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The work presents an analysis and comparative evaluation of

Crmm— ——

- different methods used for.the numerical solution of heat conduction

problems with phase change. Many techniques have been published to aoive
solidifiéétlon or melting problems,. but much of this work has focussed on
ice-water problems. ‘The specific case of solidifying metals has been

mostly a beneficlary of these techniques; The present work compares the

I

performance of var;pus numerical techniques applied to an infinite plate-

and a square-ingot of infinite length. Both solidifying liquid metal as

“
¥

well as ice-water test cases are considered..

+

The pé;éent work éxamineé a mmber ‘of different Eechniques ranging
from the wellfknown.eﬁtﬁalpy method,.appérent capacity method and post-
iterative (eiementary)'me;ho& to mére recentij published techniques which
employ the freezing index or other ;ore involved methods. Both finite .
difference and finiteselement formulationa'are congidered. Emphasis is
placed on weak formulations as it 1s felt that these tend to be simple to
prograﬁ and they are generally gasily implemented in existing single
phaée codes. Both‘éhesé attributes render the weak forﬁulatibn very
;t;ractive to the practicing engineer. - '

The differ ﬁ techniques were dpﬁfﬁed to a numbek of test cases and

the results analysed for accuracy, cost of  implementation and senaitivity '

to various parameters. The relative merits and'limitatidns of each

r

method are discussed. It is shown that somé nethods which perform well
for ice-water problems perform poorly for metals and the Opposité appeE;;\g\b

true as well. Improvements to the techniques are suggested for some

-
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© ‘methods. 1In particular, the apparent: capacity method proved to be

. .
-

" unacceptable in terms of accuracy when applied to the test cases. A

novel approach using the apparent capacity pxofiie and an in:égfhtion

through the nodal volume to find an effective capacity for the volume was
implemented and large gains in accuracy/aere achieved. The modified

apparent ‘capaclty method now appears to be one of the best methods for

_

modelling solidifying metal castings. .

- v -
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CHAPTER 1 " -

INTRODUCTION

Numerical methods_are galning in applications in a humber of

- IS <

different industries and are contributing extensively to the solution of

- complex problems at reasonable cost. The procedures generally followed

vhen de#eloping a numerical simulation include the follo@iﬁg steps:

» develop a physicél ﬁodél of the problem

- write the characteristie differential equations along with the appro-.
priate‘boundary condi;iéns

+ select a method to discfeéize Ehe.differential equations and teanstorm
them into algebraic equations |

» write a computer program to solve the syétem of algébraic»equations

- test the numerical results against existing analytical solutions for

some simple cases relevant to the problem to be investigated

. compare the numerical results with experimental results.

*

EQgﬂ if excellent agréement is achieved between the nﬁmerical
results’ and the experimental results, for the test cnées_investignted,
numerical methods should never completely replace experimental methods
since numerical solutions can be no better than the physlical modél an
which they are based. A combination of numerical and expetimental
1n€estigations which compliment\each other, however, caa lead to slgni-
ficant improvement in problem simuiation compared to solely experimental
or only numerical investigation:. ‘

Recent advancements in ﬂﬁmerical modelliﬁg of phenomena encountered

in -permanent mold casting indicate the possibllity of developing a

general purpose program to simulate this process. Permanent mold casting
5

~

AIJ
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2.
is chatacterized,by the usé of hardened steél or iron molds, into thch
}iquid metal is introduced by the action of gravigy sr 1oy pressufe'air.
The process has a wide range of applications. A major Gs;r of the n
. . . . :

. process is the automotive indqqtry which uses permanent molds to cast
cbmponents such as wheels, bfaké drums and cylihdér:yehdq.r |
~_Designing permanent molds .is a complex process. The mold de;iéner
must decide upon the best céoling pattern within the mold in order to
obtain the desired cooling rates and solidificati&n.froﬁt advancement in
the casting. The Fooling medium 1is generall& water or aif.. In some

cases, gas or electric heaters are also usqd to heat parts of the mold.

Besides the type and pattern of cooling or heating to be used, the mold,

~ designer must account for radiation effects and the effects. of filling

times and techniques. If the temperature gradients in the mold or cast-

Ing are large, thermal stresses occcur which can result in deterioration

or cracking. If the rate of cooling in the casting is slow, segregation.

of the alloying elemghts_in the casting can occur which greatly affects’

the quality of the casting. TIf solidification in thE'castﬁng is not

directional (i.e. the phase'ffont advances primarily in one direction);;? -

L

“shrinkage voids can be formed. The mold designer wishes to a&éid ;hesé B
sh;inkage volds or, if that is not possible, have them,dcgurlin ; part of
the casting which will bé machined off at a later time. \Obyiously,
designing an effective mold is not an easy task. _Mqid_design has
commonly beeh.done by asgrial and error process.-lA mold design is

conceived, constructed and implemented and the‘quélify of t%e resulting
casting 1s examined. If the casting is not acceptable,. the mold design

is modified and this process is repeated. Constructiﬁg and testing molds

is costly and time consuming. If a numerical simulation of the process
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. A
.

can be developed, the trial and error process can be greatly reduc;d

resulting in substantial savings.__ . o '_:

Recently, considerable effott (Salcudean and Abdullah [l] and

Erickson [2]) has been-directed toward developing a-general purpose metal

-

casting pgogren which can be usednby mold designéte.

Nuﬁérical modelling of the permenent nold nroceSS is a complenbtnsk.
As :¥e casting solidifies, it shrinks,lwhicb at e certain point ln ttme“,
may result in the formation ‘of ‘a gap between the casting and .the mold. |
This gap greatly affects the heat transfer from the casting to the mold.

The -gap formation is- a very complex phenomenon and therefore difficult to

simulate matbematically. Gap formation has generally been modelled by

sessuming a gap formation time and setting an artificial gap heat‘trnnsfer
,coefficient. Sully [3] and Srilivasen [4] have both investigated the

.-' ‘ . * - v . .

* casting-mold heat transfer. Another difficult aspect of the process to

-model is the liberation of latent heat as the liquid metal in the casting

L3¢ s _
solidifies. This thesis deéals .with the numerical simulation of this

latent heat release.

.

Many techniques have been developed to mathematically simulate the

liberation of latent heat in solidification problems. Much of the test-

LI -~

ing of these techniques has dealt with modelling ice—untcr problems. The '

speciflc case of solidifying metals has primarily been’ a beneflclary of

the techniques developed for ice-water. problems. vAn In-depth examlnation

of the various techniQuesjgzzllable for mathematically modelling
solidification, applied to solidifying metals, is required. The need for

research to compare the relative performances of the various methods of

siﬁﬁlating.the'latent.heatIeffect has been mentioned in the literature by

1

Fox [5) and Furzeland [6].



1.1 Objective of Present Investigation

-~ - : k
The objective of this thesis is to, review existing techniques of

mathematically modelling phase change and to suggest the te¢hnique or
techniquaes (be it an already eiiéting technique, a modlfied existing
technique or a.combletely hew teéﬁnique) most suited forfimplementation

in a general purpose metal casting algorithm. The criteria for comparing

the different techniques are:
1) Ease of implementation;

2) Accuracy of spiution;

[y

3) Ab1lity to account for physical phenoma common in metal casting

_problems (eg: "mushy region”};.

4) Cost (CPU time and virtual memory storage) of using the technique.

-

1.2 Defining the Problem

a .
Considering only the casting and asfuming that appropriate boundary

conditions can be defined for its surface, the problem to be solved is.
that of a liquid metal at a known initial temperature distribution
cooling and solidifying with ;iye. This solidification is characterized

- ' .
by material properties which are temperature dependent. Heat transfer is

by conduction in the solid portion and a combination of conduction and
convection in tﬁe liquid portion of the casting. If the var@gtion in
material proper;ies is not large, this variation can be modelled easily
by numerical\methods. Convection in the liquid phaée'can be significantr
in some cases, but in this study it is ignored fn order to isolat; the
:rrora assoclated with modelling the latent heat effect. Once the best

techniques of modelling phase change in liquid mefals are found, they can

be added to an algorithm which accounts for variable material properties




()

and convection in the liquidﬂxfgion among othe pena. - The goal of

this thesis is t 1solate the phase change phenomenxn and examine the ‘

‘performance of .4 number of different methods of numeri

glly slmulating
N

it.
With these assumptions, the problem reduces to thelone iFlustrated

in Figure 1. This problem is known as the Stefan or moving boundary

problem. Essentially, there are two regions (note that isothermal

solidification has been assumed which 1is not always the case for metal

»

alloys) a solid region and a liquid region. Th@two reglons are

separated by a boundary which is termed the phase front. }1n order Eo
* -

tllustrate the problem, a one-dimensional formulatiqn is shown. The

— .
transient heat equation can be written for the liquid and solld regions

4

as:

] 3T, T '

= kL e = QLCL T {liquid region) ' (1.1)
3 BTS - BTS :

™ ks rai DSCS T (solid ;egion)' (1.2)

.‘ o

At the interface boundary, the following conditions exist:

and B , C \
aT

L
ks 3%~ KL ax - °L

3S{t)

ot (1.3)

whefe "L 15 [Lhe latent heat.
The difficulty in numerically modelling the Stefan problem is that

" the phase front moves with time and its position is not known a priorti.

[y

e %



- 6.

Many methdds of modeliing phase change-attempt to feplace Equatidns 1.1

to 1.3 by a single equation. These are known as weak methods.

In the case of solidifying alloys, the p oblem is complicated due to

the possible existence of a mushy region. Exam ing the Fe—Fe 5C phase

’

diagram given in Figure 2, it is?ent that if approximately 4 3% of

Earboh exists; such that cooling “follows line A solidification occurs

b o

‘ isothermally at 1&?8 Cc. If, however, the percentage of carboqhis such

that path B is followed, solidification does not occur isothermally.
There is'a.region between approximately 1250°C and 11A8°C where both
solid and liquid co-exist. This is known as the "mushy region". Such a

region is common in alloys and hence it is imperative that a general

purpose metal-casting'algerithm‘is capable of ‘accounting for it.

1

1.3 'Leyout of the Thesisa _ . ' -

| The main bbdy.of the thesis censistsedf‘éix chapters. A review of
the literature on numerical modelling of bhase change problems is
ﬁrésen?ed in Chapeer 2. Chapter 3 presents a brief description of both
the finite‘differenee, and ;he finite elemene methods. In Chapter 4, a
more detalled'descripl;oﬁ is given of those methods which have been
1nvestigated in this thesis. Eﬁe,fifth.chaﬁter presents the test cases
uged in order to Investigate thelpe}form;nce'of_the‘varioué methods.
Chapter 6 presents and diécugees the results end'the last chapter

sumarizes the conclusions and suggests fqtqre work to be done.
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CHAPTER 11 : -

LITERATURE SURVEY °

There exist numerous methods for solving mo#ing boundary pgobféms.

The investigators who have made contributions in this field are far too

numerous to completely list here.  The @}oneer in this field is Stefan

[8) who formulated a mathematical model of the phenomena of .freezing

soils and hence solidification {m?lting) proﬁlems'are often referred to

as Stefan ﬁroblems. Later, Neumann [9] presented an analytical solution

- to. a one-dimensional Stefan problem. Neumann's solution 1is st;ll used

today to test the accuracy of different numerical schemes. Unfortu-

nately, unless the problem geometry is extremely simple, anaiytical

. solutions are not available and -hence most techniques foy solving Stefan

.proﬁléms.rely on some numerical scheme, usually based on finite

difference or finite‘elemenz methods.

. One of the simplest techniques of-accounting for the liberation of
latént heat in solidification problems, is to set up-an energy budget at
each node of a finite difference or finite element grid. The nodal
temperature is then set back to the phase change temperature after each

time step until enough heat has been accumulated to account for the

“latent heat assoclated with that node. The finite difference formulation

of the techﬁique was described by Dusinberré {10] and later by Doherty

[11}. RoIph and Bathe [Ll2] later implemented a siﬂa}ar technique into a
J . : .
finite element formulation of the Stefan problen.
A cogmonly used technique of accounting for the latent heat in a ‘.ﬂ
L ) ) .

f.ixed spaéial grid 1s to artificially increase the heat capacity near}the

phase change temperature. Some o%}gpe early work developing.this
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technique was done by Hashemi and Sliepcevich [13] who used an implicit

finite difference formulation pf the problem. Later,.Comini et al. [l4]
| implemented the method with 4 finite elemigt formulation. Recently, Pham
[15] ptesented an innovative approach to the tecﬁnique using a three-

level finite difference formulation.

