ■ ■ ■ d
had nearly normal values; this is illustrated by the fact that when a, b, c, d are zero
the quantity [/(x + A) — /"] is 0(A), not 0(A5) as it normally is. Finally, although
one would ideally like to use points to the left of xo for starting, corresponding to
fitting a polynomial to the left of xo and thus obtaining what we have called normally
lagging values of a(x0) • • • d(x0), this cannot be done because it would imply that
/ is defined to the left of x0, as it may not be.

The detailed schedule of the starting procedure willnow be described and in the
process the way in which the complications listed above are dealt with will become
clear. The overall objective of the starting procedure is to fit a 5th degree poly-
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nomial for y to the points xo, x0 + A/2, xo + A, x0 + 3A/2, x0 + 2A, thus determin-
ing a(xo), i»(xo) ■ • ■ d(xo), where A is the correct interval (also to be determined)
for the first step x0 —» x0 + A.

First we set the initial values yix0) = y" aside for safekeeping, set a ■ ■ ■ d
equal to zero and do a tentative step forward x0 —» x0 + ho, where A0 is the maximum
interval permitted. Test (22a) (but not (22b)) may now be applied since its opera-
tion is essentially independent of whether a ■ ■ ■ d have their normal values. If
(22a) fails the interval is reduced, the beginning values at x0 are recovered and a
shorter tentative step forward from x0 is taken, the program used here being just
the same as in normal integration. This process continues until an A has been found
which satisfies (22a).

When (22a) has been satisfied three more steps forward are taken, followed by
a reversal and four steps back to x0, all eight steps being taken at a constant inter-
val. The reason for taking just four steps either way is that it provides just enough
information to determine a 5th-degree polynomial.

We are now back at x0 with a value of y somewhat in error but with first approxi-
mations for a • ■ ■ d which are already good to a fraction of a percent because of the
high degree of stability of the method. The correct value of yixo) is reinserted, the
sense of integration again changed to forward and another four steps forward and
four steps back to xo are taken, all at the same constant interval.

During the last backward step listed (the 16th step of the starting process) test
(22b) is activated, for now the quantities a ■ • ■ d are so nearly normal that this
test is significant. Test (22b) must be made neither too early during the starting
process, for then [/(x + A) — /"] is not yet 0(A6) ; nor too late, for as the process of
integrating four steps back and forth is continued, [fix + h) — f] tends to zero
in any case (refer to the hysteresis behavior of d described in Section 6). Thus
there is a sort of psychological moment for doing test (22b) during the starting
process. The author has found by "experimental mathematics" that [/ — /*] is 2 to 3
times larger on the 16th starting step, for all equations and all A's, than it is in the
ultimate normal integration process. Thus, applying the test at this point results in
a slightly conservative initial choice of A.

If (22b) is not satisfied the interval is reduced and we go back to the very begin-
ning of the starting process. If (22b) is satisfied, y is reinserted, the sense of inte-
gration is changed to forward and the starting process may be considered almost
completed. In fact, for all cases except those with very high accuracy requirements
and very unstable equations the above process provides a satisfactory start. In the
exceptional cases one can do a little better, typically a factor of six in the initial
truncation error, by extending the starting schedule to include four more steps
forward and four back at AaZ/ the interval eventually to be used (making 24 starting
steps in all after both tests are satisfied) and we actually take these extra eight steps
in order to be quite sure that errors attributable to starting are less than the normal
running truncation error. More precisely, after test (22b) is satisfied during the
16th starting step, we reinsert y°, change the sense to forward, halve A, integrate
forward four steps, reverse, integrate back four steps to x0, reinsert y°, change the
sense to forward, double A and now regard the starting process as complete.

The chief effect of performing the last eight starting steps at a reduced interval
is to reduce the amount of lead in a, b, c, d, which is beneficial because they should

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



NUMERICAL  INTEGRATION   OF   ORDINARY   DIFFERENTIAL   EQUATIONS 41

lag, as they would if we had used a backward fitted polynomial. In any event, the
truncation error in the first step after starting as above is less than normal.

