Osaka University Knowledge Archive

Title	On numerical positivity of ample vector bundles with additional condition
Author(s)	Usui, Sampei; Tango, Hiroshi
Citation	Journal of Mathematics of Kyoto University. 17(1) P. 151-P. 164
Issue Date	1977
Text Version publisher	
URL	http://hdl.handle.net/11094/73376
D0I	$10.1215 / k j m / 1250522817$
rights	
Note	

Osaka University Knowledge Archive : OUKA
https://ir. library.osaka-u.ac.jp/
Osaka University

On numerical positivity of ample vector bundles with additional condition

By
Sampei Usui and Hiroshi Tango

(Received March 25, 1976)

§ 0. Introduction.

In this paper these are two main theorems (Theorem 2.1 and Theorem 3.1). As a corollasy of these theorems, we have the following result.

Corollary 3.7. Let X be a non-singular projective variety of dimension m defined over the complex number field C, and let E be a vector bundle on X of rank r. Suppose that E is ample and that, in addition, E is generated by its global sections. Then E is numerically positive.

As for the definitions of ample vector bundles and of numerically positive vector bundles, see Definition 1.10 and Definition 1.9 in § 1.

In $\S 1$, we recall definitions and some properties of such notions as invariant polynomials, positive polynomials, Chern cohomology classes, numerically positive vector bundles, and ample vector bundles. And we list notations concerning to Grassmann varieties, to Schubert cycles, and to flag manifolds. In § 2, we prove the following theorem.

Theorem 2.1. Let Θ_{s} be the curvature matrix of the dual vector bundle S of the universal subbundle S on $\operatorname{Gr}(n, d) . P(T)$ be a homogeneous polinomial in $\Pi(d+1)$ of degree q. Then the cohomology class of $P\left(\frac{\sqrt{-1}}{2}-\Theta_{\check{s}}\right)$ can be expressd in the form:
the cohomology class of $P\left(\frac{\sqrt{ }-1}{2 \pi} \Theta_{\check{s}}\right)$
$=$ the cohomology class of $\sum_{a_{0}+a_{1}+\cdots+a_{d}=q} \alpha_{a_{0}, a_{1}, \cdots, a_{d}} \omega_{a_{0}, a_{1}, \cdots, a_{d}}$, where every coefficient $\alpha_{a_{0}, a_{1}, \cdots, a_{d}} \geqslant 0$.

We use some Schubert calculus in proving Theorem 2.1. In §3, we prove another theorem.

Theorem 3. 1. Let X be a subvariety of $\operatorname{Gr}(n, d)$ of dimension m. Assume that $X \cdot \omega_{x_{0}, a_{1}, \cdots, a_{d}}=0$ for some Schubert cycle $\omega_{a_{0}, a_{1}, \cdots, a_{d}}$ of codimension $\sum_{i=0}^{d} a_{i} \leqslant m$. Then there exists a curve C contained in X such that $S \mid C$ has
a trivial line bundle as a direct summand, where S is the universal subbundle on $G r(n, d)$.
Theorem 3.1 is proved by using dimension-theoretic method. Combining Theorem 2.1 and Theorem 3.1, we prove Corollary 3.7.

In the case of line bundles, there is a famous and useful numerical criterion for ampleness proved by Y. Nakai. In the cass of vector bundles on curves, by using unitary representation of stable vector bundles, R. Hartshorne showed that ampleness is equivalent to numerical positiveness ([6]). In these two cases, the notion of the cone of positive polynomials in Chern classes is obvious. In the general case, P. A. Griffiths made a definition of the cone of positive polynomials in his article [4] (see also § 1). By using resolution of singularities and strong Lefschetz theorem, S. Bloch and D. Gieseker showed in their article [1] and in the article [3] by Gieseker that monimials in Chern classes of E and such polynomials as $\bar{c}_{q}(E)$ are positive for an ample vector bundle E (for $\bar{c}_{q}(E)$ see Remark 1.8 in $\S 1$). Note that, in the case of vector bundles on 2 -dimensional varieties, the above result of Bloch and Gieseker covered the whole positive polynomials. On the other hand, W. Fulton constructed recently an example of a vector bundle on \boldsymbol{P}^{2} of rank 2, which is numerically positive but not ample ([2]). Hence, the remaining problem is to see whether our additional assumption in Corollary 3.7 can be removed.

The writers wish to thank Professor Masayoshi Nagata for his valuable advices and Professor Hideyasu Sumihiro for his valuable conversations and encouragement.

§ 1. Definitions and notations.

a. Invariant polynomials and positive polynomials.

In this subsection, we follow Griffiths [4]. Let $M_{Q}(d+1)$ be the affine space consisting of all $((d+1) \times(d+1))$-matrices over the rational number field \boldsymbol{Q}, and let $A(d+1)$ be the coordinate ring of $M_{\boldsymbol{Q}}(d+1)$. We denote by

$$
T=\left[\begin{array}{c}
T_{00} T_{01} \cdots T_{0 d} \\
\cdots \cdots \cdots \\
T_{d 0} T_{d 1} \cdots T_{d d}
\end{array}\right]
$$

an indeterminat $(d \times 1) \times(d+1)$-matrix, i.e. $T_{i j}(0 \leqslant i, j \leqslant d)$ form an affine coordinates of $M_{Q}(d+1)$. Then, $A(d+1)=\boldsymbol{Q}\left[T_{00}, T_{01}, \cdots, T_{d d}\right] . \quad G L_{Q}(d+1)$ acts naturally on $M_{Q}(d+1)$, i.e. for $g \in G L_{Q}(d+1)$ and $a \in M_{Q}(d+1), a \mapsto$ $g^{-1} a g$, where the product is the product as matrices.

Definition 1.1. A polynomial $P(T)$ in $A(d+1)$ is said to be an invariant polynomial if $P(T)$ is $G L_{Q}(d+1)$-invariant under the above action. We denote by $I(d+1)$ the subalgebra of $A(d+1)$, consisting of all invariant polynomials, and call it an invariant polynomial ring.

Let Δ_{q} be the principal q-minar determinant of $T(1 \leqslant q \leqslant d+1)$, i.e.

$$
\Delta_{q}=\sum_{0 \leqslant i_{1}<i_{2}<\cdots<i_{q} \leqslant d} \operatorname{det}\left[\begin{array}{c}
T_{i_{1} i_{1}} T_{i_{1} i_{2}} \cdots T_{i_{1} i_{q}} \\
\cdots \cdots \cdots \cdots \\
T_{i_{q} i_{1}} T_{i_{q} i_{2}} \cdots T_{i_{q} i_{q}}
\end{array}\right]
$$

Let $\boldsymbol{Q}\left[T_{0}, T_{1}, \cdots, T_{d}\right]$ be a polynomial ring in $d+1$ indeterminates over the field of rational numbers. Let \mathbb{S}_{d+1} be the symmetric group over $d+1$ elements. \mathbb{S}_{d+1} acts naturally on $\boldsymbol{Q}\left[T_{0}, T_{1}, \cdots, T_{d}\right]$ by permuting the order of indeterminates. We denote by $\boldsymbol{Q}\left[T_{0}, T_{1}, \cdots, T_{d}\right]^{\Phi_{d+1}}$ the subalgebra of $\boldsymbol{Q}\left[T_{0}, T_{1}, \cdots, T_{d}\right]$ consisting of \mathscr{S}_{d+1}-invariant elements, i.e. symmetric polynomials in T_{0}, T_{1}, \cdots, T_{d}. Let S_{q} be the fundamental symmetric form in $T_{0}, T_{1}, \cdots, T_{d}$ of degree $q(1 \leqslant q \leqslant d+1)$.