-

-

Many of the more‘recéqt works have dealt with methods which for;u-
late the governing equations in terms of enthalpy. Crou%ey [16] used the
enthalpy formulation with-a finite differénce.scheme #o solve two-
dimensionai problems. Bell et al. [i?] tested thg expliq{é;finite
difference formulation of the enthélpy method in ghe region of a singu-
larity.l Recently, Tacke-[lB] presented an’ innovative formulation of thel
explicit enthalpy method for one-dimensional problems, whicﬁ is based on
an enthalpy balance to l;cate the phase front within the elementawhich
contains it. He tested h@s technique on both test cases of ice-water and
solidifying steel. 1If an'ihplicit scﬁeme is used, the enthalpy method
requires ‘the solution of a system of nonlinear equafions. Meyer [19]
Shamsunder and Sp;rrow [be and Jerome [21] have all presénted formula-
tions of the implicit enthalpy method. . |

Some researchers have transformed the governing equations to use the

freezing index as the state varfable. Kikuchi and Ichikawa [22] used

+

this method to solve two-dimensional ice-water problems. Later,
Blanchard and Fremond [23] introduced the homographic approximation [24]

élong with the freezing index to solve two—dimensional freezing of soil
around buried pipes. T St

A technique which attempts tc&track the phase front using the method

of lines was presented by Heyér [25]. The Eechnique can run into.-diffi-

culf{es if the moving boundary shape 1s.n6t a single valued function of

-
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the base cﬁordinatés._ A}so,-thg method is not suitaﬁ;e,for problems
wheré!almnshy range exists. . - %

L;zariais {26] presented a method which aoivea for the front ioca—
tion;and solves the finite ﬁifferé;ceequatiods-ﬁaseq on this location.
His method is capable ofoﬁandling multi-dimensidnal probléms but is -
extrgﬁely complex. He tested his metho& on solidifying metal testucases
and found satisfactory agreement with existing solutioﬁs.

Duda et al. [27] pfesenféd a technique‘which transforms the govern—
ing partial differential equations into a coordinate system where tﬁe
phase boundaries cofr%spond to fixed coardinate surface;. The technique
involves an iterative aolviﬁg scheme and 1s not easily édded to existing
single phase codes. Sparrow et al. [28) have also applied the concept tb
the melting of a solid about a cylinder.. An implicit scheme was used.

Crank and Gupta {29) have used a technique which examines the B,

position of an fsotherm as a function of time. The technique fequires_a

small time solutlion and is difficult apply to compléi proﬁlems where

. hl
the value of the isotherm position is multi-valued. Crank and Crawley

. 2
[30] have also used this method.

Sever;l rgseatche;s have pfesented techniques, usually with a finite
element fprmulation'whicﬁ;defo}ﬁ the'spatial érid in order to track the
phase front. Some recent wﬁfk using tﬁis techni;ue has been don; by
Lynch et al. [31] and Lynch [32]). Lynch [32) tested his method on
freezfﬁg’ﬁiter test cases. ) T Y

Somelr35earchers have presented techniques specially for one-

dimensional solidification problems. Goodrich's method [33] and the

Tduél grid” method of Voller and Cross [34] fall into this categofy.

-
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" Other researthers have presented fairly in-depth reviews of exiéting\

[

mgthbds, but few actually car}y odﬁ-a comparison of ;hé pgrfo}mancé of .
;arious éethods when ‘applied to'épéd{fi? problems.. An_exteqsive re#ieu
Qf the litgfatqre is given by'Lﬁq;rdini‘[35]. ‘Due to. the interest in

’this fiéld,_how@vgt, a.number_of important papers have been written.since

.his revie;. |

\Fihéllyﬁ it should be mentioned that the majoricy of résearchers

have tested their methods on ice-water test cases, and the problem‘of

solidifying ﬁetal has been primarily a beneficiary of the former;
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CHAPTER II11I

PROCEDURES FOR SOLViNG THE TRANSIENT HEAT FLOWAEQUATION‘

Numérical'methods transforé-nhe governing‘&ifferential equations of‘
a-problem‘into glgebraic equations which can be solved using computers.
The two maiﬁ classes of nuﬁerigal methods. are the finite difference and
" the finite eleﬁent ggthdds. Both methods are introduced in thié sectioﬁ.
In order to E}mplify.fhe éiSCUssion; the description islrestrictcd to two.
dimenslons and material pfop;rties'such as dénsity, thermgl conducglvity
and heat capacity are.assumed‘COnstant and isotropic. "The tfangient heat
conduction equation to be solved ist

dT d2t1 a2t

pe o=k =4k = : ' (3.1)
.dt dx? dy? : '

:

where internal heat genération has been assumed to be zero. The
following section is meant as an introduction to the two methods in q&der

to ldentify the differences between the two Formulations.

3.1 Finite Difference Method
A number gf books exist whigh describe finite difference méthods.
An Introduction to the ;ethod is given by Holﬁén (36]. Shih [37) glves a
more detailed description of the/ method. o ) .
The finite difference mefhod of solving a differential equation can

be formulated in different ways;.'One way of setting up the finite

difference equation 1s based on a truncated T&yLor series as follows:

-
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' 2 g2 3
TCxg+ax,yg) = T(xgayg) + ax o | + A" 4T | A" a1 | | + .00

(3.2)
- y dx3 .

<
L4 y

Dividing by Ax and truncating the right hand side after the second order

term gives:

ar - 'T(xO+Ax,yu) -'T(ﬁu,yo) .

where OAx means that the';fﬁncation error is - |TE|'% k(Ax) where k is a
- . -
constant. As the spatial increment (4x) is decreased, the truncation

‘error also decreases. Equaiion 3.3 is the forward difference expression

. M N L
of the first derivative in "x" since it deépends on the value of "T" at

Xg2¥g and gt "X +ax,y,". “© T —

When variable propertieéqﬁr unusual boundaries exlist however, it 1§
often preferable to obtain the finite difference equation from an‘eﬁergy
. balance forﬁulgtion which 1is ﬁaéed on the physfgg_of the problem;7
ashsidef a node in & two—dimensional discrétized space és

i1llustrated in Figure 3. Associated.with this node is a volume which is

e ¥

encloaed by dashedllines in the figurw.. Considering heat to conduct in

from the left and battom faces and fheat to conduct out. from the right and
top faces and assuming a unit deptlr, “:the heat eantering the faces in time

"At" can be defined as:

a -
| v .
(T =T ) ‘
isj i_lsj
Qi—l j - koac Ayi b Axi,j Axi-llj p ;(3'#)
.. . (=™ —=)
(T; - T ) .
N : i+, 77 T1,4
Qg =~ kot Ayi 3 T (3.5)

141, j+ A4
2 i T 2
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B ' | (T =T, ) .
! - - i _'H'l i,J
e Qg T T kA ARy g (3.6)

By, 8y, ..
> i, yi,j)
AN )

\
. (T T, i)
n : i,] i,j5-1 .
Q) . , = -k At ax 2 2 (3:7)
i,3~1. i, Ay, -. A X
' ’ ( yivJ + yirJ-l)
2 2
If heat is generated within the volume it can be defined as:
= Ax, , A . AL . 3.8
. Qs 1,3 °74, ] 9 : (-8
. ’
where q is in "W/m3", but this is neglected for this discpssion.
The enthalpy change for time “At" can be defined as:
o ‘ ntl n
AR = (ax, [)(a . c (T, . —-T, .~ : 3.9
‘ (bx; My, ) o0 (] = T) o 3.9)

‘The_first law of thermodynamics states that the net heat entering the

volume associlated with the node must equal the change in enthalpy of the

voluﬁe if no heat is generated internally. Assuming a uniform pgrid, with

ﬁ}=Ay, Equations 3:4 to 3.7 ana 3.9 can be combined to give

+

. 2 o+l - : N + " + n + " - 4"
T T T T T T I 1S I O S B W
. . sonrtl n+l ntl ntl - n+l
4 —_ + - .10
(L -M) k At(Ti+l’j Ti_l’j + Ti'j+l + Ti'j_l ATi,j) (3.10)
LI TR N ) n+ l
If "M" in Equgtion 3.10 is set equal to "1", the temperature Ti j is
N ‘ . * .

known in terms of temperatures at the previous time step. This s known

v



-time step. | _ : 2

»
[

as an explicit formulation. The advaniage of this formulation is that no

system of simultaneous equations need be solved. Rewriting the explicit

\

formulation of the problem, it follows

= L B

n+l n n n

n ..
‘= - 4 + + + T . .+ : .
Ti.j L2 Fo) Ti,j Fo(Ti =-1,j3 Ti+1,j .?;,j_; .;Ti,j+1) (3.11)
‘where Fo = EJQE&— . . - - . .
g : ¢'G ax2" A o ,'.;::- -

coefficient of T ' becomes neggtive. Physically thi iies that an

i j .
increase in "T" L reéults in a decrease og "Tn+l"
i, i i,3

"w_w

surrounding temperatures at time n". Obviously, this is impossible and

for the ‘same

P

. hence for the explicit formulation, “Fo" is restricted to "Fo < 1/4” for

two-dimensional prblems. The same one-dimensional formulation results in

the restriction “Fo < 1/2°
, P

tl,,

1,j 1S

I[f "M" in FEquation 3.10 is set to "0", the temperature "T

: e
defined in terms of temperatures at time. "n+l". This means that a system

-

of simultaneous equations must be solved in order to find the‘hpdated

oF ] : .
temperatures " 1".- This is known as the fully implicit formulation of

the problem. Rewriting the implicit formulaticn of the ‘problem gives:

., f -

+ +1° +1.
(1 + 4F0) TFL = 1 +F0(Tnl 4opL g gl pntl

i’j. i)j i+1,_] i'-']_,j i’j+1 i,j-l) (3'12)

[

ObviOusly, the coefficlent of " +1 cannot be negative. The implict

i,]

formulation of the problem can be shown to be unconditionally stable “(the

errorg are always bounded). and hence there are no restrictions on the

/
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Al;ho;ﬁﬁ it is not discqssed here.in'ﬂetail, "M" from Equation 3;10
can be set to Eny number between‘”b; and "1". For ‘example, setting
“M=1/2" résglts in the well known Crank—Nicolson Method. These férmula-
‘tions ar; known as semi-implicit since they require 4 system of siﬁul-

{

taneous equations to be solved.

Consideriﬁg the one-dimensional iﬁplicit formulation of the problem,
it is apparent that although systems of‘simultanébus equations must bé
solved, the matrices ar; very sparse. - 1n fact, it tﬁé'hodes are numbered
properly (sequentially) tridiagonal matrices results. There egist.ve?y
efficient aigorithms.for solving tridiagonal matrices. Carnahaﬂ;et.al. -
[38] describe an‘algorithm for'sg}ying a tridiagonal matrix and a "
description is given in Appendix A of this thesis.

However, implicit finite differencé formulations of two and three-
~dimensional problems do no;_yield tridiagonal matrices. It is desirable
to ﬁake use Qf the efficliency of.the triqiagpnal matrix solver in'multi;l
dimensieonal problems. The Alternating Direétlon Implicit metﬁod (ADL)
preseanted by.Peaceman and Rachford [39] is a écheme which succeeds In
doing this. The method coﬁsists of dividing each time step Lnto Lﬁruu
time levels for three-dimensional problems or two time levels for t wo-
dimensional problemé. Consldering the two-~dimensional case, in the first
;ime level, the "x" derivatives are in the implicit form and "y~ -
derivatives are in theiéxp11Cit fofm. This results in a i}ldiagonul

’

matrix. During the second time level, the arder is revetsed. Assuming

“Ax=Ay" this can be expressed as:

2 @t 1/2 ! .y At _nt+l/2 + ntl/2 o n+l/2
pC Ax (Ti,j' Ti,j) k 2 €T1+1,j Ti—l,j ZTi,j )
: : 7 } For n+l/2
L, At om n n L
——— + -_ » -
S L TRV T S B S

i | : | ' C(3.13)



oHl. | n1/2, n+uz n+1/z a+1/2.

S} "Iy z (Tm §* T, T
. . . : } For o+l
At n+1 n+l: o+l . o
st aliy 'f 1,31 7 )
‘ ‘ (3114)

4

It can be shoun that the Alternative Direction Implicit method ia
unconditionally atable. It should be noted that only the,fu111time step
solutiono are valid, not the fotermediary stépe.;

For a fulrth\e‘r\ deecrigtion of’f.#inite. differencﬁthodo, including

how to formulate boundary conditions, - see Shih [37].

3.2 . FPinite FElement Method

Finite element methodé are wicely described in the technical litera-
ture. A very well known book is by Zienkiwicz’[AQ]. .Cooi [41] gives a
description of the finite element method anplied“to heat conduction
problems. | "

The finite element method is a numerical procedure for solving a
differential equation or a system of differential equations. The funda-'
mental concept of the finite element method is that any continuous
quantity such as temperature can be approximated oy a discreteznodel
conposeq of a set of plecewise continuous functions defined over a finite
number of subdomain§ For illnetrstive purposes, the two-dimensional
problem is formuleted using three noded linear elements.. The same
approach can be used to formulate”one or three—dimeneional problema or
for quadratic or higher_oroer’elements. The threelngded linear element
18 the element which is used for the two—dimensional problede in this

-~

. thesis.
/ .
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‘Hhen'forﬁulating-in—fin}té eléments it is convenient to work in

local coordinates, and to later traansfer tﬁe'equations to the global

coordinate system.i
The three noded "unit” linear triangle is shown in Figure 4. The

13

first step in formulating the method is to define a continuous function
ovel the given subdomain. In order to do this, three basis functions are

defined such that the temperature at any poluﬂbwlthin the subdomain is:

B

)
.