Note that we have avoided ill effects due to changing interval during a transient
by insisting that if any starting step at all is taken with a given interval A, at least
eight are taken without changing A.

The transients during the early stages of the starting process are often large
enough to cause overflow of the computer registers, and it is interesting to observe
that such overflow will do no harm, for test (22b) is a very sensitive test and will
almost certainly be violated if there are any previously occurring overflow errors.
When this test is violated the computer simply discards all its previous computa-
tions, including any overflow errors, and starts afresh with reduced interval. The
author has observed this effect many times, always without ultimate consequences.
Persistent overflow caused by incorrect scaling of x, y or / is of course another mat-
ter, but one which comes to light very quickly in the form of the programmed stop
mentioned earlier.

10. Test Problems Done by This Method. The differential equation problems
used to develop the program and to rectify programming errors were those for the
sine function and the exponential function. The normal truncation error for these
"well-behaved" problems was found to agree with (18).

A test problem to exercise the automatic variable interval feature thoroughly
and to verify the behavior for discontinuous/ was then devised as follows:

(25)
dy
dx

0 for
for

x - | | 2: 2
_ i

2 <2

to be integrated from 0 to 1 with A0 specified as 2~8 and ß~' specified as 2~u. This
involves having the computer search the x-axis efficiently for an extremely narrow
region in which / ?== 0, finding the area under the curve in this narrow region very

Table 2

Steps

0
157
169
176
370

2-8
2-38
2-32
2-38
2-s

0
1/2 - 2-31

1/2
1/2 + 2-31

1

y.%20

0
0

.015 564

.031 149

.031 128

"Correct" y■%*

0
0

.015 564

.031 128

.031 128

Table 3

Steps

0
202
214
227
505

2-8
2-31
2-36
2-32
2-8

•1/2_2-3o
0
2-30

1/2

y.&O

0
.098 177
.196 352
.294 527
.392 700

Error

.000 002

.000 003

.000 003

.000 001
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accurately and then searching the rest of the x-interval at high speed again. The
performance on problem (25) is shown in Table 2.
The "correct" y means the exact area of the figure obtained by joining the consecu-
tive pair of points sampled, with h = 2~38, at which / changes, by a straight line.
The interval actually increased 64-fold temporarily between corner and center of
the curve. The somewhat slower recovery of the interval on the increasing-interval
side is exhibited in the difference between 194 steps from x = 1/2 + 2~ : to x = 1
and 157 steps from x = 0 to x = 1/2 — 2~31. The recovery of the interval to A0 = 2~8
at all is evidence that roundoff noise does not persist in the "remembered" quantities.

A test problem similar to the above with a very narrow but smooth analytic
curve was also treated:

(26)
dy
dx

27 (2-30)2
x2 + (2-30)2

to be integrated from x = —1/2 to x = +1/2 with A0 specified as 2~8 and ß~e
specified as 2~32. The result of this computation is given in Table 3.

The interval evidently did not have to decrease so much in this case because of
the smoother curve to be integrated. The same comments in regard to increasing A
apply here as in the previous example. The accumulated error is much less than
2~32 because of the simple symmetrical character of the curve being integrated.

Next, a typical unstable differential equation was treated:

(27)
dy = 20y
dx       x y at   xo = §

to be integrated from x = 1/2 to x = 1 withA0 = 2~4 and ß~e = 2-25. Results are
given in Table 4.
This illustrates the quality of the starting process in keeping the early truncation
error small, a very important consideration in this case because such early errors
are ultimately magnified one millionfold. Six significant decimals are preserved
correct through 63 steps, in each of which the solution increases by 25 per cent on
the average. The final error exceeds 2~   because significance cannot increase.

Each of the above tests required only 3 to 15 seconds of computer time, and
some sort of longer test seemed appropriate. As such the author chose Bessel's
differential equation of order 16, and in particular, to find «/i6(z) by integrating
from z = 6 to z ~ 6000. In this range the function begins very small, increases
monotonically and rapidly over 200,000-fold, and then makes almost 1000 complete
oscillations. We put z = 2nx and A0 = 2-13 and ß~e = 2~23 and 2~28 respectively, for
two tests. Tables 5 and 6 show the results of this computation.