Lemm 1.2. We have the following interpretation of an invariant polynomial ring $I(d+1)$.

where g and g^{\prime} are natural inclusion maps, f is defined by $f\left(T_{i}\right)=T_{i i}$ $(0 \leqslant i \leqslant d)$, and f^{\prime} is defined by $f\left(S_{q}\right)=\Delta_{q}(1 \leqslant q \leqslant d+1)$. Moreover, if we weight Δ_{q} 's and S_{q} 's with $\operatorname{deg} \Delta_{q}=q$ and with $\operatorname{deg} S_{q}=q(1 \leqslant q \leqslant d+1)$, all the maps are isomorphisms as graded algebras.

Proof. It is obvious that f^{\prime} and g^{\prime} are isomorphisms and that g is an injection. Hence, it is enough to show that f is surjective. Define a map $h: I(d+1) \rightarrow \boldsymbol{Q}\left[T_{0}, T_{1}, \cdots, T_{d}\right]^{\coprod_{d+1}}$ by $h\left(T_{i j}\right)=\delta_{i j} T_{i}(0 \leqslant i, j \leqslant d)$. It is easy to see that h is well-defined. Note that $\operatorname{Spec}(I(d+1))=M_{Q}(d+1) / G L_{Q}(d+1)$. Let $(f \circ h)^{*}$ be the corresponding endomorphism of Spec $(I(d+1))$. Since $(f \circ h)^{*}$ is an automorphism on the classes of diagonaizable matirces and since the classes of diagonaizable matrices is an open dense subset of $M_{Q}(d+1) / G L_{Q}(d+1)$, we see that $(f \circ h)^{*}$ is an automorphism on $\operatorname{Spec}(I(d+1))$. Hence, $f \circ h$ is an automorphism of $I(d+1)$. Therefore, f is surjective.
Q.E.D.

Corollary 1. 3. An invariant homogeneous polynomial $P(T)$ of degree q in $I(d+1) \otimes_{Q} C$ can be expressed (not necessarilly unique) in the form

$$
P(T)=\sum_{\substack{\rho \in[0, d]^{q} \\ \pi, \tau \in \mathbb{C}_{q}}} p_{\rho \pi \tau} T_{\rho_{-1} \rho_{\tau 1}} \cdots T_{\rho_{\pi q} \rho_{\tau l}},
$$

where $p_{\rho \pi \tau} \in \boldsymbol{C}\left(\rho \in[0, d]^{q}, \pi\right.$ and $\left.\tau \in \mathscr{S}_{q}\right)$.
Proof. Our assertion follows from the following three facts:
(1) $P(T) \in C\left[\Delta_{0}, \Delta_{1}, \cdots, \Delta_{a}\right]$.

$$
A_{r}(T)=\binom{1}{r!}_{\left\{\begin{array}{c}
\rho \in[0, d] r \tag{2}\\
\pi, \tau \in \mathscr{E}_{r}
\end{array}\right.} \operatorname{sgn} \pi \operatorname{sgn} \tau T_{\rho_{\pi 1} \rho_{\mathrm{r} 1}} \cdots T_{\rho_{r r} \rho_{r}}
$$

(3) Let $\mathscr{T}=\left\{P(T) \in A(d+1) \otimes \underset{Q}{\otimes} C \left\lvert\, \begin{array}{l}P(T) \text { has an expression of the type } \\ \text { stated in Corollary 1.3 }\end{array}\right.\right\}$
be a subset of $A(d+1) \otimes_{\boldsymbol{Q}} \boldsymbol{C}$. Then, \mathscr{T} forms a graded subring of $A(d+1) \otimes_{\boldsymbol{Q}} \boldsymbol{C}$.
As for (3), by definition, \mathscr{T} is closed under addition and under subtracion. We have to see that \mathscr{T} is also closed under multiplication. Let

$$
\begin{aligned}
& P(T)=\sum_{\substack{\rho \in[0, d]^{q} \\
\pi, \tau \in \mathbb{S}_{q}}} p_{\rho \pi \tau} T_{\rho_{\pi 1} \rho_{r 1}} \cdots T_{\rho_{\pi q} \rho_{\pi q}} \quad \text { and } \\
& P^{\prime}(T)=\sum_{\left\{\begin{array}{l}
\left.\rho^{\prime} \in[0, d]\right]^{q^{\prime}} \\
\pi^{\prime}, \tau^{\prime} \in \mathbb{S}^{\prime}
\end{array}\right.} p^{\prime} \rho^{\prime} \pi^{\prime} \tau^{\prime} T_{\rho_{\pi^{\prime}}^{\prime} \rho^{\prime} \rho_{\tau^{\prime} 1}^{\prime}} \cdots T_{\rho_{\pi^{\prime} q^{\prime} q^{\prime} \rho_{\tau^{\prime} q^{\prime}}^{\prime}}}
\end{aligned}
$$

be homogeneous elements in \mathscr{T} of degree q and of degree q^{\prime} respectively. Then, we have
 Fix a left coset decomposition of $\mathfrak{S}_{q+q^{\prime}}$ by $\mathfrak{S}_{q} \times \mathfrak{S}_{q^{\prime}}$, say, $\mathfrak{S}_{q+q^{\prime}}=\coprod_{\alpha} \omega_{a} \mathscr{S}_{q} \times \mathfrak{S}_{q^{\prime}}$. Then, for each $\pi^{\prime \prime}$ in $\mathfrak{S}_{q+q^{\prime}}$, there exists a unique ω_{a} such that $\omega_{a}^{-1} \pi^{\prime \prime} \in \mathfrak{S}_{q} \times \mathfrak{S}_{q^{\prime}}$.

Definition 1.4, (Griffiths). An invariant homogeneous polynomial $P(T)$ of degree q in $I(d+1) \otimes_{Q} C$ is said to be a positive polynomial if there exist $\lambda_{\rho j} \in \boldsymbol{R}$ with $\lambda_{\rho j}>0$ and $\mu_{\rho j=} \in \boldsymbol{C}\left(\rho \in[0, d]_{q}, \pi \in \mathfrak{S}_{q}\right.$, and j runs over a finite set) such that

$$
p_{\rho \pi \bar{s}}=\sum_{j} \lambda_{\rho j} \mu_{\rho j \pi} \bar{\mu}_{\rho j=},
$$

for each coefficient $p_{\pi * \rho}$ in the expression of $P(T)$ mentioned in Corollary 1. 3. We denote by $\Pi(d+1)_{q}$ the set of all homogeneous positive polynomials of degree q, and put $\Pi(d+1)=\sum_{q} \Pi(d+1)_{q}$.