T(E,n) = T,N,(E,N) + TN, (E,n) + TN, (E,m) . (3.15)

where the suBscripts refer to the nodal polints a;‘numbéred fn the local

cobrdinate system. In order to ensure continuity over the.cleﬁent'faces,
it is gvident that the value of T(£,n) along a face must depend only upon
the nodes on that face as they are the onl; nodes common to the two .
elerﬁents' joined.at th'aij face-l This implies in the three nodcdr triangular
elehent‘casé_thaﬁ the value of the shape Eunction for a glven node must -
be™z¥ro éloﬁg the opposite face. For highef order elements, which have

more than two nodes ﬁo a side, there i{s a further stipulation that the

value of the basis functions be zero at all otheﬁ hodes. This is

.‘_z

necessary in order for Equation 3.15 to always result in the nodal
temperature whén it 1s evaluated at';hat.nodal point. Finally, Lf all
the nodal temperatures of this element are equal, the basis function must
glve that conétanttemperature-throughOut the element. This implies that
thelbasis funé;ions must be unity at thelr respective nodes. {He basis
.functionsrwhich.satisfy thesg crICeria for the simple three: nodea unit

triangle illustrated in'Figure 4 are:

'

r



N, (&,n) = 1-£-n ] | L - £ -

Ny(E,n) =% or [N} = £ (3.16)
N,(&n) = n n

"

These basis functions are all linear and heace t@e term "linear”
element. Adding a node to the middle of ea;h side of the.triéngular
element, - results in quadratic basis functions and therefore a duadratic
element. : s

Having defined the temperature variations in the local coordinate

system, it is necessary to transform the local coordinates "g£,n" to.the

-
-

global coordinates "x,y". In order to do this, the same basis functions

as derived earlier are used. This-méans:

vrox(E,n) = x N (§,1) + x,N,(E,n) + x,N.(E,n)

y(g,n) = y,N (&,n) + ¥y,N,(§,n) + y,N,(§,n)

) x y )
x T 1 1
[y] = [N] X, ¥, {3.17)

X3 Y3

or

When formulating-the transient heat equation it is necessary to
evaluate partial derivative of "T(x,y)". 1In order to evaluate these

derivatives, the following formulae are used:

- o~ .
) © . 3T _ 3T 3x  3T-3dy,
3  9x 8 = 3y of

AT _ 8T ax 3T 3y _
an ax 3an ay on

or réwriting:



~

T’E - xvg Y'E Tax -* . ’
) . . T’ = x Y T . (3 018)
n ’n 'n 'y .
The 2x2 matrix is known as the Jacogian "[J]". Ia three-dimensions,

the Jaﬁobian is a 3x3 matrix. f S

The entries in [J] can be evaluated for the three noded triangle as:

. . ax('E n) - x 3N1(E.n_) +x 3“2(5371) +x aNa(E.n)
6 3% 1 3 2 3 3 9¢
=X (D) +xp(1) +xy0) (3.19)
N, (£,n) «3N_(£,n) N, (&,n)
- ax{E,n) - 1 LR AR S re?
o an T TR B Fa T
= x,(-1) + x,(0) + ;3(1)' (3.20)

and similarly for Yre and o
The left hand side vector of Equation 3.18 can be evaluated as;
T,E = T (-1) + T,(1) + T,(0)

T,

n =TI + T50) + Ty(1)

Multiplying Equation 3.18 by the inverse [J]~! gives:

+

- T,x ' T’E . .
T, = (J1°1 T, (3.21)
y ’n -
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where all terms on the Fight hand side can be evfluated in terms of the
' RS " ' L .

nodal quantities.

“As mentioned earliér, the differential equation to be solved in

»

two~dimensions is:
)

2
9<T +
ax2 3y?

¥ "k 0 (3.22)

w o

If “8(x,y)" is an approximate solutlon to this partial differential

equation, evaluattng Equatioﬁ 3.22 with "8(x,y)}" results in
» Bva. : ? y
[

1

129 29
e L e Tt ' (3.23)
\ ax2 3y2 '

where "g” 1s a residual error.
In order to. find the best solution "8(x,y)", the residual error "c”

must be minimized over the solution space. To do this, the well known

» Galerkin method [42] is used. Galerkin's method requires that the

residual error be orthogonal to the basis functions. For one element,

the required integral is:

- t

1 1 - '
T 320 2g V. 8
[ T w2 22200 2y g) agan =0
0 0 3x2 ay2
where ._ :
BCEam) = 0N (6,0) + 8,8, (£,m) + 0,8, (6,m) (3.24)

For a detalled description of how this integral is evaluated, see

Segerlind {43] . ~The result of this integration is of the form:

-
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[

‘where "[C]" and "[K]" are>(3x3) matrices for the three noded triangle and

S

"IG]“ is the vector of unknowh nodal temperatures to be determined.
~
The [0] term can be formulated in terms of finite.di_ferences, and
l

as in ehe finite difference method\ che_gggg_;juazfﬂcan be implicit or
explieit depending on what time step,the vector [0] 4s evaluated at.

Once Equation 3 25 ig formulated Eor all the elements in a problem,
the element matrices {C] and [K] are joined together to.form the 0lobal
capacity matrix [C] and stiffness matrix [K].

This description only illustrates the approach of the finite element

method. For details on how the global matrices are assembled and hpw to

formulate boundary conditions, see Segerlind [43]. o

|
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CHAPTER IV
METHODS
The first step in analyzing the applicability of the various methods

for implementation into a general purpose metal castingihlgorithq is to

~

\ . - .
set '@ number of criteria and to evaluate the varigus methods based on .

! . Y

these riterid:- Some methods are veryOSPecialized and are onl} capable
e .

. \ .
of handling certain geometries {for example,-poodrich'k {33] wethod can

only handle one—dimensional problems) and hence are not applicable for

“implementation iﬁéo a "general purpose” algorithm. Others [25] are only

for isothermal solidification problems and hence cannot handle a “"mushy
ranée" often encountered in metal casting problenms. The'criterid for '
thooéing-the methods to be iﬁvéstigated are;

1) ability to solve multi-d;;;;s;;nal problems, ., »

2)  ease of implementation, N

3) - ability to account for a “mushy“ region (latent heat not released at

a unique temperature) commonly encountered in metal casting

prdblem&.

L

The so called "weak methods” fulfill these criteria to a great extent.
Weak methods replace the moving boundary problem equations (Equations 1:1
to 1.3) with a single equation and do not explicitly make use of the
phase boundaries. Because of this, they %ye ;ften capable ofi handling
problems where the phase change region is é volume (solidificat;on over a
mushy fange) as ;ell as problems where it is a surface (isothermal

solidification). Weak methods, which do not explicitly make use of the

phase boundaries, also have significant advantages in multi-dimensipnal

broblems where front trgﬁking is complicated. Descriptions of the

-



v’

. o 23.
methods chosen for inyestigatién are'given in the f;llowing sections.

The- discussion is restricted to two~dimensions, however extending the

methods to _three-dimensions’is generally”poss%ble;

. 4
~ .

4.1 Post Iterative (Isothermal)

The post iterative method of accounting for latent heht.[lo,lllﬁis
probably the‘simplest‘of all the.metho . The meehod consists of séitiag
up a heat sink at the nodes undergoing phase change'b; setting the °
temperature of those nodes which drop from above the phase change tempef-
ature in one time step, to below it in the next time step, ﬁa?k-to'the

phase change .temperature._ This process 1s continued until an amount of

.heat equivalent to the latent heat of the volume associated with the node

: ~ .
has been accumulated. "The nodal temperature is then allowed to fall

normally. The latent heat associated with each nodg can be calculated as

L

follows; .

[l

EJ . =L p Ax Ay (4.1)
»J ' .

The °basic steps of the procedure'may be summarized as follows; '

1) The temperatures at time step "n" are known.

.

L] - . .
2) The temperatures at time step "n+l” are calculated assuming single -

phase conduction. .

3) The nodes which were above the phase change témperature at time step

L 1]

n” and have fallen below it for time step "ntl"™ are set back to the
phase change temperature. Thertemperature by which the node was set

"back is used to calculate heat using the following formula;

&
?
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’ At * tl
.Ei,j = (TE - T;,j) C p ax Ay (4.2)

4)  The heat accumulated at node “i,j“'iS'added‘to the heat .accumulated

H

at that node in previous time steps to give:

otl- n At

E = E + E0, O (4.3).
1,3 T4, T4, (.3)
A v
Wt N A '

3) If “E is gredter than "E’ .", the nodal temperature is set to;

. 1,3 1,] a

+ - .
.l - ETN)/(C p ax ay) (4.4)
1, i,]

1,3

-

Both explicit- and implicit finite difference -as well as implicit
finite element formulations of this method have beéﬂ‘poﬁsidered in this

LI
thesis. . ,

4.2 Post Iterative (Mushy Region)

This méthod is similar to the 1sothermal post iterative method,
except that a mushy region is to be accoynted for. Salcudean‘and Mashaie
[44} and Salchdean and Abdgllah [ijlﬂyave used a finite differencé
Ebrmulation of tﬁis method to éolve permaneni mold casting problems.

Rolph and Bathe-tlZ] consider a finite element formulation which is based

on accounting for latent heat ia a similar manner.
. ",‘ . =

Basically, the steps are the same as for the isothermal post-

iterative method but the equations for heat'accumulation'aré differgnt.

Since latent heat is released over. a temperature range, the amount
. . . )
released is a function of temperature 1in that range. For example, the o

variation fllustrated in Figure 5, is described by the function;

-

Fy
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) £(0) =0 . Jif T CT,
£ () = L(T-T )/(T 1)) —1f T, <T<T, 45
= B 7 ’ ) ~/
£.(T) =L e .1f T T, \

¢
]

Mny -varlation in latent heat telease with ;emperature‘can be formulated

in a similar manner. The equations for heat agtumullgtion become;

n+l

;ﬁ Ti,j < T, < Ti?j, then; \ o ]
Ebt, = (T. - n+1) C b Ax By _ (4.0)
.. i3 - 1
if T <“T“ < T' . then; '
- T, 1,3 2 hen ;
. .EM =" - ™1y ¢ b oax s T (4.7)
£,i 1,3 i,i0 0 ° Y '

»

and instead of setting the nodal temperature back to the phase change
l't'

o temperaturg, it is set to the value which satisfies the cquatlon,

. ntl n+l. nt+l .
; - ) = - 4.8
€£L(Ti,j) Eiuj) (Ti,j Tl) C o &x By (4.8)
: : +
As in the previous method, if ”En+%" is greater than "EL 27 " % is set
1,3 i,] 1,
to;
o+l - L g0l ‘
T = (E - /(C A% A o (4.9)
T3 ( 1,5 " Fy j) (Ch y) |
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.place over a small temperature range.

[ N
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though this methed is intended to account for a mushy region, it

is ﬁossibie to model isothermal solidification by approximating thé .-

-

isothermal phase change to occur over a small temperature.range. Such an

assumption may have a smoothing effect on the temperature profiles. Thig

-

?ossibility has been investigated.

Agaln, both 1mpliélt‘and explicit finite difference as well as

fmplicit finite element formulations of chié-metﬁod have been"

- . .

4.3 Apparent Capacity

This is a very commonly used method of accounting for the latent

"

heat effect [13-15]. An advantage of the method is that it is very
easily implemented intg isting single pha§e‘c;des. Although a mushy.
region Is necessary in. order to implement the technique, isothermal

: - '

suiidi(i;ation can be modelled by assuming fhe solidification to take

o

‘The technique consists of artificially increasing the value of heat

capacity in the mushy range by the appropriate amount in order to account

"for the latent heat. Figure 6A illustrates a possible apparent capacity

vartation with temperature{ In this figure, the p%ecdfid heat has been

assumed constant throughout the so0lid and thé'liqyid'phases.' The value

-

in this figure 1s set such that; 1

ot

ooy .

anp
o ¢ .

T

i, ‘ - T2 : - '
. Capp ™ UT C dT + L}/(T, - T)) \jé.lO)
' 1 ‘ .
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Figure 6B illustrates a smooth curve'apprdximation to the appareht

7 . : -
- capacity functionm, where the specific heat is also a function of tempera-

ture. This figure illustrates that any variation "fC(T)" can be assumed.

s0 long as;

T . " o .
L= 2 (f£c(T) ~ C(T)] 4T _ (4.11)
T : .
| ,

There are a number of ways of implementing thils method. If an

explicit scheme is used, the procedure is as Follows;

' : ' . -
"o

1) Temperatures are‘known at éime n .

2) ,)psing these temperatures, and the assumed apparent capacity varia-

' ) ‘

tion, evaluate the apparent capacity for cach node.

3) Calculate the temperatures at time "n+l1" using the capacitles found

in.ste;\“ﬂié\

When an implicit scheme. is used however, the problem becomes non= -

linear since the apparent capacityléhould be calculated based on thF .
unkﬂown temperatures of.time "n+l". This necessitates the use of an
.ite:ative solving routine which canube very cogtlﬁ. An'd4te}natlve
“approach is to utilize‘ﬁhéﬂapparént cﬁpacities based on the previous tiﬁc

.

step as in the explicit case. The accuracy of this approximation has -
Fal

been investigated. ‘ L - . RS .