Table 4

Steps

0
1

63

.50
.507 812 5

1.0

V

.000 000 476 837

.000 000 650 187

.500 000 546 694

Error

.0nl

.000 000 55
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Table 5
iß- = 2-23)

Steps

0
1

6.0
6.125

Juiz)

.on

.on
201 950
633 713

Error

.0U1

J'Az)

.052 986 480

.063  963 765

Error

.0U1

77
93

109

16.0
18.0
20.0

.177 453 370

.261 082 210

.145 179 990

.O**) 177

.0*0 266

.OH)  150

.062 487 955

.003 519 524

.116 956 059

.0*0 066

.OH) 005

.OH)  118

49 005
49 021
49 037
49 053

6132.0
6134.0
6136.0
6138.0

.004 126 972

.006 748 858

.009 741 657

.001 359 819

.063 498

.OH) 809

.064 174

.062 666

.009 311 583

.007 627 018

.002 961 758

.010 089 144

Table 6
OS"* = 2-28)

Steps

0
1

6.0
6.125

JAz)

.On  201 950

.061  633 713

Error

.Oul

J'Az)

.062

.063
986 480
963 765

Error

.0"!

99
126
156

16.0
18.0
20.0

.177 453 297

.261 082 096

.145 179 923

.OK) 104

.050 152

.OK) 083

.062 487 925

.003 519 520

.116 956 010

.OH) 036

.OH) 001
.OH) 069

98 709
98 741
98 773
98 805

6132.0
6134.0
6136.0
6138.0

.004 130 418

.006 749 685

.009 745 792

.001 362 434

.OH) 052

.OH) 018

.OH) 039
.OH) 051

.009 314 069

.007 631 186

.002 960 774

.010 092 495

Some of the properties of the automatic interval control are well illustrated by
these two tables. In spite of our asking for less than full register accuracy, the com-
puter starts accurately enough and with a small enough interval in both cases so
that the initial truncation error is half the least count, for it recognizes via test
(22a) that early errors may be magnified by the instability of the differential equa-
tion itself. The ultimate error is somewhat but not much larger than asked for, as
it must be expected to be because of significance considerations. The interval is
halved over most of the range and the error drops by just about 2-6 as between
Table 5 and Table 6 (due allowance being made for the change of phase of the
error between the two calculations). In the calculation of Table 6 we end up with
almost as many correct significant figures as were given initially. A further increase
in e (and in computing time) would presumably improve the preservation of signifi-
cance a little more.

We emphasize that the above treatment of the Bessel equation is not claimed to
be a good way of calculating Bessel functions, but was chosen purposely to illustrate
how the method handles a rather "ill-behaved" problem.
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Appendix A. The working formulas and truncation errors for degrees m = 2
through 6 are collected here.
m = 2

yix + h) - yix) + Mfix) +   aix) + A [/(x + A) - /*]!
(Al)               f = /(x) + 2a (x)

o(x + A) - a(x) + *[/(x + A) - /■>]

S.-l.*!^

m = S
yix + A) - y(x) + A{/(x) +   o(x) +   6(x) + | [/(x + A) - /»])

p = (x) + 2a(x) + 36(x)
(A2)   a(x + A) = o(x) + 36(x) + Í [/(x + A) -/"]

6(x + h) - 6(x) + |[/(x + A) - /*]

*i = (25/6) 12/y
wj = 4

y{x + A) = j/(x) + Aj/(x) +   o(x) +   6(x) +   c(x) + ffj[/(x + A) - f']}
P = fix) + 2a (x) + 36 (x) + 4c (x)

(A3)   aix + A) = a(x) + 36(x) + 6c(x) + HL/(x + A) - f]
Hx + h) = 6(x) 4- 4c(x) + i[/(x + A) - /■>]
c(x + A) = c(x) + &[/(x 4- A) - /"]

