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On o-models which are not g-models

by
A. Mostowski and Y. Suzuki* (Warszawa)

In this paper we shall prove a theorem which, roughly speaking, says
that f-models for the second-order arithmetic {see [1]) cannot be distin-
guished from w-models by elementary sentences. Although this resulf
is by no means surprising, the proof of it is not immediately obvious. In
section 6 we state a similar result for models of the Zermelo—Fraenkel
st theory and give a solution of a problem concerning the existence of
models which are %.-standard but are not 8.4-standard. This problem
way formulated in [3].

1. Syntax. In our formal language we shall use Vv, &, >, 0, =
as propositional connectives, (B ), () a8 quantifiers. Variables will be
denoted by Roman letters and the predicate of identity by “=~. We
ghall use the abhreviation (B!x)F for (Bz)(x)[(x~ 2) = F]. (1)

We shall consider a first order theory T which has the primitive
predicates N, S, B, A, P and possibly ¢till other predicates. N, § will
have one argument, E two and A, P three. We read N(x) as “x is an
integer”, S(x) as “x is a set of integers”, E{x,y) as “x is an element
of v, A{%, ¥, z) us “x i3 the sum of y and 2’ and P(x, 7, z) as “x is the
product of y and z’’.

Tn. order to make our formulae more readable we infroduce a puiber
of simplifications.

We shall abbreviate (X)[N(x)—>..] as (Fhv.. and (Bx)[N(x)&...]
a8 (BX)y...; we also use similar symbols for quantifiers limited to 8.
Sometimes even the index N or § can be omitted, because we shall uge
lower case Roman letters a, b, ..., n as variables “ranging over elements
of N und upper case Roman. letters X, ¥, .., F, ... a8 “variables ranging
over elements of 8. (Letters X, ¥, ... will be used whenever the domain

* The work of the second awthor (who is on Jeave of absence from the Tokyo
Metropolitain University) was gupported financially by the Sakkd-kai Foundation
(Japan) and also by the Minist -y of Education {Poland).

*) We uge in the meta-lan juage the abbreviations (L}, (¥2), and = for “there
is an 2™, “for every @, and “if .., then...”. The symbol & will also be used as an
abbreviation of “and” and the symbol “‘¢” a8 an ablreviation of “is an. element of’".
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of variability is unrestricted). Also a formula F' in whieh the variable a
occurs will be thought of as an abbreviation of N(a) »F and similarly for
formulae with other variables b, ¢, ... Similar remarks apply to formm-
lae with the free variables X, Y, ... Finally we write “‘x ¢ y” for B(x, y).

The axioms will be interspersed with definitions (numbered D1,
1%, ..). At each point when axioms formulated up to this place allow
one to derive a theorem of the form (E!x) F(x, ...) we shall allow a definition
of the form f{...} = (%) F(x,...}; the symbol £ will be allowed to occur

in subsequent axioms.

Of course, all these abbreviations and sunphflodtmns are really not
necessary: with some patience it would be possible to write all axioms
in the “official”” langnage of the first order logic.

1. ARITHMETICAT ANIOMS.

1. [A(x,y,2)vE(x, ¥, 2)]>N(x) & N(y
2. (BlajA(a,b,c) & (Bla)P{a, b, ¢).
DI1. b+o= (1a)A(a, b, c), b-¢c= (:a)
3. (BlayA(a, a, a).
D2. ¢ = (1a)Ala, a, a).
4. (Bla)—(a=~0) &P(a,a, a)]

D3. 1= (a){—(a~ 0) & Pla, a, a)).

5. —(a+1 =~ 0).
6. (a+1ab+1)>(aab) .
. at0~a
8
9

) & N(z).

P(a, b, e).

. at{b+1)a (aLtb)+1.
a0 = 0.

10. a- (b+1) ~ (a-b)+a.
II. SEr-THEORETIC AXIOMS.

1. 1 8(a).

2. (xey)—>N(x) & S(y).

3. (a{aeX)=(a e V)] (X~ Y).
III. AXTOM OF INDUCTION.

(0 e X) & (a)[(a € X)—(a+1 ¢ X)]

IV. AXIOM SCHEME OF COMPREHENSION.

+{ne X).

(BX)(a)[(a € X) =

in this axiom @ may be any formula in which the variable X
oceur freely.

D4 {a: P} =

= P;

does not

(a)[(a € X) = P].
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In D4 we assume that @ does not confain X as a free variable; of
course, D4 ig not a single definition but a scheme,
From the above axioms one can deduce the theorem

(Bley{(e+¢) = (a+D)-[(a+Db)+1]) ,

and hence we can formulate the definitions

D5. (a, b) = (te){(e+e) ~ (a+Db) -[{(a+D)-+11}

D6. X = {b: (a,b)e X}

V. AXIOM SCHEME OF CHOICE.

() (EX)P+(EY)(a)(EX)[(X ~ Y®) & o1

Tn this scheme @ is any formula in which the variable Y is not free.

It is known that axiom scheme V implies IV but we shall not use
this fact in our considerations.

2. Auxiliary formal theorems and definitions. In this section

we collect some further abbreviations and definitions and formulate o few
theorems which can be proved in the basis of axioms I-V.