As mentioned edflier, isothermal solidificatfon can be médelfed
using this method if a ’small mushy reglon is assdmed. If the assumed -
mushy region,is-too large, howevef,thg temperature profiles.may be

adversely affected. The effect of the size of the assumed mushy range
~ . /;

has been investigated.
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Both implicit and explicit finite difference formulations of the
apparent capacity method have been investigq;ed.'

[

4.4 Enthalpy Method

This has been one of the most popular méthods of hodelling the
lﬁtent heat effect In recent years. Many recent publications have dealt
-with this method [16-21]. ' . o

FTES

The method consists of writing the transient part of the energy

. “ .
cquation in terms of enthalpy Instead of temperature; o »
2 27 ‘
o g%-= k L4 27T, (4.12)
E ax2  ay2 f

=
B TN
i

<

An "enthalpy vs temperature, variation is then assumed. For the

isothermal solldification éasg, this'yariatidn is'as in Figure 7A. The

thp jump in the value of the enthalpy at fo

fn this flgure is

-~

ecquivalent to the latgdt heat "L". N ' - ‘ (/’“\

A plecewise linear approximation to the case where a mushy region
exists is {llustrated in Flgure 7B. For this variation, the enthalpy

fuucfton "fH“ is given by;

. - . a,
.1“ CT . . if T<T !
= + - - .
f" CT + L(T Tl)/(Tz Tl) if T, <T< T, o (4.13)
= T + .
q = C F ‘ if T } T,

-

dthe actual enthalpy function for a given material ts available, it can

be used when lmplementing the enthalpy method.
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The steps to bé:followed when .an explicit scheme is used, aré;

5 T ' ' ' :
The temperatures, and hence the enthalpies are known at time *n".

The enthalpies for time "n+l" are calculated based on;f

n k At n_ n n n n
H . =H, , + —— o, ¥+ T + -
6,3 70 T Ty T T s 8 T T T e T Y
7
R .
(4.14)
assuming Ax = Ay. .

il ¥ ) ' . - " - .
The enthalpies of time "n+l1" are converted to ‘temperatures based on
. . » Co : ' .
the assumed "enthalpy vs temperature” variation. -

The implicit formulation of this method results in a set of non-

linear equations since the "n+l” enthalples have to be calculated based

on the unkhown "n+l" temperatures. For this invesfigatbon, a Newton

* Lterative solving technique has been used. The equation to be solved is;

. atl n k At okl a+l n+l n+l ntl
0= (M . -H, ) - =" (T .+ T R T SR S Y % (i
¢ i,] i,J) o 8x2 ¢ i+1, ] i-1,3 S i, -1 l.J)
: ‘ — (4.15)

assuning Ax = Ay.

1)

2)

3)

“An initial guess 1ls made to the “n¥l”

it

The solution procedure is as follows;

-

Temperatures and hence enthalpies are known at time "n".

. ar

tempera;ures (the “n
té&peratures have been used as the initial guess).

Starting from ‘the first:nodal point; a new ‘guess 1s made to the

w1,

Ti ] based on a Newton linearization of Equation 4.15
k4 .

temperature

as follows;

A
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ml, . _ntl n n+l . k At . ntl | mbl .. okl
= - - + - - P T -
Ty, pne = Tyt By m s T s (e T T
o+l s du?*?‘ C st
- . ’ . -,
FTpe T ATy PH g A0 1(4.18)

lwhere all values on the right hand side are the most reqént values.
Since a piecewisé linear apptbkimanian to the enthalpy function hés‘
béen assumed for the purpose .of this thesis, "dH/dT" can have oniy
three values depending on whether "H" is in the solid {dH/dT=CS),

the mushy (dH/dT=C+L/AT) or the liquid (dH/dT=C ) region.

wmtttl, ' -
4) . If the new guess for T? § is not sufficiently close to the -
: b
+ ’ Sz
previous value of "T? g“, step 3 is repeated until a specified

degree of cbnvergence has been achieved.

5) Steps 3 to 4 are repeated‘for all nodal poihts.

-
.

6) Equation 4.16 is evaluated using the newly obtained guesses‘for.the
« "n+l” temperatures. ,If the result is not shfficigncly close to zero

for all the nodal points, steps 3 to 5 are repeated. ..

.
1

At first glance,'this method appears to be identical to the apparent
. capacity method if the same mushy range is assumed. _Theré is, however, a
‘ oh : . .
subtle difference in that the apparent capacity method excludes the

capacity term from the.transient differential whgré as the enthalpy

method includes 1t to give an enthalpy gradient rather than a temperature

13

gradient. The difference, however éubtle, may have significant, °

implications.

Both explicit and implicit formulations of the enthalpy method have -

1]

- 1

been investigated. . . :

i
-8



4.5 Pham's'ﬁeuhod
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This recently published ;échnlqug,JIS] is aét@ally a hybrid of the

. enthalpy and apparent capacity methods. The teéhnique uses a three-time

.’ //;2

level finite difference formulation which should be unconditionally

stable and convergent. -

r

r’/) The three-time level finite difference approximation to the energy

‘equation is given by;

-

n ml  .n-1. 2 At k ,..n-1 n T+l
¢ ™t -y = 280X (T S+ T+ T .
1,3 71,3 ‘ iJ 30 Ax2 ( i+_1,J #*1,j 1+1.J)
’ n—1 n : n+l n-1 ‘h ntl
+ - + + +
T,y P T, s Py, 2 P T e YT e YT )

[

n-1 n ntl

+ (T + T + T

1,31 i,j-1 i, j-1

if ax = Ay-'

n n+1)] )

-1
Y YC SEE  ShE U e
) ('l,J t,i o 1,5

-

4.17)

The fight hand side of Equation 4.17 gives the enthalpy gain due to

heat  conduction for a time intexval of 2 AT. This enthalpy galn can be

-

approximated by;

i 2 k At n n n n n
AH, , = ———— [T .+ T T + T - 4T
03T Ty L T Ty T T T T
!
o w1, i
The temperature Ti j can be approximated by;
» . N

L)J'

* ' n-1
T, . -fT {EH(Ti,j) + al

Ladd

‘e

Finally, the apparent capacity "C

n

1,3

*

£,

Al 3
B

(4.19)

b8
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" . R . * ) o .-
(4.20)

-

. This means that ad.appraidﬁétfbﬁ to "C: 3
. »

completely on quantities known at time "n". ' ‘

can be calculated based

The system of equations generated by using this apparent capacity

Y .

. "CT " in Equation 4.17 is then solved to find the temperatures "Tn+%".
- ivj o ‘ ) [ i:J
. As a precaution against jumping the latent heat peak, the temperatures
- "T?+}" are recalculated (after having solved the system of eqdations)'as
follows: : : ‘ : v
‘nt+l i n-1. n atl n-1 '
T, _(corrected) = f £.(r, .y +C. (T - T ) 4,21
i;J( _ _.) T | gt 1, ] 1;3( ] ( )

1,] i,37°

. 5
e The term {A the square brackets represents the calculated new enthalpy at

node "1". If "C: jfwwas underestimated, causing "T;+§" to " jump” past
¥ s .
the freezing rénge; Equation 4.21 will reset "T?+§" back te the freezing
»

‘range.

4.6 Effective Capacity

This method, which the author is proposing fs a modified approach to

the apﬁarént capacity method. With this method, the nodal temperatures

are assumed to be correct for the node, and not for the whole volume

L -

assocliated with the node. A temperature profile is assumed between the
nodal points, and instead of talculating an apparent capacity based on

only the nodal temperature, an effective capacity for the volume

assoclated with the node 1's found by integrating through the volume with

o —
o
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N

" .the nodes have been assumed. Figure BA illustrates a possible tempera-

the assumed temperature profile and apparent capacity function. -

integral to be evaluated is the Eollouing,

-~ ]

= ] €D dxdy / [[ dxdy *

C B
eff element element

This integration may be carried out by means of awr exact integration

- .

33.

The.-

(4.22)

.

and temperature profiles. For the two-dimenslonal runs where an exact

of subvolumes, and the integration is performed numerically using the

following formufa;
ns
Coge = | I £o(T )]/ns y
m=1 .

where; m = the subvolume at which "Tm" is evaluated.
. _ L
ns -.the total number of equal volume subvolumes.

(4-235

The number of subvolumes is cliosen based on the temperature gradients

through the nodal volume in order to insure that the peaks in the

’

the nodal volume does not contaln the mushy range, the Integraclon s not

. apparent capacity profile through the nodal volume are not missed.

performed and ‘the heat gapacity of thefnodal volume {s set to the

specific heat of the material.

K
*

For_the'purpose of thiswbrk, linear taqperatdre profiles betwecn

If

turé.brofile for a one-dimensional problem, along with thé'apparent

capacity distribution ﬁhich.results, assuming thc‘apparént capaclty

. for simple oneé-dimensional cases with simple apparent cabacity functions

’,’ integration EF not poSsible! the nodal volume is sybdivided into a nunber

R

-
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function given by Figure 6A. Since node "i" is not within the mushy

range, the apparent capacity method sets the heat capacity of the entire

nodal volume "i{" to "C”, thus neglecting the latent heat effect for that

1

time step. By'évhiﬁating the Integral in Equation 4.22, the effeetive
capacity method sets'the_heat capacity of the nodal volume to “(3/4)C +
(I/Q)CE;P"tthus accounting for the latent heat effect. ’ |

1f, however, the temperétuge profile and apparent capacity distribu- _
tion are as in Figure BB,the apparent capacity method sets the heat capa-
city of the complete éoﬁal volume "1" to "Gapg“, thereby overemphasizing
the latent heat effect for that time step. Tﬁe proposed effectfve capa-
city methdd again'sets the heat capaFit¥ to “(3/4)C + (1/4)Capp".
Similar préblems occur in multi~-dimensional cases.
| By "evaluating EquaEion'A.ZZ at each time stgb,'for those-nodal
volumés which.contain the mushy range, it is eﬁsured that the latent heat

. Ly

effect Ls properly abcounted for at all time steps, even if the mushy

range falls between two nodal points. Finally, by evaluating the.efféc-

tive capacity, the lafent heat effect starts to be accounted for when the

leading edge of fhé mushy reglorw crosses'che element boundary not whén it
crﬁsses the node as 1n the apparent capacity method. Implicit and
explici£ finite difference as well as implicit finfite element formula-
tions of the'proposed effective capacity methoa have been investigatgd.

3

4.7 Tacke's Method . .

This method, which is a variation of the enthalpy method, was
Introduced very' recently by Tacke [18]. :The technique uses an explicit

formulation, and is only applicable to oné4ﬂimenpional'ipbthermal

(R}
b
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solidification préblems. Although these limiafiéqs are quite
. frestrictive,.ehé appreoach is innovative enOugh.Fo méfit investigation.

// Tacke uses a control volume approach with a linearlt;mperaﬁure
profilé approxi@ation-betwgeh the nodes. For the conttol voiume uﬂder&
golng phase ch?nge howéver, he assumes the discontimuity in the témpeﬁa—

_ture‘gradi&ntiﬁo ochr at the ph;se front (as it‘should bg) rather fhan
at the node (yhere it occurs In a cbnyentiona; control v51ume |
formulation).

. Figure 9B illustrates the temperature profiile fpr.a control volume
ﬁndergoiﬂg phase change, assuming a linear temperature profile. The
distntinui;y in the temperac;re gradient is at the éhase front. Figure

+ 9A shows the corresponding enthalpy variation within the contreol volume.

The total heat contenE (énthalpy) of the control volume can be

calculated as;‘
i

H = pL(1-2)8% + pC(Tyy)/p=Tg) (1-R)AX/2 = pC(Tg=T _1/9)0AX/2 (4.24)

total latent sensible heat (I1) sensible heat (IIL)
heat heat
content (1)

»

Once "Q" 1s known, the heat flux density into and out of the control

volume can.be calculated as;

(4.25)

'The steps of the method can be summarized as;
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1) The temperatures, enthalpies and the phase front position gré known

"0

at time "n”.
2) The control volume equations are set up using Equation 4.25 for the

- control volume undergoing phase change.
D Eﬁthalpies_ate calculated for time "n+l" using the following
formula;

ntl

n At
= + o=
Hi H

1 ¥ oax (4; = q,_;) o (4.26)

4)  The "n¥1™ enthalpies-are converted to.temperatures‘in the ;sual
mahner for the control volumes not contalning the phase front. For
the volune which contains the phase front houever Equation 4.24 is
solved by Newton iterations to find "Q". Once "9" is known, the

nodal temperature can be easily determined.

Care must be takzh when-the phase ttont passes from one doptroi
'voluqe to another in a time ttep (L.e., 2 > 1). 1If the front passes from
volumt "1" to "i+1" in one time step, the fraction of the time step which '
is spent in "1" can be estimated as; N

n

Cr= (1 - 2bye™ - 9™ - D

,For the fraction of the time step which the phase‘front was in

s

‘ontrol volume_"}+l”, a better estimate for the heat. flux density is;

.(4.28)

* w



37.

Because of this effect, if "Q > 1" duting a time step, the enthalpy

of control volume "i" is corrected by adding

n
KL

A= 2 oy (qf - q |
8= O 71 ey ma) (&'29).