Lemma 1.5. The set $\Pi(d+1)$ of positive polynomials is closed under addition and under multiplication.

Proof. By definition, $\Pi(d+1)$ is closed under addition. We can see that $I(d+1)$ is closed under multipication in the same way as the proof of Corollary 1. 3.
Q.E.D.

b. Chern cohomology classes.

Let X be a non-singular complete variety defined over the complex number
field \boldsymbol{C}. Let E be a vector bundle of rank $d+1$ on X, and let Θ_{E} be a curvature matrix of E.

Lemma 1.6, (Weil homomorphism). The map $w_{E}: I(d+1) \otimes_{Q} \boldsymbol{C} \rightarrow$ $H^{\cdot}(X, \boldsymbol{C})$ defined by $P(T) \mapsto\left(\right.$ the cohomology class of $\left.P\left(\frac{\sqrt{-1}}{2 \pi} \Theta_{E}\right)\right)$ is welldefined and is a homomorphism as graded algebras. Moreover, the map w_{E} is functorial, i.e. for a morphism $g: Y \rightarrow X$, we have $g^{*}{ }^{\circ} w_{E}=w_{g^{*} E}$.

Proof. See Weil [10]. Q.E.D.

Definition 1. 7. The cohomology class of $\Delta_{q}\left(\frac{\sqrt{ }-1}{2 \pi} \Theta_{E}\right)$ is called the q-th Chern cohomology class of E.

Let R be a commutative ring with identity and let $R[[t]]$ be the formal power series ring of one variable t with coefficients in R. For each element $c(t)=1+c_{1} t+c_{2} t^{2}+\cdots$ in $R[[t]]$, we define an element $\tilde{c}(t)=1+\tilde{c}_{1} t+\tilde{c}_{2} t^{2}+\cdots$ in $R[[t]]$ by $\tilde{c}(t)=1 / c(-t)$. We can calculate \tilde{c}_{q} 's successively such as

$$
\begin{aligned}
& \tilde{c}_{1}=c_{1}, \\
& \tilde{c}_{2}=c_{1}{ }^{2}-c_{2}, \\
& \tilde{c}_{3}=c_{1}^{3}-2 c_{1} c_{2}+c_{3}, \text { etc. }
\end{aligned}
$$

Remark 1. 8. If we take $R=I(d+1)$ and $c_{q}= \begin{cases}\Delta_{q}(T) & 1 \leqslant q \leqslant d+1 \\ 0 & d+1<q,\end{cases}$ then we have

$$
\tilde{c}_{q}=\sum_{\alpha_{0}+\cdots+\alpha_{d}=q} T_{0}^{\alpha_{0}} \cdots T_{d}^{\alpha_{d}} \in \boldsymbol{Q}\left[T_{0}, \cdots, T_{d}\right]^{\coprod_{d+1}}=I(d+1) \quad(q=1,2, \cdots) .
$$

Note that such $\tilde{c}_{q}=\sum \alpha_{0}+\cdots+\alpha_{d}=q T_{0}{ }^{\alpha_{0}} \cdots T_{d}{ }^{\alpha_{d}}$ is a positive polynomial ($q=1,2, \cdots$).
c. Numerically positive vector bundles and ample vector bundles.

Let X be a non-singular projective variety of dimension m defined over \boldsymbol{C}. Let E be a vector bundle on X.

Definition 1.9, (Griffiths). A vector bundle on X is said to be numerically positive if it satisfies the following condition.

Let q be any integer with $1 \leqslant q \leqslant m=\operatorname{dim} X$. Let Y be any q-dimensional subvariety of X. Let F be any quotient vector bundle of rank $d+1$ of E with $F \neq 0$. Let $P(T)$ be any homogeneous positive polynomial in $\Pi(d+1)$ of degree q with $P(T) \neq 0$. Then we have

$$
\int_{Y} P\left(\frac{\sqrt{ }-1}{2 \pi} \Theta_{F}\right)>0
$$

For the properties of numerically positive vector bundles, see Griffiths [4].
Let X be a non-singular projective variety defined over a field k of any characteristic. Let E be a vector bundle on X.

Definition 1. 10, (Hartshorne). A vector bundle E on X is said to be ample if, for any coherent sheaf M on $X, M \otimes S^{a}(E)$ is generated by its global sections for a sufficiently large integer a, where $S^{a}(E)$ is the a-th symmetric product of E.

For the properties of ample vector bundles, see Hartshorne [5].

d. Grassmann varieties, Schubert cycles, and flag manifolds.

We use the following notations throughout this paper.
$G r(n, d)$: the Grassmann variety parametrizing d-dimensional linear subspaces of \boldsymbol{P}^{n}.
L_{x} : the d-dimensional linear subspace of \boldsymbol{P}^{n} corresponding to a point x in $\operatorname{Gr}(n, d)$.
S : the universal subbundle on $G r(n, d)$.
Q : the universal quotient bundle on $\operatorname{Gr}(n, d)$.
$F l\left(n ; d_{1}, \cdots, d_{e}\right)$: the flag manifold parametrizing filtrations of \boldsymbol{P}^{n} by linear subspaces of \boldsymbol{P}^{n}.
Let n and d be non-negative integers with $n \geqslant d$, and let $a_{i}(0 \leqslant i \leqslant d)$ be integers with $n-d \geqslant a_{0} \geqslant a_{1} \geqslant \cdots \geqslant a_{d} \geqslant 0$. Take a filtration

$$
A_{n-d-a_{0}} \subset A_{n-d+1-a_{1}} \subset \cdots \subset A_{n-a_{d}}
$$

of \boldsymbol{P}^{n} by linear subspaces $A_{n-d+i-a_{i}}$'s of \boldsymbol{P}^{n} with $\operatorname{dim} A_{n-d+i-a_{i}}=n-d+i-a_{i}$. We use the following notations for Schubert varieties and Schubert cycles

$$
\begin{aligned}
& \omega_{a_{0}, a_{1}, \cdots, a_{a}}\left(A_{n-d-a_{0}}, A_{n-d+1-a_{1}}, \cdots, A_{n-a_{d}}\right) \\
& \quad=\left\{x \in G r(n, d) \mid \operatorname{dim}\left(L_{x} \cap A_{n-d+i-a_{i}}\right) \geqslant i \quad(0 \leqslant i \leqslant d)\right\} .
\end{aligned}
$$

$\omega_{a_{0}, a_{1}, \cdots, a_{d}}$: the Schubert cycle on $\operatorname{Gr}(n, d)$ of type $\left(a_{0}, a_{1}, \cdots, a_{d}\right)$.
Note that $\operatorname{codim}_{G r(n, d)} \omega_{a_{0}, a_{1}, \cdots, a_{d}}=\sum_{i=0}^{d} a_{i}$.