Äi = (27/2) 1/'
m = 5

yix + A) = 3/(x) + A{/(x) +   aix) +   6(x) +   c(x) +     d(x) + *«&[/(* + A) - /»]j
/» = /(x) + 2a (x) + 36 (x) + 4c (x) 4-   5d(x)

aix 4- A) = a(x) + 36(x) + 6c(x) + 10d(x) + M[/(x + A) - p]
(A4)    6(x + A) = 6(x) + 4c(x) + 10d(x) + Mt/(x + A) - fp]

eix + h) = dx) + 5d(x) + &[/(x + A) - />]
d(x + A) = d(x) + Ti,[/(x + A) - /»]

i?«  =  (863/12) ^ 2/Vi/

w = 6
y(x + A) = j/(x)

+ A{/(x)   +   aix) +   6(x) + eix) +     dix) +     eix)
+ UmU(x + h) -fp]]

P = fix) + 2o(x) + 36(x) + 4c(x) +   5d(x) +   6e(x)
a(x + A) = aix) + 36(x) 4- 6c(x) + 10d(x) + 15e(x)

+     mU(x + A) - p]
(A5)    6(x + A) = 6(x) + 4c(x) + 10d(x) + 20e(x)

+        Wix + h)-fp]
c(x + A) = eix) + 5d(x) + 15« (x)

+ UUix + A) - p]
dix + A) = d(x) +   6e(x)

+ A[f (x + A) - />]
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e(x + A) e(x)
+ jh>    [fix + A) - p]

h      y mEt = 513 gj y

Appendix B. The flow chart (Figure 3) presented here is probably in terms which
are general enough to apply to most stored-program computers. As shown, it pro-

initial entry

(supply x , y.)

revers ing
entry

normal
entry

reset h ; construct 8    /h

save x , y.; note no ' i

reset stepping switch;
clear a, b, c, d_

I auxiliary subroutine

reverse h; it-
step doubl¡ng
delay

restore y.

'—Ireverse h_
f fail

did   test   (22b)
fail?_~3~
halve h; stop
if h underflows

reset guard
digits =1/2

T
Idouble  h

L
I   delay doubling h?

I       |    reduce delay

tests oversatisfied?

* y»s
1 hi   = h  ?_U_2_

(x -  xo) = 0   (mod|2h|)?
yes

double h

advance x and predict

31
| auxiliary subroutine

| iterate implicit equations

*-
record test  results

S -steps 2-

|—| did test (22a) fail"

fail
£

-M

->~*

-M

-«-♦
h

24-,

I did test (22b) fail"

S
-steps 1-24-

IZZH¡i
de-advance x;  de-predict

halve h;  stop  if h
underflows

|correct a,   b,   c,   d

■2k

(run)

Fig. 3.—Flow Chart for one elementary step of integration.
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vides for one elementary step of integration per entry into the routine, so that a
master program can supervise the general course of the computation with complete
flexibility. It also appeals to an "auxiliary subroutine" (closed) to calculate fix, y)
given x and y, for complete flexibility as to what system of differential equations is
being treated. The parameters which must be supplied are : the order n, the location
of the auxiliary subroutine A0, the accuracy parameter e, and the location of a
working storage of 2 + lOn. memory locations. The working storage contains a
location for xo, one for x and, for each iii = 1, 2, ■ • • n), 10 locations containing
respectively y i ,/<, a,-, 6<, c,, dt, guard digits for j/<,/<", y', and y( at the beginning
of the current step. The location normally containing guard digits is used for pre-
serving the initial y? during starting. At the conclusion of the starting process this
location is set to \ so that when a double precision increment-addition is made to
y i, the normally rounded y i will appear in the first of the 10 registers for the use of
the auxiliary subroutine.

The computing time per normal elementary step in this method is about 30ra
multiplication times (21n milliseconds on the Illiac) plus twice the time required to
calculate the derivatives. There are 6n actual multiplications performed, the re-
mainder of the 30w being accounted for by additions and "housekeeping". Abortive
integration steps, i.e. those partially done and then undone because of test failures,
require only 2n actual multiplications but about 20n multiplication times plus
twice the derivative calculation time. The starting process is clearly the equivalent
in time consumed of not less than 24 normal step times.