The enthalpy of control volume “i+1" is corrected by suBtracting the same

amount. * ' ‘ : o ) -

4.8 Blanch&ﬁdﬂgnd Ffemond's-Method

° This is anotherlrecently published aad innovatLvé mékhod. The tuch-'
nique wés presented by~Blanéh;{a and Fremond [23], The:technlque usas
the freezing index in the energy equation and the homographic
approximaFion [24] to estimate the ltquid.wate: content at a given
; temperature. The homographic approximation to the liquid wafer content

'‘u” can be expressed as;
. . . 1 (T-Tf[ _ C .
. e = +1) (4.30)
Figure 10 i}Iustrates the shape of the homographic approximation, along
with the actual curve of "y vs T" for a material which undergoes

*

isothermal solidification.. If "T" is greater than "T_ "

, the
P f

approximation to the liquid waﬁer EQntént approaches unity, however if

T is-less'than Tf, thé approximatidﬁ approaches zero. Tﬂe smaller the
value of the cénstant’“K", in the homographic approximatlon, the clo;ur
the approximation is to £he-éctual curve. This does ﬁot necessarlly mean ™
that "K" should alway; be chgsen ver; small as the‘magnitude of "K" may

have other effects on the numerical solution. fheléffecc of the chgpen .

value of this constant on the numerical solution has been investigated.
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.Ihe.specific energy of the solidifying‘daterial can be defined as;

)

e=CT+Lu. , . (4.31)
Using this definitioﬁ, the energy equation becones; . o o
d 32T , 32T | . o
- _ 0 d: k [+ =—] , (4.32)
. ax2 3y2

Integrating Equatiop 4.32 gives;.

t .
- 2 2
e = [k (L4 0y4 (4.33)
o -.3x2 3y? )

©
o
1

4

If the freezing index is-defined as;

¢

t

o . _ 1 du
u.= k [ Tdt or T = oIt (4.34)
o
the integrated energy equation can be rewritten as;
2 2 . - '
pet - peo = +-3—E (4.35)
N ° . 3x?  ay?

.

Equation 4.35 can be formulated in the usual manner, using a finite
difference or finite element approach. The finite difference formulatidn

regsults 1in;

hn+1
' 1 1 .1,] »J - zj
p(cC ( ) = ( ) = o (CT® + —‘(
. 2 K+]Ti’j[ k At K+1T j|
4 (u;:i_j o™ Au:+§] (4.36)

-1, * %™ _-m i,3-1



At time “t=0" all values of "u" are zero. After the system of equa-
. o 1 K . . . At "' " l . .. T
tions has been.solved once, valués of uy 3 are found. 1In order to

.. ;. . - » .
convert these values of ”u?tj“_to'temperatures, the gradient of -“u”. with
. . . ' y . A . .

'respect to time must be eyaluated.: This can be done using the followlng

formula;
: _un+l N : - '
Su_ 4,5 4, o e -
. dee At : ' '(4_.':37)

]

. -

For the purpose of this‘thesis, the téﬁperatures giveﬁ by Equation 4.37

‘have been a;sumed ﬁo-be represéntativé of the “n¥l/2" temperatures.
Therefore, afte:?;ﬁe §§stém of equatiénslhaslbeeﬁ'solved oncé,-tempera-
'turgé are only Rpown'for_tigé "Af/Zf; nd‘hencé twice as many matrices
ﬁust be'solved:compared to é'gdnvent onal te@peratute formulation with
the same timé‘step. ”

| Bdth-implibiﬁ,finite dif erenée as gqll as impliciff[niﬁéuiemcnt

. formulations have been investigated.

w . . B N . .
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‘methods for podelling phase change problems, it is necessary to set

L — .

‘problems, the latent heat effect is;

4g0.
'CHAPTER V

TEST PROBLEMS P

In order to evaluate the performapce of the various numerical

a

appropriate test problems and compare the actual solution to these

" problems with the solutions obtained from the different numerical

methods. Since the goal of this work is to determine the best method for

implementation into a genetal purpose metal casting algorithm, these test

problems should be as ¢lose as possible to actual metal casting problems.

g Unfortunatély, this means that phenomena such as variable properties,

convection in the liquid region and gap formation betgeen the casting and
the_ﬁold should be included in the problems. If thesélphenomena are
included, it is verxégifficgiﬁ to:Qetermine the actual. solutions togthe
test problems. Even If the ac;uhl sol ns are obtained, it is almost
1mpossib1e~59’ﬂétermine exactly:wﬁat_fractions of the overall errors in
the nuierical soluttons are due to inaccuracies in the latent heat
ref&aseﬂﬁodelling and what fractions are due to numerica} errors in.
modelling other phenomena such as convection in the liquid bhase.

Because of tP}s, test problems have beén selected which consist only of

heat conduction and release of latent heat. By setting such test

r
PR

‘gﬁiated and errors associated with

-

'modeliing 1t 'can be examined.- Material properties and boundary

_éonditions have been set to approximacé those of typical metals being
cast in perﬁanent molds.
The first three test cases are one-dimensional. Figure 11

illustrates thelgeometry of the probleﬁ. The entire domain is assumed to

‘I



1],
be at a upiform lnitial-teﬁpérature above the phnse'change'temperaCuEe,
with the leading;end (x?d) dropped té éome-temperatyre below the'ﬁhaée
change temperature at time "t=0". Table l gives the matertial p;oﬁertics
-and boundary condiéibns used for the first three tégﬁ éases. Typical
matérial pgoperties for iroﬁ {test case #1), aluminum al}oy (test'casc
#2) and.water?(tegt case #3) have béen aégpmed. All material properties
have been assunea constant in order to avoid posslble errors ﬁssoclated
with numerical modelling og variable material propﬁfttés. ‘For

information on material properties of metals, Seq~[56-48]. The

solidifying water‘teﬁt case has been Included in order tolexamine the

diffepences'betweehiEhe numerical behaviour of wﬁter and metal problems.
o For‘teét_casés?#l and #3, the well known Neumann analytical solétiué was
used to compare the comput;d results‘;ith.' Although the Newnann solution
1s for én‘infinite solid,'the assumption_pf a constant tempgrature'T(l,t)
;as found to be ggceptable as only an-advance of the front thfoggh.a‘
short diétance frém the bounda;y is considered iﬁ the computations of the
test cases. |

' ,The'ogﬁer two test cases.are two—dimensional. Figure 12 illustrutus
the'geﬁmégry of the problem. The problem corresponds to one quarter of'n
1663 square cross-section solid initially at some tempcrééure above the

.

phase clange temperature, with the surface dropped to some temperature

below the phase change temperature at time "t=0". Table -l gives the

material properties for these two—dimensional test cases. Again, typical

material properties for iron {test case #4) and an aluminum alloy (rest

case #5) have been assumed.

al
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CHAPTER VI

- . RESULTS AND DISCUSSION

\ - '_.

The five tesf cases of Chapter 5, were solved using the techniqges
describea in Chapter 4.The results have beey analyzed for accuracy and
senaitivity to. various paraméteré s;ch ag time step and assumed mushy -~
range. For the two-dimensiogal test runs, cost of utilization has also
been examined. Cost has not béen examined for the-ong-dimensional test
runs since the cosets of the two-dimensional runs ;re ﬁore significant. A

reason for this ie that in the one-dimensional test runs, the resulting

matrices are always tridiagomal, which is not the case in multiple dimen—

Vsions. As stated in Chapter 4, for some of the methods, both finite

difference and finitehelemqnt formulatidﬁs have been investigated. Tor

the one-dimensional finite element rums, thrée noded quadratic\elements
were used with'a lumped éapaciéy matrix. For the two-dimensionil finite
element runs, three noded triangular elements were used, agaih with a
.lumped capacity matrix. For the finite difference formulations, central
‘differences were used in the spatial domain. '
"The timg stebhs, sﬁétial‘increhents and mushy ranges used in the
"computations are given in Tables 2 and 3. The spatial 1ncremeﬁ:s in all
the test cases were chosen to be réasonable for the scale of the
phenomenon 1nvestigatéd. For the‘ice-watef test case, the material
properties, time steps and spatial increments were taken similar to those

used by'éoodrich [33] as his is a commonly used test case for ice-water

wprobie@s. The time steps investigated for the three one—-dipensional test
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c&sgs were chosen to represent similar ranges of the Fourier modul{ (Fo),
as shown in Table 2. - For the-two—dimensional test cases {test cases #4

and #5), as'wel% as the one-dimensional test cases involving a mushy

range (Eest case #2), no analytical solJtion exists to compare the "///r
calculated resﬁlts with. Therefore, these three probleﬁs were‘501ved by
a number of- methods on an extremely fine grid. Tt was'showh that all
_metﬁods converged to the same result if a fine enough grid and small
enough time step were used {(the ‘time sfeps and spatial increments used in
the.calculations are; test case #2 - At = 1.5s, Ax = 0.0125 m, test case
- #4 - &t = 1.05, Ax = A} = 0.002 m, test case #5 = At’=~6.ls, AX = Ay =
.0.005m). The'converéed'solutions for test cases #2, 4 and'S are given in
» Figures'ﬁo,'i?S and 138 respectiyely. fhe tie stejs and spatial {ncre-
ments uéed in these figures we}e choéeﬁ by decreasing\their valu®s until
a=desired ;ccuracy (standard deviatioa bet#ecen the repults less than

. .,
0.5°C for test Eases #2 and #5 and less than 1.0°C for test case #4) in
‘the results was obtained. .These "converged"-resuius were used when

calculating the standard deviations of the various methods.

+ The standard deviations were calculated as:

N I : .
2, .0.5
s=[z [© (T}~ T-’I";) /117 N
where “TT" 1is.the analytical result for nodal point "1” at time "n" if
the analytical solution exists.or,” 1f the analytical scolution does not
exist, it is the converged result obtained as mentioned earlier: The

value of “N" was chosen such that, "NAt" represents a given total time

for each problem. This total time is "10000s” for the first test case
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<

« TR
(1-p 1ron),'2ooos for the second.test casg (1-D aluminum), "7000005* for
the third test case (1-D wac;¥), "1000s" for the fourth test case (2-D
1ron) and “1005" for the Fifth test case (2-D aluminum) For some_time
steps, fhe value of N is not an integer. ‘In thesé cases, the calcuia—
tions aere done for a time'rgpresgnted by the closest intgger larger than
"N, ahd the'appropriate’fractidn of the final time step‘standard
deviations was used in_oFder to,repreéent the given totéi time for théﬁ
teét case. The pumber of ‘nodal points used in the stéod;rd deviation
calculations varies for the five test cases. F;r'test cases'#1 and #3,
where the analytical solution exlsts, all the nodal points of the discre-
tized shgce were used in the calculations since it is not necessary to’
read and write the aﬁalytica£ solutions. in a data file. - In order to
reduce the. costs associatéd‘with reading and'writing.ingo a data file,

only representative nodal polnts were used in the standard deviation-

calcdlattbns for test cases #2, 4 and 5. Figure 13 illustrates the
discretizad space used for the first three one- dimensional test cases.
The standard deviations given Eor test case #2 are based on nodal points

L
2 to 9, as shown in Figure Ij. Figure 14 illpstrates the 6x6 mesh used

for test cases #4A and #5A. The standard deviations given fov test cases

f#4 and 5, are based on nodal points A,B,C,D, and E'as shown in Figure 1l4.

The nodal points used in test cases #4B and #5B, were chosen to represent

.the same locations as ghe ones shown in Flgure l4.

Tﬁe (x,y) cgg:ii::tes of these points are; -
A = (0.02,00Q) ,

B = (0.02,0.04) — N o
clu (0.02,0.68) | .

D= (0.66,0.0Q) ‘Note: the spatial domain is 0.1x0.1m

E = (0.08}0.08) h
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Since the goal of this thesis is to examine the errors due to the'

. [

‘numerical simulation of the lat;nt heat release it ig desirable to
eliminate as many other sources of efrors‘as poséible in order to.lsolate
Ehe errors of interest. Ofte source of additional.errors is the stepwise
initial boundary condition. This is a source oé‘errors in many numerical
problems where a stepwise initial boundary c;ndition is abgroximaﬁgd with
-é grid point of finite volume. 1In order go minimize this error, the

A "

" calculations were started at a small time after time "t=0" for those
. . -
problems which have an analytical solution (test cases #1 and #3). The

temperature distributions for this starting time pere obtained from the

'analytical solution.
The results of the test runs qre“éiveh‘in Figures 15 to 144, fhe |
figures are divided into groups based on the five test.céses. In some of

these plots, the vertical axis label is “Re+ufT;;T}emperature". This

label was chosen to indicate that the  solidifying temperature (or when a

mushy range exists, the middle of the mushy range) is always taken to be
zero and hence téhpératdfes given are relative t6 the freezing point.
For the first three test cases, plots are given of calculated nodal

temperatures against time for representativé nodal points and time steps

-~

"-and plots of standard deviation of the results agalnst size of tlme step

- ‘

for‘each of thei%ethods 1nvéstigatéﬁ2 Sinceetest q?%cs‘#l and #3 are
isothermal solidification probléms; plots 6f‘standérd deviation of'thé
‘results aéagnst‘assﬁmed;mushy range are also given for ‘those methods
whicﬁ'médel'isofhermal splidificat;on bfias;uming it to occur over a -,
small temperature range. For test cases #4 and #5," plots of caftulated:
nodai temperatures égéins; time are given for representa;lve nodal points .

and time steps. Standard deviation plots are -not glven for the two-
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dimensioﬁal test cases due to the high cost pf generating such results.