§ 2. Positive polynomials and Schubert cycles.

We have an exact sequence of vector bundles on $G r(n, d)$

$$
0 \rightarrow S \rightarrow F \rightarrow Q \rightarrow 0,
$$

where S is the universal subbundle, F the trivial bundle, and Q the universal quotient bundle. Let h be the trivial hermitian metric in F, and let $f(z)=$ ($e_{0}(z), \cdots, e_{d}(z), \cdots, e_{n}(z)$) be a local unitary frame of F with respect to h so that $\varphi(z)=\left(e_{0}(z), \cdots, e_{a}(z)\right)$ is a local frame of S. We denote by D_{F} the connection of F derived from h and by D_{S} the connection of S derived from the induced metric in S. Then we have the following diagram

Griffiths calls the gap $D_{F} \circ i^{0}-i^{1} \circ D_{S}$ the second fundamental form of S in F
([4]). We use the following notations.
$\theta_{F}=\left[\begin{array}{ll}\theta_{1} & \theta_{2} \\ \theta_{3} & \theta_{4}\end{array}\right]$: the connection matrix of D_{F} with respect to the frame $f(z)$.
θ_{s} : the connection matrix of D_{s} with respect to the frame $\varphi(z)$.
b : the matrix representation of $D_{F} i^{0}-i^{1} \circ D_{S}$ with respect to the frames $\varphi(z)$ and $f(z)$.
$\Theta_{F}=\left[\begin{array}{c}\Theta_{1} \\ \Theta_{2} \\ \Theta_{3}\end{array} \Theta_{4}\right]$: the curvature matrix of D_{s} with respect to the frame $f(z)$.
Θ_{S} : the curvature matrix of D_{S} with respect to the frame $\varphi(z)$.
$\Theta_{\check{s}}=-^{t} \Theta_{s}$: the induced curvature matrix of the dual bundle \check{S} of S.
Now we prove the following theorem.
Theorem 2.1. Let $\Theta_{\mathfrak{s}}$ be the curvature matrix of the dual vector bundle \check{S} of the universal subbundle S on $\operatorname{Gr}(n, d)$. Let $P(T)$ be a homogeneous positive polynomial in $I I(d+1)$ of degree q. Then the cohomology class of $P\left(\frac{\sqrt{ }-1}{2 \pi} \Theta_{\breve{s}}\right)$ can be expressed in the form:
the cohomology class of $P\left(\frac{\sqrt{ }-1}{2 \pi} \Theta_{\stackrel{s}{ }}\right)$
$=$ the cohomology class of $\sum_{a_{0}+a_{1}+\cdots+a_{d}=q} \alpha_{a_{0}, a_{1}, \ldots, a_{d}} \omega_{a_{0}, a_{1}, \cdots, a_{d}}$, where every coefficient $\alpha_{a_{0}, a_{1}, \cdots, a_{d}} \geqslant 0$.
i.e. In the R-vector space $H^{2 q}(G r(n, d), \boldsymbol{R})$ we have the following inclusion of cones.

$$
\left\{\begin{array}{l|l}
\text { the cohomo- } & \begin{array}{l}
P(T) \text { is a homogeneous } \\
\text { logy class of } \\
P\left(\begin{array}{c}
\sqrt{-1} \\
2 \pi
\end{array} \Theta_{\check{s}}\right)
\end{array} \\
\text { positive polynomial in } \\
\Pi(d+1) \text { of degree } q
\end{array}\right\} \subset\left[\begin{array}{l}
\text { the cone generated by } \\
\text { Schubert cycles on } \\
G r(n, d) \text { of codimension } q
\end{array}\right] .
$$

Lemma 2.2. $\theta_{s}=\theta_{1}, b=\theta_{3}$, and b is a matrix consisting of $(1,0)$-forms.
Proof. By definitions, we have $\theta_{s}=\theta_{1}$ and hence $b=\theta_{3}$. In order to prove the third assertion, take a holomorphic frame $\tilde{\varphi}(z)=\left(\tilde{e}_{0}(z), \cdots, \tilde{e}(z)\right)$ of S. Let $\tilde{\varphi}(z)=\varphi(z) g(z)$ be the change of frames. Let $D_{F}=D_{F}{ }^{\prime}+D_{F}{ }^{\prime \prime}$ be the type decomposition. Since $D_{F}{ }^{\prime \prime}$ is 0 on the holomorphic sections of F by definition, we have

$$
\begin{aligned}
(0, \cdots, 0) & =\left(D_{F^{\prime}}{ }^{\prime \prime} e_{0}(z), \cdots, D_{F}^{\prime \prime} e_{d}(z)\right) \\
& =\left(e_{0}(z), \cdots, e_{n}(z)\right)\left[\left[\begin{array}{c}
d^{\prime \prime} g(z) \\
0
\end{array}\right]+\left[\begin{array}{cc}
\theta_{1}{ }^{\prime \prime} & \theta_{2}^{\prime \prime} \\
\theta_{3}{ }^{\prime \prime} & \theta_{4}^{\prime \prime}
\end{array}\right]\left[\begin{array}{c}
g(z) \\
0
\end{array}\right]\right) .
\end{aligned}
$$

Hence, we have $\theta_{3}{ }^{\prime \prime}=0$, i.e. θ_{3} is of type $(1,0)$
Q.E.D.

Corollary 2. 3. $\Theta_{s}=t \bar{b}_{\wedge} b$.

Proof. $\Theta_{F}=d \theta_{F}+\theta_{F \wedge} \theta_{F}$

$$
=\left[\begin{array}{l}
d \theta_{1}+\theta_{1 \wedge} \theta_{1}+\theta_{2 \wedge} \theta_{3} \\
d \theta_{2}+\theta_{1 \wedge} \theta_{2}+\theta_{2 \wedge} \theta_{4} \\
d \theta_{3}+\theta_{3 \wedge} \theta_{1}+\theta_{4 \wedge} \theta_{3} \\
d \theta_{4}+\theta_{3 \wedge} \theta_{2}+\theta_{4 \wedge} \theta_{4}
\end{array}\right]
$$

By the compatibility of D_{F} and h we have

$$
0=^{t} \bar{\theta}_{3}+\theta_{2}
$$

Therefore, by using Lemma 2. 2, we have

$$
\Theta_{1}=\Theta_{s}-{ }^{t} \bar{b}_{\wedge} b
$$

Since F is a trivial bundle, $\Theta_{F}=0$. Hence, we have

$$
\Theta_{s}={ }^{\prime} \bar{b}_{\wedge} b
$$

Q.E.D.