These figures are for a computer without special address modification features,
and the housekeeping time may be expected to be rather less where address modifi-
cation features are available.

Appendix C. Here we discuss the choice of rounding procedures to guarantee
against persistent noise induced by rounding, in an otherwise stable iterative arith-
metic process, i.e. a process producing a convergent sequence when applied in the
real number domain. Although we are not able to state a general recipe guaranteed
to work in all cases, we can cite a qualitative principle which clearly always tends to
improve the persistent noise behavior and which leads to a guaranteed solution in
our particular problem of rounding the multiplications in (A4).

If multiplications and divisions are rounded in the normal way, namely, by
replacing any number which is a fraction in terms of the least count, by the nearest
integer in terms of the least count, we do not in general get the resulting sequence of
integers converging to a unique limit, as can be seen in terms of a simple example.
Consider the process xn+i = mx„ -\- b, where the x's are real numbers and m and b
are constants with \m\ < 1. The sequence {x„} obviously converges and converges
to 6/(1 — m). When iterative processes of this sort are done numerically the limit-
ing value is not generally known in advance, the objective of the process being in
fact usually to find the limiting value. Accordingly we reformulate the problem in
such a way that b does not appear: let yn = xn — xn-i, so that yn obeys yn+i = my„
and tends to zero. Then we further reformulate so that the quantity eventually to
be rounded in some sense, is the change in magnitude of y in an iteration. Spe-
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cifically, we write

(Cl) yn+1 = ±yn =F (1 - | m \)yn = ±yn =F nyn

according as m > 0 or m < 0. Observe that 0 < p. < 1.
The digital (integer) process corresponding to the real number process (Cl)

involves rounding the product p.yn to an integer according to some rule. Using an
asterisk to denote a quantity integral in terms of the least count, we have for the
digital process:

(C2) yt+x = ±iyn* - [p.yn*])

where [   ] means some sort of rounding.
Normal rounding causes most of the sequences generated by (C2) to misbehave.

If p. = I — e for example, then it is easy to verify that under normal rounding
rules an initial y0* = 0 leads to the sequence 0, 0, 0, • • • ; initial ya* = 1 leads to 1,
±1, 1, ±1, • • • ; all other positive initial y0* lead to 2, ±2, 2, ±2 • • ■ ; and simi-
larly for negative initial y*. This general sort of misbehavior is not peculiar to the
value of ct chosen for illustration, but is typical of most p's. In the formulation (C2),
however, the source of the difficulty is easy to discern: it is merely that the term
[pyn*] normally rounded may often vanish when yn* does not, so that the magnitude
of y„* may "get stuck" at a non-zero value.

The difficulty is entirely removed in this simple example by redefining the
rounding process so that

{x for x exactly integral
integer nearest (x + J)    f or x positive non-integral
integer nearest (x — §)    for x negative non-integral

We term this special kind of rounding "rounding away from zero," for it consists
of moving the number x away from the origin just far enough to make it integral.
So defined, [p.yn*] does not exceed yn* in magnitude, is of the same sign as y* and
does not vanish unless yn* vanishes. Thus, all integer sequences generated by
(C2) must now converge to 0.

The general principle is accordingly that if we can formulate an iterative digital
process so that the quantity to be rounded is a correction subtracted from the
previous value of an integer variable intended to converge to zero, as in (C2), then
the quantity to be rounded should be rounded generally away from zero. In more
complicated cases where several integer variables are involved the correction (in
the above sense) to each may be a function of all the variables; but still it should be
rounded away from zero.