The results are also summarized in tableg. Both the tables and the

¥

~

figures are given since figures often reveal information which is

impossible to extract from a table of results. The tables of results

have been referenced when:dIQCussing general trends’in the.results.lf

6.1 1-D Iron and 1-D Aluminum

-

Table 4 gives the standard deviations for the éne-dimensional runs.

The first two test cases (1-D irom and 1-D aluminum) are discussed first.

‘Referring to the two metal tcst.cases in Table 4, the accuracy of the

post iterative method of accounting for the latent heat release, appears

acceptable compared to the other methods for smaller time steps, particu-

larly for' the~explicit cases, but not very good for the larger time

~

steps. Even in the solidifying aluminum allof test case where the 1atect

heat is spread -over a large temperature range (lOO“C), the standard

deviaticné are large (27.4°C) for the larger time stecs.' Figcres.égfto :

51 show the effect-of the time step on the standard deviations of,the

-results from the jmplicit bcst'iterative solutions to the'first test

case. It is evident from these figures that increasing the time step

results in a rapid decrease in the accuracy of the solutions. Figures 15

and 16 give Eﬁé temperature historfies calculated by ‘the explicit post

iterative,method ﬁorhthg l—D iron test case. Thesc.figures reveal that

although the overall errors may be small for the. smaller time stéps, the

‘erfors‘near,the_phase front can.be large. Figure 65 shows the

temperature histories'calculated.by the implicit post iterative method

- for the second test cast(l-D'alumlnum).';The temperatures are falling

a

unrealistically when the nodal points are within the mushy range. Figure
. L
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35 shows theé effect of the size of the assumed wmushy range on' the

»

. ‘ . L , .
" accuracy of the fpesults for the implicit post iterative solution to :hq:f -

1-D iron test case (isothermal salidificétion). There appears to be an
optiméi mushy'range to assﬁmé (90"&), ﬁuﬁ ie is very'large; It appears
thé& tgat.in order to achieve the bé;t‘adcuracy using fhg post lterative
‘method, very small:time'steps and, for isothermal solidificatlon E
problems, large-éssumed.mushy rangeg must be used. Even with these
* paraneters, the errSrs near the‘phase'front may still be large. -
Rbferring_agaiﬁ.tg Tabié 4, the accuracy of the apparent wapaclty
séldtion to the soiidifying }fon test case is very poq} compared Lo thé
other methodg. Tire app;rent capaéity solution to the second test case
(l—D'Bluminum)_is better in te;hs of acquracy,fbut still not aé'good as
some of the‘othé; methods, particularly for the explicit funs with larger
time steps. Figure 52 gives thg variation of the standard deviation with
the size o} the tihe steyp us;d in the calculations for éhe 1-D iron test
case.’ Thé stapdard'deviaﬁions afe'very'large (often above—20°C), and
decreasing the time step does not always result In better acCuracy. From
"Figure 52, there is no:trend towards betteé accuracy with decreasing time
step. Figure 76 shows'the same plot, but for the solidifying aluminum
tesg case. Although the mushy range is muqh.large¥ in this case than the
oﬁe assuned in the firét test case, the solution ghoﬁs the éame écatter
aés in the Preﬁious case. These large errors in ﬁhe solutions qbtaiggg
qsiﬁg the apparentcapacity method result because for metals, the prob— .

" ability of the mushy région (whether assumed or ;ctual) falling betwecen

~ two nodal poings'at a give time {s high. rwhen this occurs, the latent

heat effect is not taken into account for that time step and hence the

temperatures fall unrealistically fast during that time step. Figure 17
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gives the‘predicced nodal temperatures using the apparent capacity method
for the solidifying iron test case. Asféxpected, the predicted
temperatures are low. Increasing thg,%ize of the assued mushy'range in

"the first test case may/hbiﬁ ﬁlleviate this problem by decreasing the

probabliliry of thg»ﬁﬁghy range falfiug between two nodal points. Figure

" . -

36 illustrates the effect of the assumed mushy range on the implicit

apparent capacity solution to the first test case. As expected,

1ncfeasing the assumed mushy range results in better accuracy, but an
unreaiistically large mishy range must be assumed (greater thaa 80°C for
standard déviations consistently gélow 5°C). It is difficult to predict,
for a given problem; what mushy range should be assumed.. The performance
of the apparent capacity method appears, to be very unpredictable when
applied go the solidifying metal test cases and an unrealistically large

‘/} . »

shy range must be assumed in order to achleve good accuracy for the

+

is thermal'solidification test case.

erring to Table 4, the accuracy of the eﬁthalpy method is good

compared 'o the othér nethods for the first two test cases. Only for 
lérger_time steps in the solidifying aluminum test case, é; the results
appear to be.significantly less accurate than ‘somésof the other methods.
Figure 18 gives the temperature histories }or the fifs; test case (1-D

" “ron) predicted using the expiicit enthalpy method. As wi#h the post
igerative method, the &Ve}all solution is quite good, but the errors near

. thé phase change temperature are-large. Figure 37 shows the effect of
size of the assﬁmed mushy range on'the accuracy of the solution to the
'1-D iron test case, solved by the implicit_enthalpy method. There

# ‘ '

appears to be an optimal mushy range to assume, but the error assoclated

" with deviatihg from this value 1s very small (less than 1°C for che.range

L
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v

con;ide;ed). Figure 77 éﬁows the ?ffect ofjthe stze-of time step on the
solutién of the 1;D aluminum ;Lst case using‘ihe impliqit enthalpy
methéd. The errors are q;ite small (belﬁw 10?6), and decreasing theltiﬁe
step alwa}s'results in better aécﬁracy. The eﬁthalpy method éiveé
accurate resulté for the 1-D metgl test cases. It is not necessary to
searcﬁ for the Bptimal size of mushy range to assume, as its effect is
sméll, Decreasing the time step al@ays result; in slightly betca;-accur—
acy, but the effect is not as large as for the post iterative method. If
sﬁould be mentioned that for the formulaéion used in this thesis (see

. ‘ . v .

Section 4.4) convergence problems were encountered:in the iterative solv-
ing routine when the updated.guesseé dropped from‘above the mushy range
to below tha mushy range in one iteration{. These problens were overcome
by setting ghe updated guess back to a temperature in the mushy range
(T=0°b in this case) when this situation occurFed.

From Table 4, the accuracy of Tacke's method is very good for the
solidifying iron test case. The method was not applied to the second
test' case sinée ;t cannop'aécount for a mushy range (as mentiocned
earlier, Tﬁéke's method-is a modified approéch to the enthalpy meéhod for
one—~dimensional isothermal solidification problems). Figure 20 gives the
_temperature histories predicted using Tacke's method'for the first test
- case. The results are‘very accurate_evgn ﬁear the rhase change tempera-

‘ture. Figure 48 shows the effect of the time step on the accuracy of the

.results obtained using Tacke's method to solve the first 1-D iron test

-— .

case. The results are very accurate (less than 3°C standard deviation)

for the range of time steps given, except near "t=250s", which represents .

‘the I&Piting value of the timétstep for an explicit formulation, based on
o ‘ v

T
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"Fo<0.5". For its range applicability then Tacke's method gives

. L

S

excellent accuracy.
Referring again to Table 4, Pham's formulation of the apparent capa-

city method gives improved accuracy compared to the apparent capacity

method for the first two test cases for smaller'trime steps. For larger

" time sceps,-thEVer,'the problems associated with the apparent capacity

method persist and the results in some cases are worse than with the
: . or . . ’ .
apparent capacity method. Figure 78 shows the effect of time step on the

accuracy of che solucion to the solidifying aluminum test case using

~ .

¥
Pham's'method _The trend observed in. Table 4 1s- apparent from this 9

figure. The accuracy of the solution decreases slowly with increasing
- L)
time step size, up to a time step value of "65s". For larger time steps,

-the standara deviation of the results increases‘sharply with increasing
T —— . LY '

- time step. Figure 68 shows the temperature histories fqr the solidifying-
. kY ° '

aluminum test case pre&icted by Pham's method. From this plot,Jthe_.

recalculation of the remperatures, as described in gection 4.5 of this

thesls, 1s causing scatter in tne predicced'solution about the actual

solution. Pham's method succeeds in.alleviatihz'the problems assoclated

with the apparent capacit; merhod;for'lower time steps, but the predicred

temperature histories are not smooth with respect to time as expected and

Ry
the problems persist for larger time steps.
frqm.Table ﬁg_the proposed effective capaclty method appears tc be

very accurate for the first two test cases. The superior accuj>hy of the

. effective capacity method compared to the other methods is particularly

S

evident in the solidifying aluminun test case, where for some time steps,

-

the effective capacity'standard deviations are less than half of the

standard deviations of the next best method. Figure 27 illustrates the



Y

| 51,

temperature ﬁistori;s for the solidifying iron test cage pfedictéd by the
implicit effeétive.capacity ﬁePhod. The predicted solution 1s'vef; .
accurate,rinciuding.neaf the phase changé temperature:wﬁér; some of tpe
previously discu§sed'me£hods performed poofly. Figure 69 illustrates thg

temperature histories predicte& by the effective capacity method for the

solidifying aluminum test case. Again, the accuracy is eerllent,

- -

1nciuding the mushy range. Figure 55.illustfates the effect of the size ts
Qf the time‘s;ep onlthe accuracy of the_éoiution predicgéd by the efféc-
tive capacity‘method.' The standard déviagions are small (below 6°C),
including the 1argef time‘séeps, and there.ig a crqnd towards better
accuracy with'décreasing time step although the curve is not smooth. ‘*”
figure 79 illustrates the same plot, for .the solidifying aluminum test
case. Again, the accuracy is good (below 5°C) for éll time éteps, and
there-is a'trend-towards-igproved acéuracy with decrgasing time step.

Figure 39 illustrates the effect of the size of the assumed mushy range

on the solution to the 1-D iron test case.using the effective capacity

~method. There appears to be an optimal value of the assumed mushy range,

-

but the érror'associated.with deﬁiating from this .value is very small.

" Finally, Figure 5?‘111ustrates the efféct of the time step on the accur-

acy of the solutiop'toufhe 1-D iron test case, predictéd by the effective
capacity method.'.ihe only difference between th;é figure and Figure 55
is that in this case; a Gausslan distribution of the apparent capacity
with respect to temperature has been assumed w;thih the mushy range.
Ninety-five percent of the iatent heat has been assumed to be released in
the temperature range frbm'"—5.0°C" to “+3.0°C". This is the same
assumed mushy .range as Iin Figure 55, except that in F;gure 553 a linear.
release qf latent heat with temperafuie has begn‘assumed. Although

different apparent capaclity profiles have been assumed, the results are

identical. This means that the shape of the assumed apparent cachity

e
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profile has no significant influence‘when modelling isotherual
. solidification using the effective capacity method. This. cohtradicts the
findings of Erickson [2] for ,the apparent capacity method, who states
that the: manner in which the heat of fusion is added - to the specific heat
curve,can- play an important role in the results.. This\implies that the
importance of the shape of the assumed apparent. capac?ty variation in the
apparent capacity method is. primarily in changing the prgbability of
missing the apparent capacity peaa, since in the effective capaciry '
merhoo where the latent heat effect cannot be‘missed for any tine steps,.
the shape of'tne apparent capacity variation'has no significant effect on
‘ the results.’ The proposed'effective capacity metnod‘then appears very
accurate in solving tne two one—dimensdonal solidi ying metalrtest cases -
uhether a musny rénge eiists' or the isothermal soj)dification case is
solved by assuming a small mushy range. .

Referring to Table‘4 'thesresults using Elanchard and Fremond's

;mechod [23] which uses a freezing index formulation with the homographic

.

approximation [24] to rhe liquid fraction seem very accuratecompared to

. the other methods for\the solidifying iron test cage. Figure 29
illustratea the temperature histories obtained for the 1-D iron test che

using this method The time steps used for the plots of the results from

this method are always twice as large as for.the other methods, since for

the formulation used in this thesis (see Sectdon 4.8), every time the,

.l

.'resulting matrix 1s solved, the time advances only one-half of the time

B i

step due to the hopscotch nature of the technique. From Figure,29,;the

results are accurate, tncluding the results near the phase change temper-
ature. FigurgJSS-illustrates the effect of the time step on the;accuracy

- N i
T ;o [

. of the solution obtained with Blanchard and Frehond's method. The

'resultS'are very accurate (standard deviationg_belaow 6°C), even for tpe
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larger time sfeps, and thére‘ts'a‘i;end towards 1mproved‘accuracy with

.

decreasing cimé step. Figure 41 iil&bt:ates the eEfect of the magnitude
Ez/ﬁkaaeffumed constant (K) in the homographic approximatlon to the-
raction liquid. The effect is quite 1arge (a rarige of approtimately 4°

in the standard deviation for the range'of "K" investlgnted) particularly

o

for the lower magnitudes. It should be mentioned that- as Rolph and Bathu
[L2]. state, this method can be diffiCult to add to existing single phase

codes due to the tfansformatiqn to the freezing indexi

6.2 -1& Water ‘ ' . :
. The third test case is the one—dimensionalllce—wﬁter test case.