Lemma 2.4. Let $g=\operatorname{dim} G r(n, d) . H^{2 q}(G r(n, d), \boldsymbol{R})$ and $H^{2 g-2 q}(G r(n, d)$, $\boldsymbol{R})$ are dual for cup product pairing and the Schubert cycles

$$
\begin{aligned}
& \left\{\omega_{a_{0}, a_{1}, \cdots, a_{d}} \mid a_{0}+a_{1}+\cdots+a_{d}=q\right\} \text { and } \\
& \left\{\omega_{b_{0}, b_{1}, \cdots, b_{d}} \mid b_{0}+b_{1}+\cdots+b_{d}=g-q\right\}
\end{aligned}
$$

form the dual base each other.
i.e. $\quad \omega_{a_{0}, a_{1}, \cdots, a_{d}} \bullet \omega_{b_{0}, b_{1}, \cdots, b_{d}}= \begin{cases}1 & a_{i}+b_{j}=n-d(i+j=d), \\ 0 & \text { otherwise. }\end{cases}$

Proof. See Hodge \& Pedoe [7].

Q.E.D.

Proof of Theorem 2. 1. By Corollary 2.3, we have

$$
\Theta_{\check{s}}=-^{t} \Theta_{s}=-^{t}\left(t^{t} b_{\wedge} b\right)=^{t} \bar{b}_{\wedge} b
$$

Let $P(T)=\sum_{\substack{\rho \in[0, d]^{q} \\ \pi, \tau \in \mathscr{S}_{q}}} \mu_{\rho \pi} \bar{\mu}_{\rho \tau} T_{\rho_{\mathrm{F} 1} \rho_{\tau \tau}} \cdots T_{\rho_{\pi q} \rho_{\tau q}}$ be a positive polynomial of degree q. Substituting Θ_{Σ} in $P(T)$, we have

$$
\begin{aligned}
P\left(\Theta_{\grave{s}}\right) & =\sum_{\substack{\left.\rho \in[0, d]^{q} \\
\alpha \in \in d+1, n\right]^{q} \\
\pi, \tau \in \varsigma_{q}}} \mu_{\rho \pi} \bar{\mu}_{\rho \tau} b_{\alpha_{1} \rho_{11}} \bar{b}_{\alpha_{1} \rho_{t 1}} \cdots b_{\alpha_{q} \rho_{\pi q}} \bar{b}_{\alpha_{q} \rho_{t q}} \\
& =(-1)^{q(q-1) / 2} \sum \mu_{\rho \pi} \bar{\mu}_{\rho \tau} b_{\alpha_{1} \rho_{\pi 1}} \cdots b_{\alpha q \rho_{\pi q}} \bar{b}_{\alpha_{1} \rho_{\tau 1}} \cdots \bar{b}_{\alpha q \rho_{\tau q}} \\
& =(-1)^{q(q-1) / 2} \sum_{\rho, \alpha} Q_{\rho \alpha} \bar{Q}_{\rho \alpha},
\end{aligned}
$$

where $b=\left[\begin{array}{ccc}b_{d+10} \cdots & b_{d+1 d} \\ \cdots \cdots \cdots \\ b_{n 0} & \cdots & b_{n d}\end{array}\right]$ and $Q_{\rho \alpha}=\sum_{\pi \in \mathscr{S}_{q}} \mu_{\rho \pi} b_{\alpha_{1} \rho_{\pi 1}} \cdots b_{\alpha_{q} \rho_{\pi q} .}$. Hence, we have

$$
P\left(\begin{array}{c}
\sqrt{-}-1 \\
2 \pi
\end{array} \Theta_{\check{s}}\right)=(-1)^{q(q-1) / 2}\left(\frac{\sqrt{-1}}{2 \pi}\right)^{q} \sum_{\rho, \alpha} Q_{\rho \alpha} \bar{Q}_{\rho \alpha} .
$$

Since, by Lemma 2.2,b is a matrix consiting of (1,0)-forms, Q_{α} 's are $(q, 0)$ forms. Therefore, for any q-dimensional subvariety Y of $\operatorname{Gr}(n, d)$, we have

$$
\int_{Y} P\left(\frac{\sqrt{ }-1}{2 \pi} \Theta_{\check{s}}\right) \geqslant 0 .
$$

That is, the cohomology class of $P\left(\frac{\sqrt{-1}}{2 \pi} \Theta_{\breve{s}}\right)$ is numerically non-negative. Hence, in the expression
the cohomology class of $P\left(\frac{\sqrt{-1}}{2 \pi} \Theta_{s}\right)$
$=$ the cohomology class of $\sum_{a_{0}+a_{1}+\cdots+a_{d}=q} \alpha_{a_{0}, a_{1}, \cdots, a_{d}} \omega_{a_{0}, a_{1}, \cdots, a_{d}}$,
we see, by using Lemma 2.4, that every coefficient $\alpha_{a_{0}, a_{1}, \ldots, a_{d}} \geqslant 0$. Q.E.D.

§ 3. Numerical positivity of ample vector bundles.

In this section, we prove the following theorem.
Theorem 3.1. Let X be a subvariety of $\operatorname{Gr}(n, d)$ of dimension m. Assume that $X \cdot \omega_{a_{0}, a_{1}, \ldots, a_{d}}=0$ for some Schubert cycle $\omega_{a_{0}, a_{1}, \cdots, a_{d}}$ of codimension $\sum_{i=0}^{d} a_{i} \leqslant m$. Then there exists a curve C contained in X such that $S \mid C$ has a trivial line bundle as a direct summand, where S is the universal subbundle.

Let X be a subvariety of $\operatorname{Gr}(n, d)$ of dimension m. We call a point P in \boldsymbol{P}^{n} a center of X if $\operatorname{dim}\left\{x \in X \mid L_{x} \ni P\right\} \geqslant 1$. We denote by X_{c} the set of centers of X.

Lemma 3.2. $\quad X_{c}$ is a closed subset of \boldsymbol{P}^{n}.
Proof. By the Plücker coordinates, $\operatorname{Gr}(n, d)$ can be embedded in a projective space \boldsymbol{P}^{N}. Put $Y_{P}=\left\{x \in X \mid L_{x} \ni P\right\}$ for a point P in \boldsymbol{P}^{n}. Then, for a point P in \boldsymbol{P}^{n}, it is easy to see that the following conditions are equivalent to each other:
i) $P \in X_{c}$,
ii) $\operatorname{dim} Y_{P} \geqslant 1$,
iii) $\quad Y_{P} \cap M \neq \phi$ for any hyperplane M in \boldsymbol{P}^{N}.

Hence, we have $X_{c}=\cap_{M}\left(\cup_{x \in M \cap X} L_{x}\right)$. Therefore X_{c} is a closed subset of \boldsymbol{P}^{n}.
Q.E.D.

Let X be as above and let H be a general hyperplane in \boldsymbol{P}^{n}. Let x_{1} be a generic point of X. Then there exists unique point y_{1} of $G r(n, d-1)$ such that $L_{y_{1}}=L_{x_{1}} \cap H$. We denote by X_{H} the subvariety of $\operatorname{Gr}(n, d-1)$ which has y_{1} as a generic point. Since $\left\{y \in G r(n, d-1) \mid L_{y} \subset H\right\}$ is isomorphic to $\operatorname{Gr}(n-1$, $d-1), X_{H}$ can be also regarded as a subvariety of $\operatorname{Gr}(n-1, d-1)$.