Our particular problem consists of rounding the multiplications A[ ], B[ ],
C[ ],D[ ] in the working equations (A4). Suppose that/ tends asymptotically to
a constant and consider what may happen when a ■ ■ ■ d have become small.
Then/(x + A) — fix) will cancel out of (A4) at some stage, and thereafter the rel-
evant equations of the process will be:
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aUi = an* + 36n* + 6cn* + 10dn*

b*+i

(C4) *
Cn+l   =

dn+1  —

- [(25/24) (2a„* + 36„* + 4c„* + 5dn*)}

6»* + 4c„* + 10¿n*

- [ 35/72 (2a„* + 36„* + 4c„* + 5d„*)]
cn*+   5dn*

- [ 5/48    (2an* + 36n* + 4c„* + 5dn*)]

dn*

- [ 1/120 (2an* + 36„* + 4cn* + 5ci„*)]

where the asterisk signifies a quantity integral in terms of the least count, and the
[ ] symbolizes rounding. Note that these equations are in just the form we require
to apply the "rounding away from zero" principle, since the terms 36„*, 4c„* etc.
are integral and have no effect on the behavior of the rounding.

Normal rounding in equations (C4) leads to persistent roundoff noise. The
rounding process is so non-linear that we have no analytical theory and must work
out specific numerical examples. Two examples of indefinitely persisting (cyclic)
roundoff noise are:

0
1
2
3
4
5
6

0
0
1
0

-1
0
1

0
0
0
0
0
0
0

0
1
2
3
4
5
6

0
5
6
5
4
5
6

etc.

1
7
8
6
6
7
8

etc.

0
4
4
3
3
4
4

As we saw in Section 8, any behavior like this (and there are many cases of it) can
frustrate the interval control in its attempts to increase the interval when the
interval obviously ought to be increased. Curiously enough, the persistent cycles
of roundoff noise contribute practically no error to y, for the contribution to y,
averaged over a repetitive noise cycle, is no more than about A/60 times the least
count. However, proper behavior of the interval control alone is enough reason for
rectifying the roundoff behavior.

The simplest change in rounding which suggests itself is rounding all four multi-
plications in (C4) away from zero. However, such a simple remedy does not work,
for it represents too drastic a modification of the fourth equation of (C4). It im-
plies in fact that ci* must change unless (2a* + 36* -f- 4c* + 5d*) is zero, and per-
sistent oscillation of d* results inevitably. After some experimentation the author
has concluded that the best rule is: round the first three multiplications in (C4)
away from zero according to (C3), but for the fourth multiplication move the
multiplicand (2a* + 36* + 4c* + 5d*)\away from zero by 16 units and then multiply
by -¡fas, rounding normally. The treatment of the fourth multiplication is a "partial"
rounding away from zero or a less drastic modification of normal rounding, but
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clearly in the same spirit. The rounding rules thus finally fixed upon will cause
every initial quadruple of integers to converge to (0, 0, 0, 0), as was verified by
letting the computer treat every case. Actually, all initial quadruples of integers
between —2 and 2 inclusive were examined, and all tend to (0,0,0,0). The average
number of steps to arrive at (0,0,0,0) is^ and the maximum is 14. If we move the
multiplicand of the last multiplication only 12 units instead of 16, one persistent
cycle appears. If we move it 14, 16, respectively 18 units all quadruples converge
to (0, 0, 0, 0) but the average number of steps to clear begins to increase. Thus 16
seems a safe compromise.

These principles may be of help in deciding how to round the arithmetic in
other iterative digital processes, such as solving systems of implicit equations. In
our present state of knowledge of the subject a certain amount of experimenting of
the sort described above will probably have to be done in every individual case
more complicated than the one-variable case. The general reason for stabilizing
roundoff noise in these ways is to improve the functioning of tests-for-end, for such
tests are subject to the same difficulties as test (22b) in our procedure.

University of Illinois
Urbana, Illinois

1. W. E. Milne, Numerical Solution of Differential Equations, John Wiley & Sons, New
York, 1953.

2. L. Collatz, Numerische Behandlung von Differentialgleichungen, Springer-Verlag,
Berlin, 1955.

3. H. Rutishauser, "Über die Instabilität von Methoden zur Integration gewöhnlicher
Differentialgleichungen," Z. Angew Math. Phys., v. 3, 1952.

4. E. Fehlberg, "Numerically stable interpolation formulas with favorable error propa-
gation for first and second order differential equations," NASA Technical Note D-599, March
1961.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