-Exaﬁinining the 1-D water results in Tablé 4, and since the total temper-

< ature range of the initial conditions is oniy 12°C, and hence a standard
f . - . v oy . :

deviation of 1°C represents 8.3% of the total, the standard deviatfons
are-extfemélx large,. except -for Tacke's method. The'standard deviations

of.the‘results obtained with Tacke's method ate one order of magnitude

[
.

»
smaller than of any other method. This is contrary to the observations

+

from the solidifying metal test ;;:és discussed previously.
Y } . Figures 81 and 92 illustrate temperature histories calculated by the

explicit post iterative method and the impl;élt enthalpy method for the

ice-water test case. There are large fluctuations in thc'brudicqu

.+ )
temperature histories. Fipure 9A illus:rathfhe temperature historics

predicted_by the propased eff$Ct1ve capacity method (or'thé'l—b Qa;er

test éase. Again, the same‘latge fluctuations.persistu' Examinlng

. Figures Bl to 98, Feveals that these problens exist for all the methods
Lo -r . ) . . - ‘
except .for-Tacke's method. Filgure 127 illustrates results from the

”

effective capacity method using the same grid-as shown in Figure 13, and.
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the same bouﬁdafy conditions as for the 1-D water test case, except that

.. a spatial,ihcrement of 0.05m instead of 0.125m, and a time, step of 3000s
o . ] )

instead of 200005 have been used. Even with these smaller spatial incre-

ments, and smaller time steps, the large fructuations in the gesults
. o

persist. Evidently an'emtfehely‘fine grid must be used in order for-

theée fluctuations to be negliéible. Figure 105 iilusirates the effect of
. R . J . * . . ’
Ahe size of the assumed mushy range on.the results from the implicit

*

gnthalpy.method. Increasing the siée of the assuméd mushy fénge does not
g‘“appearbfo.{%proge.the results.\ F%gd;e 107 shows the same plof'for the
implicit effective capacity ﬁethoa. 'IncreasiAg the size of the assumed
,m;éhy range improves the results slightly,~but'the standard d;viaéions
continue to be an order of-ﬁagnitu;e éreater than witﬁ\Tacke's method. -

. It ;ppears then fhag there are.signifiéant differences in the
numerical bEhaviour between the solidifying metal and the ice-water test '
cases. Examining the ratio of the latent heat to the total sensiﬁle heag

- which Is released if the whole domain d{rps from its initial condition to

“the boundary temperature gives:

1-D Iron Test Case . L/[C(150 + S00)] x 100 = 38%
1-D Aluminum Test Case © . L/[C(150 + 400)] x 100 = 80%
' T Y
1-D Ice-Water Test Case CL/[c(2 + 10)) x 100 = 330%
2 2 . -

Y

The ratio of the latent heat to the sensIble heat in the ice-water test

¢ casedis much higher than in the two metal test cases. This implies that

L

in the ice-water test case, the effect the latent heat is greater than
in the metal test case. The traditional enthalpy method sets the nodal

temperature Pf the volume containing the phase front to a constant



_ temperature while the phaée front is within tﬁg ;odal volume (assuming
isotherm£1 solidification). Tacke's.formulatfon of the-enthalpy method
alli:? thg nodal'temperaﬁﬁge to fall more rapidly while the phase front
C is within the nodal vdlume by following the froﬁﬁ and correcting the
nodal temperatures baséd.on the phase front position. With Eﬁe;othe}
meﬁhods,‘once bhe,phése front has pasged through the nodal volume, the
. nodal temperature {s unreélisciqally SLgh and hencelforlthe foll;wlﬁé‘f;w
time steps the nodal temperature falls quickly and begins. to osecillate
;boué the actual solution as seen in Figure 92. Although Tacke has

- ;ucceeded in formulatfng:his method for the one-dimensional case, {t ts
Extremely difficult‘co extend 1t to multipfé dimensions. The main
_difficﬁlfy is that the phase froﬁt is no .longer necessarily parallel to

the element boundaries and therefore the heat fluxes at the element

boundaries -are very difficult to define and the phase front fs very

P . . . o T P
difficult to locate. Also, sirce nelghbouring elements may contu{;hzgu

phase front at the same vime;'it.fs very difficult to 1qcatc'the front
within 'a nodal volune.
Besi&és the r;tlo of the latent heat to thersehslble heat, thurc are
other differences between ice-water prﬁbléms and solldify;ng metal
" problems. These differences arise from the geometries of typlcal
problems in thé two cases."Often, fce-water problems consist of,solldi-
fication (meltingi around a buried plpe or some similar‘phenomena which -
 many times have ver& sihpie geometry tsoﬁetimes even one-dimensional).
Atﬁsting in permanent molds however, is cﬁ;:;;tefized by compléx
_geometrieg.and three-dimensional numerical.formulations are generally

" necessary. o ' o _ : .
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6.3 2-D Iron and 2-D Aiuminum
" Tables 5 and 6 give a summary of the results for the metﬁods which
were extended_to a two-dimensionalformulation and used to solve the final

two test cases. All of these foPmlations use an implicit scheme. The

'finite difference formulations all use the well known Alternating

Direction Implicit (ADI) scheme which solves two tridiagonal matrices at
every time step. The” finite element formulations use Gaussian elimina-
tion, (taking inte account the baneed nature of the matrices) to solve

the resulting matriees. Although this is not the most efficient method

-

of solvirng the matrices, obserVatiqns will still be made about the rela—
tive costs of.the different eethods. Tﬁeeruns were done on a 48 megabyte
Amdahl 5850 computer withﬂeccelerator; The-ccets qhich‘afe quoted are
based on CPU time and virtual memgry usage. it ehouid be noted that only”
the relative magnitudes are important as costs can vary dependlnb on the
computer'system used. ' ce

From Table 5, the EOSt iterative method is qcite accurate, but not
as.accurate as soee ef the other methogds. ' Figures 129 to :131 give the
temperature histories for test case #4A (solidifying iron) predicted by
the varlious formulations of the post iterative method. As in the one-
dlmensional_test cases, althcugh the overallxerrors ere lov (standard
deeiatlons betqeen 10°C and 19°C for theee conditions),'the €rrors near
tee phase chaqge'temperature are large. There appears to'be little
difference, in terms of standard deviations, between the isothermal
formulation of the post iterative method and the formulatfce which
assumes a small mushy range, although for . -larger assumed mushy ranges the

-,

difference may be more significant. The cost column of Table 5 reveals

that .the post iterative method is the most inexpensive to implement of



the ﬁethogs investigated. This is expected due to the .relative

simplicity of the method.. This igﬁngé that it is possible to use a very

fine grid in order to increase the accuracy of the solut&on near the

phase change temperature and maintain competitive costs.
The apparent capacity runs in Table 5, were done using the pafa—

¢ . ‘ ' - ’
meters given in Table 3 and were redone with a larger assumed mushy range

. L, '
(50°C as shown in Table 5) in order to assess the effect of the magnitude

of the assumed mushy range. TFor the smaller mushy range (10°C}, the
. , . N ’

accuracy is very poor (standard deviations above 35°C); including the

results for the finer grid'df test case #4B. Figure 132, gives the -

temperature histories for test case #hA’predicied,by the apparent

capacity method, The large errors are evident from this figure. The

fesul;s in Tab££\5 for the apparent capacity method cmpléyLng a larger
. ' . ’ .
mushy rénge are much iﬁpr&ved'compared td”the appafént papaclty method
“with the s@al}er assuned mushy range. FLguré_133 showing the temperature
historles for test case #4A (sqlidifying irop) predicted by this’ formula-
tion of the abparent capacity method confirms this observation.
-ﬂgscreasing'the spatial increment ktest éase #4B) thevur increases the
standard deviation from the actual.solgtion for the apparbn; capacity
. t S
method with the larger asgumed mushy range. This is contrﬁry to what is
expected. - As in the one—di&ensional test Eases, the performance Qf the
C " )
apparent capacity method is very-unprediécable and decreasing the time
sgéb (and tﬁe spatial ihcre?enf tn thisucése) does not nlwayé increasc
the accuqéﬁy df the ;olution.- The cost of implementing the abparcnt

capacity method is the lowest of the methods investigated (gs low as the .

v

post iterative method) but the unpfgdtctable nature -of the results

renders it unattractive. , ' -
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Table 5 were done using’ the parameters of Table 3, as well as with a

3

larger assuned mushy range. The results usihg the parametefs of Table 3

v

are fairly accurate (standard deviations from 7 to 17°C¥;~but the costs

associated with impleméqting the method are very high.' These hi

i -

are related to the 1ntegrating subroutine 'in the effective capacity

algorithn attempting to locate such a small assumed mushy range in the
first few time steps, when the boundary condition temperature gradients

are very large. Increasing the magnitude of the assuned mushy range

L]

faéilitgtés this integration and hence dramatically reduces the costs

1

assoclated with the effec;ive cepacity method and increases the accuracy,
55_19 evident in Table 5. Thé\cosé of implem;n;ing ‘the effec;ive_'
capécity meéhod7witﬁ the larger assuned mushy range 1s higher than for’
the previously discussed methods, but E@mpetitive: 1f not for the large
témperature_gradients.;n the first few time steps, these éos;s would.be
‘mich lower. The results from the effective capacity method with the
lgrget'hssumed mﬁ;hy range aré very accurate (standard deviatipns from 3°
" to 10°C).. Fig;re 136 i;lustrate thentémperature histories obtained far
the sofidifying i;on test case #Ah-bsing the effectivé capacity ?ethod.
~with an impiicit finite difference formulation. The results.are accurate
overall, as previously sgen from Table 5, and this figure reveals that

the solution is accurate near the phase ﬁhange temperature. The | (’-\\\*
performance of the effective capacity method then i§'gbod in solving” |
iﬁé-dimensional isothermal solidification problé;;EB§mésgﬁﬁing a small‘

mhéhy range, but the cost of' implementing the method can be“highuif the
mushy'kaﬁge is small and thg tempefqtdre gradients ln the élement |

t\i

containing the phase front are large.
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Referring agéin ﬁb Table 5,‘£he enthalpy forﬁulation-gives good

accuraéy for the two-dimensional solid;fying‘iron test cése. lFigure 137 |

showling the temperature‘ﬁiétqties pfed;éted'by the enthalpy method
reveals that the errors are concentrated near tﬁé pﬁasé chépgé
temperatufe- Refe;ting;tdﬁfable 5, the cost qf implementing the,ent:alpy
megpod is acceptéblg_f?f the smallé; tiqe steps, but increases at a
faster rate than the othef_mgthods with dgcreasigg spatial incr?mentl
Table 6 éiYes gﬁé feéults fo; fhe fifth test case (éolidifying
aiuminum allpy).uhich h;s a mushy range 6f "iOO“C"{ For this test case

the post iterative solution scandq;ddeviaﬁions from the actual solution

are high (above 19°C for the coarse grid). 'Figures 139.and 140 give the

temperature histories predicted by the post iterative. method formulations

AN

for-the solidifying aluminuﬁ test case“(#dA). The errors are very lafge,
particularly ih.thg.mushy range~ -This ;orresponds to the observations
from-the one-dimensional aluminun test case.

The apparent ;apacityﬁresulté f?om Téble 6, reveal that tﬁg‘accurncy
of Ehe me thod ié poor in bfedicting the soliﬁifying alumihumftest case
(standard deviations aboﬁe 23°C for both giids); Figure 141 ill@stratus

the teﬁperature histories predicted by the apparent capaéiﬁy method, “The

=

method is seﬁefely underpredicting the temberatufe!; ‘Thts.cqrrgspdnds to

the obervationslfrom the one—dimgnsional-test case. .

From Table 6, the'effective capaéity~mefhod‘is very accérate
(standard deviations below 11°C for ali'grids) in solving the solidifying

alumlnum test case.: For both grids, the best results are from the
effective capacity method. Figures 142 and 143 give the temperature

: historiesfptedigfed.by the effective capacity method formulations for

test case #4A. The results are very aqburéte, even in the mushy range.

S R

1
-

| - . : !



Although the cost is sliéhtly greater’foc'the implementation of the
effectiee cepacity-method than.for:some‘of the'othef‘mechods, thie.is a
veryl$implified_problem. In a'practical problen, rele vely_feb pf the
inodal poincs;in the grid chenge phase since-the grid includes the mold as
well as che céeting. Havingltemperature—dependent materia} properties
'incfea%es the ccst-per grid point. 1If grid sizé is dominated by the
latent heat effécc!ltce effective cépacity wmethod may offer substantiel
sevings by reducing the ngmber of nodal points neceesary for'a gieen
Iacccracy. | -

FicalIy, Table 6 shows thet the enthalpy method ;ivee very accurate
}eeults for the'tﬁq—dimensional solidifying aluminum test case_(stendapd
deviations below 12°¢ for all grids). Figure 144,  {llustrating the
.l///;ec;erature histories predicted by the enthalpy method reveals that chere
| - may be some inaccuracies in the results near the mushy range but overall
the errcte‘are‘small._ The cost of,implemeﬁting the enthalpy method.is

competitive,‘bu; increasee more rapiclylthan'the other methods with
. cecrensing spatiel increment and time step. 'Since tcis mechod cses an
"{terative solving roctine, as.the nunber of grid points increases, the
Idifference between the cost of implementing the enthalpy method and the
other methods which solve the matrices u;ing an elimination scheme is
- expected - to increase. Due to the high~degree of accuracy achieved with
the enthalpy cethod hoﬁever it must be considered as a competitive

method for this type of problem.