Lemma 3. 3. Assume that $X \cdot \omega_{a_{0} a_{1}, \cdots, a_{d-1}, 0}=0$ on $G r(n, d)$. Then X_{H}. $\omega_{a_{0}, a_{1}, \cdots, a_{d-1}}=0$ on $\operatorname{Gr}(n-1, d-1)$ for any general hyperplane H in P^{n}.

Proof. Since H is general and since $X \cdot \omega_{a_{0}, a_{1}, \ldots, a_{d-1}, 0}=0$, there exists a sequence

$$
A_{0} \subset A_{1} \subset \cdots \subset A_{d-1} \subset A_{d}=H
$$

of linear subspaces of \boldsymbol{P}^{n} such that $\operatorname{dim} A_{i}=n-d+i-a_{i}(0 \leqslant i \leqslant d-1)$ and that

$$
\left\{x \in X \mid \operatorname{dim}\left(L_{x} \cap A_{i}\right) \geqslant i(0 \leqslant i \leqslant d-1)\right\}=\phi .
$$

By the definition of X_{H}, for any point y in X_{H}, there exists a point x in X such that $L_{y} \subset L_{x}$. Hence, we have

$$
\left\{y \in X_{H} \mid \operatorname{dim}\left(L_{y} \cap A_{i}\right) \geqslant i(0 \leqslant i \leqslant d-1)\right\}=\phi,
$$

that is, $X_{H} \cdot \omega_{a_{0} . a_{1}, \cdots, a_{d-1}}=0$ as a cycle on $\operatorname{Gr}(n-1, d-1)$.
Q.E.D.

Lemma 3. 4. Let X be subvariety of $\operatorname{Gr}(n, d)$ of dimension m. Assume that $m \geqslant d+1$ and that $X \cdot \omega_{1,1, \cdots, 1}=0$. Then, for any point x in X, we have $L_{x} \cap X_{c} \neq \phi$.

Proof. Let x_{0} be a point in X. We consider the following diagram :

Set $Z=\pi_{1} \circ \pi_{2}^{-1}\left(x_{0}\right)=\left\{h \in G r(n, n-1) \mid L_{h} \supset L_{x_{0}}\right\}$ and set $W=\pi_{1}^{-1}(Z) \cap \pi_{2}{ }^{-1}(X)$ $=\left\{(h, x) \in F l(n ; n-1, d) \mid x \in X, L_{h} \supset L_{x}\right.$, and $\left.L_{h} \supset L_{x_{0}}\right\}$. For any point h in Z, we have, by our assumption $Y \cdot \omega_{1,1, \cdots, 1}=0$, that

$$
\operatorname{dim}\left(\pi_{1}^{-1}(h) \cap W\right)=\operatorname{dim}\left(X \cap \omega_{1,1, \cdots, 1}\left(L_{h}\right)\right) \geqslant \operatorname{dim} X-d
$$

Hence, there exists an irreducible component W_{0} of W such that
(1) $\operatorname{dim} W_{0} \geqslant \operatorname{dim} Z+\operatorname{dim} X-d=\operatorname{dim} X+n-2 d-1$.

Put $Y_{0}=\pi_{2}\left(W_{0}\right)$. From (1), we have, for any point x in Y_{0}, that
(2) $\operatorname{dim}\left(\pi_{2}^{-1}(x) \cap W\right) \geqslant \operatorname{dim}\left(\pi_{2}^{-1}(x) \cap W_{0}\right) \geqslant \operatorname{dim} X+n-2 d-1-\operatorname{dim} Y_{0}$. Since $\pi_{2}^{-1}(x) \cap W \cong\left\{h \in G r(n, n-1) \mid L_{h} \supset L_{x}\right.$ and $\left.L_{h} \supset L_{x_{0}}\right\}$, we have
(3) $\operatorname{dim}\left(\pi_{2}^{-1}(x) \cap W\right)=n-1-\operatorname{dim}\left\{\begin{array}{l}\text { linear subspace of } \boldsymbol{P}^{n} \\ \text { spanned by } L_{x} \text { and } L_{x_{0}}\end{array}\right\}$

$$
=n-1-\left(2 d-\operatorname{dim}\left(L_{x} \cap L_{x_{0}}\right)\right) .
$$

Combining (2) and (3), we have, for any point x in Y_{0}, that
(4) $\operatorname{dim}\left(L_{x} \cap L_{x_{0}}\right) \geqslant \operatorname{dim} X-\operatorname{dim} Y_{0}$.

Next, we consider the following diagram:

From (4), we have

$$
\operatorname{dim}\left(p_{1}^{-1}\left(Y_{0}\right) \cap p_{2}^{-1}\left(L_{x_{0}}\right)\right) \geqslant \operatorname{dim} Y_{0}+\operatorname{dim} X-\operatorname{dim} Y_{0}=\operatorname{dim} X
$$

Hence, for any point P in $p_{2} \circ p_{1}^{-1}\left(Y_{0}\right) \cap L_{x_{0}}$, we have

$$
\operatorname{dim}\left(p_{1}^{-1}\left(Y_{0}\right) \cap p_{2}^{-1}(P)\right) \geqslant \operatorname{dim} X-\operatorname{dim} L_{x_{0}}=m-d \geqslant 1 .
$$

This shows that there exists an $(m-d)$-dimensional subvariety Y of X such that, for any point x in Y, L_{x} goes through a common point P in \boldsymbol{P}^{n}. That is $L_{x_{0}} \cap X_{c} \neq \phi$.
Q.E.D.

Lemma 3. 5. Let X be a subvariety of $\operatorname{Gr}(n, d)$ of dimension m. Assume that $X \cdot \omega_{a_{0}, a_{1}, \ldots, a_{d}}=0$ for some Schubert cycle $\omega_{a_{0}, a_{1}, \ldots, a_{d}}$ of codimension $\sum_{i=0}^{d} a_{i} \leqslant m$. Then, for any point x in X, we have $L_{x} \cap X_{c} \neq \phi$.

Proof. We prove the above statement by induction on m and on d. When $m=1$ or $d=0$, it is obvious. We now assume that $m \geqslant 2$ and $d \geqslant 1$.

Case 1. When $a_{d}>0$: If $X \cdot \omega_{1,1, \ldots, 1}=0$, the assertion is proved in Lemma 3.4. Therefore we may assume that $X \cdot \omega_{1,1, \cdots, 1} \neq 0$. Note that $\omega_{a_{0}, a_{1}, \cdots, a_{d}}=$ $\omega_{a_{0}-1, a_{1}-1, \cdots, a_{d}-1} \bullet \omega_{1,1, \cdots, 1}$. Let H be a general hyperplane in \boldsymbol{P}^{n}. Since dim $\left(X \cap \omega_{1,1, \cdots, 1}(H)\right)=m-d-1$ and since $\left(X \cap \omega_{1,1, \cdots, 1}(H)\right) \cdot \omega_{a_{0}-1, a_{1}-1, \cdots, a_{d}-1}=0$, the assertion is proved by induction hypothesis.