4 Stat ' M -
\. 6 S ability of the ethod-s X .Q‘

A numerical method is considered to be stable, if the errors 6F the

transient numerical solution arfe boupded. Because of the nonlinear
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‘mature nf'the algebraic equations reeuLLing fnom snnefof the methods,-the
‘usual means of examining the question of stablity (e. g., von NLumunn s
method) are inapplicable.‘ In this thesis, no rigorous mathemntlcal
analysis of stablility has been undegtaken.ﬂ A method ofiinvestigating:
stability is to conduct numerical experimentation w{th vdrious comblna-
.eions.of time steps and spatiel incremenns. In the conrse o£ doing the

runs for this thesils, many such combinations werdjinvestigated and tnsta-

bilities were. never encounte?bﬂ_except with the explicit formulations

when the time steps were such that the usual limits on the Fourier modul {

.were- exceeded (Fo <\0.5 for 1-D problems'end Fo < 0.25 for 2~D‘prob1ems).
| Another method.‘f estimating the stebiliEy limit is tn.ngtermlne

~whether or not all tne coeffic??hts of the discretized equa[ioh-nre'

.posinine.. ?his g}iterinn has been proposed by Patankar [49] and can be;

nderstood by considering that an increase in the value of the tempera=
" . v

"ture at gne grid point should, with other conditions remaining unchapged,
lead to an fncreasée in the valué of temperature at a neighbouring grid

point. ‘In Section 3.1, it was shown that this criterion leads to upper
' ..

limits on the Fourier moduli for explicit formulations. The methods

-

‘which increase the heat capacity.-in order to account for rthe latent heat,

;ectually reeult in a decrease-tn the Fourier modﬁlf_furlthe nonal'volumeu
- which contain the'phaSe front,_therefore, the;linit on the time step Ls
always governed by the nodal noints which are not changing: phdSE- It
1appears then that the size of the thne step is governed by accuracy
‘considerations and not stability considerations, except for expllclt
fqrmulecions, wHere the usual limits on tne Fourier moduli apply. A more

rigorous analysis must be undertaken however, before definite conclusions

can be made. : ) T

"



6.5 Finite Different vs Finite‘Element

" The question has often been posed of which is the better-method,

-

finite difference or finite element. .As_is often the case, there is no

"

simple answer, end the answer depends on what problem is ‘to be solved-and
what the criteria are for evaluation. Some researchers have published
work direeted-towards answering this question Z%eeoHsu [50]). During the.
courée of this inﬁestigation, many.of the‘testﬁcaees were solved b} both.
finite difference as well as finite element'fornuiations_of_thereeme
method. Referring to the results in Tables 4, 5 and 6, and considering
only the accuracy of. the solutions, reveals no definitive advantage of ,..
one formulation o}er the other. In some cases,-the accuracy of the

finite difference results appears to be hetter while in others the finite

element results appear better. Tables S and 6 showing the results from

‘the two-dimensional rums reveal that the accuracy of the finite element

q.formulation of the post lterative method is inferior to the finite

., P

differeneerformuietion of the same method. This is helleved to be due to
the higher degree of . coupling between the elements in the finite element

case. It should be mentioned that these trends may be completely differ—

.
.-

ent if higher order finite difference_approximations to the derivatives -

areIUSed, or if higher ordisieiementé’are used in the finite element

-‘formnlations.

- .

The cost columns of these same tables show thatithe Alternating
‘Direction Imolicit formuiation of thetfiélte difference method (which
mahes use of the efficlency -of the tridieéonal matrix solving algoritim)
.offers substantial savings compared to ‘the finite element formulation.
This ib one of the most significant adventages of the finite difference ;

method. The savings of the ADI method are expected to be larger for
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: Eﬁree—dimensionai éroblems. jt sh;uld be streséed, however, that the‘
.test cases used are very simplifigd and thereforelthe observed trends
;annot Ee generalized. Certain advantages and dis;dvancages can be -

‘ ‘ _ ;

stated for the two methods by invegcigating the general form;iations of
the ﬁethqu. IWhen the Aitéfpafing Directton Implicit or some otger
simiiar formulation can be used, this is a definite advantage of fhe
finite difference method, JAn generaLﬁ the finite difﬁerencg nmethod tends
tq be simpler to formulate Ehan’the_finite elément_méthod, but more
difficuit to make into a géheral ﬁurpose al opithm. It is edsler to
conceﬁt;ate é finite eiement érid nearregjfns:wﬁere rapid varlations of’
the dependent variable are éxpecteq.(sugh as near the phaée front).

Also, the finite element formulations tend to handle boundaty conditions

better than finite differenéé fbrmulétions, particdarly curve
ﬁdundaries. The question of.uﬁiqh method is better then is}not-easily
answgred; the answer dependiﬂg'oﬁ the problem to be solve% and the

criteria which ‘are important.
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CHAPTER VII

. CONCLUSIONS AND FUTURE WORK

\\15 number of existing methods for

-

s;mulating phase change which were

found to meet desirable criteria for implementation into a general

purpose metal casting algorithm have been programmed. A new method for

b

modelling phase change,KbaSed on the apparent ghﬁacity method, .has been

developed and programmed.. The performance of the various methods in

solving -five test cases' has been evaluated. ‘It has been shown that:

the post iterative method of accounting for latent heat givés

inaccurate results, particularly
for the one-dimensional ‘solidify

near the phase change temperature,
ing metal- test cases .

"= the results from the post iterative method formulations are very

sensitive to the magpitude of the time step

the épparent capacity method underpredicts the solutions to the

solidifying metal test cases and generally gives the lowest accuracy

decreasing the time Step when usdng the apparent capacit& method .~

does not necessarily -improve the
solidifying metal test cases

w

accuracy of the results for the .

in order that the results using,the’apparentfcapacity method be -

close (standard deviatdion below § C) to the actual solution. for theJ

*1-D .iron test case an unréalistically large mushy range must be -

assumed (80 C) S
. \

-

‘ ﬁham's formulation_bf-%hé'appdrent'capacitﬁ method improves the

results for smaller time steps but also underpredicts the actual .
solution.wiphllarger time steps for. the solidifying metal test cases

the enthélpy'méfﬁod'results are
test cases except near the phase

solidification problems -,

accurate for the solidifying metal
change temperature for isothermal

- [ ' . .

64.

the solutions to the solidifying metal test cases using the enthalpy

method are relatively insensitiv
mushy range -

Tacke's formulation of the entha
fer the -1-D iron test case but ¢
multiple_dimensiqns

’

e to the size of the time step and

lpy method gives accurate results
annot account for a mushy region or



R
-~ the results using Tacke's method are excellent near the phase change
temperature ) Tha -
. .\
- the solutlons to the solidifying metal test cases using the proposed

effective capacity. method are very accurate’including near the phase
front :

- the results of the effectlve capaclty method for the solldifylng
metal test cases are relatively 1nsensit1ve to the size of the time
step and mushy range ‘- -

: & _ ok
- the results for the 1-D iron test case using Blanchard and Fremond's
‘ method are very sensrtlve to the parameter in the homographlc

- approximation . . ‘ 2
- all methods except Tacke's method give very 1naccurate solutions to
 the solidifying water test-case for the-grids and time steps

considered .

-,

.- Tacke s method gives accurate solutions to the sol1d1fy1ng water

R test case including near the phase change temperature
. ‘ X

= the prlmary difference between the numerical behavior of solidifying
metal and solidifying water problems is due to the much larger ratio
of latent heat to sensible heat for SOlldlleng water problemS'

- 'the post 1terat1ve and apparent capacity methods are the least
' expensive to use

- the cost. of using the, effective capaclty method can be large if the
temperature gradients are large compared to the mushy range

" = the cost of using the 1mp11c1t enthalpy method is large and
increases rapidly with 1ncrea51ng nodal p01nts

- the solutlons from the variocus methods appear to remaln stable for
*  the range of parameters tested except when the usual limits on the
Fourier moduli are exceeded for the exp11c1t formulatlons
Finally, some of the relative advantages of the fihiteldifferehce
and finite element methods have been discussed.

Future work should be ccncentrated on'iaotherﬁai solidiricatica{"
Problems‘where latent hedt is large-compared'tb sensibie:heat (as‘ih .
ice-water prchlems). Some work should alao he dche to render the ;
-integrating subroutine of the effective-capac{ty’method-more efficient .

by adding a check for when the.temperature gradients are large compared

Fl



] . - . [
- . ' <

to the mhshyfrange..'Simplifjing assumptions can be made in order to

T Y

66,

decrease the time taken to perform the integration for this case. This

.

problem is not exﬁEhgkd to 'be significant for metal,casting processes,
" . ; - . . [ .

where it has been shown that the effective capacity method performs

better than the otler methods investigated. e

I
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Table 3. ‘Condil:ions fot_'test cases #4 and #5.

69. -

‘|Test Case 4A|Test Case 4B|Test Case 5A|Test (gse 5B
2-D Iron 2-D Iron |2-D Aluminum|2-D Algminunr
Ax = Ay (m){  0.02 .0.01 - 0.02 20,01
[cria |- 6x6 11x11 6x6 . T
st (8) 20 10 5.0 2.0
Mushy Range® ol ‘\ 10" . 10 100 100

* Either assumed or actual where applicable.
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. Table 5. Costs and standard deviations for test case #4, -
Test Case #4A 2~D Iron Test Case #4B 2-D Iron .
At = 208 AX = AY = 0.02m|{At = 108 AX = AY = 0.01m|
Cost*|Standard Deviation| Cost*|Standard Deviation
— R (°C‘)' v (oC) .
. I
Post Iteratfbe,(isotﬁerma;, F.D.) | 0.02 10.9 r 0.07 1.4
Post Iterative (mushy, F.D.) .02 10.3 0.07 6.8
Post Itzrative (mushy, F.E.) 0.11 18.6 2.08 12.2
Apparent Capacity (F.D.) 0.02 55.9 0.07 39.8
Apparent Capacity : '
(mushy = =25 to +25, F.D.) 0.02 9.5 0.07 12.5°
Ef fective Capacity (F.D.) 2.64 -17.2 4.15 |, 7.7
Effective Capacity (¥.E.) 2.95 14.0 10.5 10.4
| Bffective Capacity . ‘ o
(mushy = -25 to +25, F.D.) 0.23 10.5 0.58 3.2
Enthalpy (F.D.) 0.10 9.5 1.03 5.9

1

*Cost = constant (395 + virtual,memofy pages) CPU time’

Table 6. Costs and standard deviations for test case #5.

14t = S8

\ Test Case #5A4 2-D Aluminum

Test Case #5B 2-D Aluminum

at = 25 . A% = aY = 0.0lm

Cost*|Standard Deviation

.Cost*|Standard Deviation

P ¢°c) °c)
Post Iterative F.D. _ :| 0.02 19.2 0.04 9.7
-Post Iterative F.E. - 0.05 38.7 . 1.04 19.0
Apparent Capacity F.D. 0.02 42,3 0.04 23.6
Effective Capacity F.D. | 0.09 . 8.6 0.31 3.5
Ef fective Capacity F.E. | 0.19 7 10.3 3.33 7.2
Enthalpy (F.D.) 0.06 12.0 . 0.81 5.7

*Cost = constant (395 + virtual memory pages) CPU time
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.27 Temperature histories for test case#l by the effective capacitj/ method

(mushy=-5.0 to +5.0 C}, implicit finite difference. Time step is 500s.
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1mp11cit finite difference. Time step is 5s.
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APPENDIX A

The éridiagonal‘matrix is of. the form;
Y S

'.- A.T +B.T +CT = D. -=12-;|J . Al
U R I IV i 5! g It g

*

with Al-and D.J equal to zero. The tridiagonal matrix solving algorithm

" resembles Gaussian elimination. To begin with, values 6f "8," and "a "

are calculated as: | -
B, = B, ' j=1 N C
a, =D,/B, ' ©j=1. | (A3)
- 11-‘ e
B, = B,-(A.,-C, B. T '=2,3,_'.’J . A
J J( j. J“l)/ j~1 _ J (A4)
~
u.:;.(D AL a, /B, C3=2,3,...,J ' AS
i % B TR b R | J } (AS)

1" "

Since "Bj" and aj are always exbreésed in terms of coefficients at
lowef'indgx numbers, they can be calculated without difficulty. Once

they have been found, the unknowns "Tj" can be calculated as:

J (AGQ

TJ = ‘EJ j:
T.=a,-CT, /B, §=d-1,0-2,...,1 24A7)
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Since the unkn "Tj" are élways\calculated‘in terms of values
with the same or highe ex and since they are calculated beginning .

with the largest index values, they can be found without diff;culty. .
For further detalls on the tridiagonal matrix solving algorithm, see

Carnahan [33].

hY