Case 2. When $a_{d}=0$: Assume that $L_{x_{0}} \cap X_{c}=\phi$, for a point x_{0} in X, and and we will derive a contradiction. We use the following diagrams and notations.

where p_{1} and q_{1} are natural projections, and put

$$
\begin{align*}
& \tilde{X}=p_{1}^{-1}(X) \cap q_{1}^{-1}\left(X_{H}\right) \\
& X_{0}=\left\{x \in X \mid L_{x} \subset H\right\}=X \cap \omega_{1,1, \cdots, 1}(H), \text { and } \\
& X_{H, 0}=q_{1} \circ p_{1}^{-1}\left(X_{0}\right) . \tag{2}
\end{align*}
$$

where p_{2} and q_{2} are natural projections, and put
$Y=q_{2}{ }^{\circ} q_{2}{ }^{-1}\left(X_{H}\right)=\bigcup_{y \in X_{H}} L_{y}$, and
$Y_{0}=q_{2}{ }^{\circ} p_{2}^{-1}\left(X_{H, 0}\right)=\bigcup_{y \in X_{H, 0}} L_{y}$.

where the projections are defined by

We go on in several steps.
Step 1. $\operatorname{dim} X_{H}=\operatorname{dim} \tilde{X}=\operatorname{dim} X$.
Indeed, working with the diagram (1), we have a point y_{0} in $X_{I I}$ with $L_{y_{0}} \subset L_{x_{0}} \cap H$. By the assumption $L_{x_{0}} \cap X_{c}=\phi$, we see that $q_{1}^{-1}\left(y_{0}\right) \cap \tilde{X}$ is a finite set. Hence, we have $\operatorname{dim} X_{H}=\operatorname{dim} \tilde{X}$. The equality $\operatorname{dim} \tilde{X}=\operatorname{dim} X$ is obvious by definition.

Step 2. $L_{y} \cap\left(X_{H}\right)_{c} \neq \phi$ for any point y in $X_{I I}$.
Indeed, by Lemma 3.3, we have $X_{H} \cdot \omega_{a_{0}, a_{1}, \cdots, a_{t-1}}=0$. Hence, by the induction hypothesis on d and by the result of Step 1, we have the required assertion.

Step 3. $\operatorname{dim} Y_{0} \leqslant \operatorname{dim}\left(\cup_{x \in X_{0}} L_{x}\right) \leqslant \operatorname{dim} X-d-1+d=\operatorname{dim} X-1$.
Indeed, for any point y in $X_{H, 0}$, there exists a point x in X such that $L_{y} \subset L_{x}$. Hence, $Y_{0}=\left(\cup_{y \in X_{H, 0}} L_{y}\right) \subset\left(\cup_{x \in X_{0}} L_{x}\right)$.

Step 4. $\operatorname{dim} Y=\operatorname{dim} X+d-1$.
Indeed, we have $\left(\cup_{x \in X-X_{0}} L_{x}\right) \cap H \subset Y \subset\left(\cup_{x \in X} L_{x}\right) \cap H$ by definitions. Consider the following diagram.

By our assumption $L_{x_{0}} \cap X_{c}=\phi$ for a point x_{0} in X, we see that $p_{3}{ }^{-1}(X) \cap$ $q_{3}{ }^{-1}\left(P_{0}\right)$ is a finite set for a point P_{0} in \boldsymbol{P}^{n}. Hence, we have $\operatorname{dim}\left(\cup_{x \in X} L_{x}\right)$ $=\operatorname{dim} q_{3} \circ p_{3}{ }^{-1}(X)=\operatorname{dim}\left(\cup_{x \in X-X_{0}} L_{x}\right)=\operatorname{dim} q_{3} \circ p_{3}{ }^{-1}\left(X-X_{0}\right)=\operatorname{dim} X+d$. Therefore, since H is general, we have the required assertion.

Step 5. $L_{y} \cap Y_{0}=\phi$ for some point y in $X_{I I}$.
Indeed, if we assume the contrary, we are led to a contradiction as follows. Let y_{1} be a generic point of X_{H}. We can take a point P_{1} in $L_{y_{1}} \cap Y_{0}$ by our assumption in this step. We denote by Z the closure of $\left(y_{1}, P_{1}\right)$ in $\operatorname{Gr}(n-1, d-1) \times H$. Consider the diagram (3). Since $\pi_{2} \circ \pi_{1}{ }^{-1}(Z)=\{(Q, P) \in H \times H \mid$ there exists a specialization (y, P) of $\left(y_{1}, P_{1}\right)$ such that $\left.L_{y} \ni Q\right\}$, we have, in particuiar, $P \in L_{y} \cap Y_{0}$ for a point (Q, P) in $\pi_{2} \circ \pi_{1}^{-1}(Z)$. Hence, we have $s^{\circ} \pi_{2}{ }^{\circ} \pi_{1}^{-1}(Z)=Y$. Therefore, we see that $r\left(\pi_{2} \circ \pi_{1}^{-1}(Z)-s^{-1}\left(Y_{0}\right)\right) \neq \phi$. Hence, we may assume that there exists a point P_{0} in $r\left(\pi_{2} \circ \pi_{1}^{-1}(Z)-s^{-1}\left(Y_{0}\right)\right)$ such that $P_{0} \in L_{y_{0}} \subset L_{x_{0}}$, where y_{0} is the point in X_{H} mentioned in Step 1. Then, by our assumption in Case 2,
we see that $P_{0} \notin X_{c}$, that is, the set $\left\{x \in X \mid L_{x} \ni P_{0}\right\}$ is finite. Hence, we have $\operatorname{dim}\left(r^{-1}\left(P_{0}\right) \cap\left(\pi_{2} \circ \pi_{1}^{-1}(Z)-s^{-1}\left(Y_{0}\right)\right)\right)=d-1$. Therefore, we have

$$
\begin{aligned}
\operatorname{dim}\left(\pi_{2} \circ \pi_{1}^{-1}(Z)-s^{-1}\left(Y_{0}\right)\right) & \leqslant \operatorname{dim} q(Z)+d-1 \\
& \leqslant \operatorname{dim} Y_{0}+d-1 \\
& \leqslant \operatorname{dim} X+d-2
\end{aligned}
$$

The last inequality follows from the result of Step 3. On the other hand, from the result of Step 4, we have

$$
\operatorname{dim}\left(\pi_{2} \circ \pi_{1}^{-1}(Z)-s^{-1}\left(Y_{0}\right)\right)=\operatorname{dim} Y=\operatorname{dim} X+d-1 .
$$

This contradicts to the above estimation.
Step 6. By the result of Step 5, and by our assumption in Case 2, there exists a point x_{2} in X and a point y_{2} in X_{H} such that $L_{y_{2}}=L_{x_{2}} \cap H, L_{x_{2}} \cap X_{c}=\phi$, and $L_{y_{2}} \cap Y_{0}=\phi$. By the induction hypothesis on d, there exists a point P_{2} in $L_{y_{2}} \cap\left(X_{H}\right)_{c}$, that is, the set $\left\{y \in X_{H} \mid L_{y} \ni P_{2}\right\}$ is infinite. Since $P_{2} \notin Y_{0}$, the set $\left\{y \in X_{H} \mid L_{y} \ni P_{2}\right\}$ is contained in $X_{H}-X_{H, 0}$. Since $\left(X-X_{0}\right) \rightarrow\left(X_{H}-X_{H, 0}\right)$ is a surjective morphism and since the set $\left\{x \in X \mid L_{x} \ni P_{2}\right\}$ is the inverse image of the set $\left\{y \in X_{H} \mid L_{y} \ni P_{2}\right\}$, we see that the set $\left\{x \in X \mid L_{x} \ni P_{2}\right\}$ is infinite. This contradicts to $L_{x_{2}} \cap X_{c}=\phi$.
Q.E.D.

Theorem 3.1 follows immediately from Lemma 3.5.

Pemark 3. 6. Probably the following statement (indicating more geometrical meaning) will be valid.

Let X be a subvariety of $\operatorname{Gr}(n, d)$ of dimension $m \geqslant 2$. Assume that $X \cdot \omega_{a_{0}, a_{1}, \ldots, a_{d}}=0$ for some Schubert cycle $\omega_{a_{0}, a_{1}, \cdots, a_{d}}$ of codimension $\sum_{i=0}^{d} a_{i} \leqslant$ m. Then, for any point x_{0} in X, there exists a curve C contained in X such that C goes through the point x_{0} and that $\cap_{x \in c} L_{x} \neq \phi$.

But our dimension-theoretic argument is too rough to verify the above statement.

Corollary 3. 7. Let X be a non-singular projective variety of dimension m defined over the complex number field C. Let E be a vector bundle of rank r on X. Suppose that E is ample and that, in addition, E is generated by its global sections. Then, E is numerically positive.

Proof. Let q be an integer with $1 \leqslant q \leqslant m=\operatorname{dim} X$. Let Y be a q-dimensional subvariety of X. Let F be a quotient vector bundle of rank $d+1$ of $E \mid Y$ with $F \neq 0$. Let $P(T)$ be a homogeneous positive polynomial in $\Pi(d+1)$ of degree q with $P(T) \neq 0$. Since E is generated by its global sections, $E \mid Y$ and hence F is generated by its global sections. Hence, we have a morphism

$$
f: Y \rightarrow G r(n, d) \text { with } F=f^{*}(\check{S}),
$$

where \check{S} is the dual of the universal subbandle S on $G r(n, d)$. Since we may assume that $n-d \geqslant m$, we see that

$$
\begin{gathered}
(I(d+1) \otimes \underset{Q}{\otimes} \boldsymbol{C})_{q} \hookrightarrow H^{2 q}(\operatorname{Gr}(n, d), \boldsymbol{C}) \\
\underset{U}{U}
\end{gathered}
$$

$$
P(T) \longrightarrow\left(\text { the cohomology class of } P\left(\begin{array}{c}
\sqrt{ }-1 \\
2 \pi
\end{array} \Theta_{\stackrel{\prime}{\prime}}\right)\right)
$$

 orem 2.1, the cohomology class of $P\left(\begin{array}{c}\sqrt{ }-1 \\ 2 \pi\end{array} \Theta_{F}\right)$ can be expressed as

$$
\begin{aligned}
& \text { the cohomolgy class of } P\left(\begin{array}{c}
\sqrt{ }-1 \\
2 \pi
\end{array} \Theta_{F}\right) \\
= & f *\left(\text { the cohomology class of } P\binom{\sqrt{ }-1_{\Theta^{\prime}}}{2 \pi}\right) \\
= & \text { the cohomology class of } \sum_{a_{0}+a_{1}+\cdots+a_{d}=q} \alpha_{a_{0}, a_{1}, \cdots, a_{d}} f^{*} \omega_{a_{0}, a_{1}, \ldots, a_{d}},
\end{aligned}
$$

where every coefficient $\alpha_{a_{0}, a_{1}, \cdots, a_{d}} \geqslant 0$ and they are not all zero. Since E is ample, $E \mid Y$ is ample and hence F is ample. Therefore, the morphism f is finite. Hence, $\check{S} \mid f(Y)$ is ample. Applying Theorem 3.1 for $f(Y)$, we have that $f(Y) \cdot \omega_{a_{0}, a_{1}, \cdots, a_{d}}>0$ for any Schubert cycle $\omega_{a_{0}, a_{1}, \cdots, a_{d}}$ of codimension $\sum_{i=0}^{l} a_{i}$ $=q$. Therefore, we see that

$$
\begin{aligned}
\int_{Y} P\left(\begin{array}{c}
\sqrt{-1} \\
2 \pi
\end{array} \Theta_{F}\right) & =Y \cdot\left(\sum a_{a_{0}, a_{1}, \cdots, a_{d}} f^{*} \omega_{a_{0}, a_{1}, \cdots, a_{d}}\right) \\
& =\sum \alpha_{a_{0}, a_{1}, \cdots, a_{d}} Y \cdot f^{*} \omega_{a_{0}, a_{1}, \cdots, a_{d}} \\
& =e^{\sum \sum \alpha_{a_{0}, a_{1}}, \cdots, a_{d}} f_{*}(Y) \cdot \omega_{a_{0}, a_{1}, \cdots, a_{d}} \\
& >0
\end{aligned}
$$

where e is the mapping degree of the morphism f.
Q.E.D.

Kyoto University
 Kyoto University of Education

References

[1] S. Bloch \& D. Gieseker, The positivity of the Chern classes of an ample vector bundle, Inv. Math. vol. 12 (1971).
[2] W. Fulton, An example of a vector bundle on \boldsymbol{P}^{2}, which is numerically positive but not ample, to appear.
[3] D. Gieseker, P-ample bundles and their Chern classes, Nagoya Math. J. vol. 43 (1971).
['4] P. A. Griffiths, Hermitian differential geometry, Chern classes, and positive vector bundles, Global Analysis, Kodaira Vol., Univ. of Tokyo Press and Princeton Univ. Press (1969).
[5] R. Hartshorne, Ample vector bundles, Publ. Math. IHES, 29 (1966).
[6] Ample vector bundles on curves, Nagoya Math. J. vol. 43 (1971).
[.7] W. V. D. Hodge \& D. Pedoe, Methods of algebraic geometry, ch. XIV vol. II, Cambridge Univ. Press (1952).
[8] H. Sumihiro, On the conjecture of Hartshorne-Griffiths, Surikaiseki Kenkyusho Kokyuroku vol. 144 (1972) R.I. M. S. Kyoto Univ. (in Japanese).
[9] H. Tango, On ($n-1$)-dimensional projective spaces contained in the Grassmann variety $G r(n, 1)$, J. Math. Kyoto Univ. vol. 14 no. 3 (1974).
[10] A. Weil, Variétés Kählèriennes, Hermann, Paris (1958).