D7. aXb =(a,h)eX.
DS, Ord(X) = (a)(aXa) & (a) (b) (¢} [(aXDb) & (hXe) >
—(aXe)] & (a)(b)[(aXb)vi{a ~ h)v(bXa)] &
(a)(0)[(aXD) & (bXa)»(a ~ b)].
0rd(X) & (Y)(a)((a ¢ ) >(Eb){(be V) &
(@)(c e ¥)>bXeT}).
Obviously Ord defines “orderings of N and Bord “well-orderings
of N,
D10. Fn(X) =

D9, Bord(X) =

(a)(E!b)}(aXDh) &
(a}(a’) (b)[(a X D) & (2 Xb)->(a = a)].
This formuls defines “one-one mappings of W into N*.
DI1. Imb(F, X, ¥) = Fn(F) & (a)(2") (b) (b) {aFb & a'Fb’'—
S[(aXa’) = (bY b))}
This formula defines the notion: ¥ is an isomorphic imbedding of
the relation aXa' in the relation DYD'.

D12. X < Y = (EF)Imb(F, X, T).
Tt is very easy to show that the transitivity of =< is provable in T
E<LDN&YLHX<Z).

> 1 it is possible to define

We mention still that for each integer # =
., 8y such that the following

aformula @, with n-+1 free variables a, fy, ..
theorems are provable:
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(%) (Bla)@n(a ay, -y 2n);
(ex) (B, ..., 8a)@n (3, 8yy oy u)e
Thus @, allows us to define a “one-ome mapping of N onto N”.
The definition of @, proceeds by Induction:

Qr(a; 2,) = (&~ ay);
Ouir(8y By ooey Ay Aap) = (ED) [QW(by gy ey Bn) & (a‘ = (D, an+1))] .

In view of () and (#%) we can admit for each n and each ¢ < » the
definition
D13, pri(a) = (2a4) (Bay, ey Bi1; Dig1y ooy 40)@u (B, 81y oy An).

3. Relational systems. We shall denote by L the first order
language in which formulae of ' are written. Since we shall also deal
with various extensions of L, we shall recall here some definitions from
model theory in case of an arbitrary first order language L* whose ex-
pressions contain not only predicates but individual constants as well

A relational system SR of type L* is an ordered pair {4, u> where 4
is @ set and u a funetion; the domain of yx is the set of all primitive predi-
cates and of individual constants of L* and u(c) € 4 if ¢ is an individual
constant, u(p)C A" it o is an w-ary predicate other than ~ and u(~)
= {{,®>: we A}, We use capital German letters to denote relational
systems- Instead of p(N) we shall write Nm and similarly for other
(primitive or defined) predicates other than ~v. The values of various
terms in M will be denoted by a suffix It added to the term; e.g. (&, b)a
denotes the value of the term (a, b) for the assignment of « to the variable a
and of b to the variable b.

The semantical notions of satisfaction, model, elementary extension,
redunct, diagram, etc. are defined as usual. The notion of definability
will be used in the following sense. A relation & C A" is definable in
if there are an integer k, a sequence b,, ..., b; of elements of 4 and a for-
mula F of L* with 54 % free variables such that {a,, ..., ay> ¢ B if and
onty if |=m Play, .y @, byy ..., b} for arbitrary a;, .., @, in A.

If L* contains the predicates N, A, P of 7, then the relational system
(N, ¢’y where p'(A)= Ay and p'(P) = Pp is called the arithmetical
part of M.

A model I of T is called an w-model if its arithmetical part is
isomorphic to the standard model 2, of arithmetic. In this case we shall
usually identify the arithmetical part of IR with %, and each X in Sw;
with the set of integers » which together with X satisfy the formula
neX in IR

A model Mt of T is called a f-model if for each X in Sy the condition
|-m Bord [ X] implies that the relation {¢m, #) ¢ Noy: l=mm X @} well orders

©
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the set Ny (Strictly speaking, we should have written j~mBord (X)[X]
and = (mXn)[m, X, »] instead of =mBord[X] and l=mmX# but we
shall use the simplified way of writing whenever possible.) It is known
(and easy to prove} that f-models are w-models but not conversely.

4, The pigeon-hole principle. As is well known this principle
says that if many object are put into a small number of drawers, then
at least one drawer contains many objects. In our ease the objects will
be well orderings of integers and the number of drawers will be denumerable.

Let @ be a formula of L in which U is a free variable and ¥ a fornmula
of I in which U and a are free variables. We shall write these formulae
as @(U) and ¥(U, a) althongh we do not exelude the possibility that
one or hoth of these formulae contain free variables other that U and a.

T.et A be the conjunction of the following formulae:

(1) (X) {Bord (X)—(BU)[B(U) & (X < T)J};
(2) (U)(Ea)[2(U)~¥(U, a)} .
THEOREM 1. The following formula is provable in T:
A—(Ba) (X) {Bord (X) ~(BU)[P(T, 2) & (X U} .

Tnstead of carrying out a formal proof using axioms of T and rules
of proof formulated in logic we shall sketch it in the everyday’s langnage
of the “working mathematician”. We shall supply enough details to
convince the reader that the proof can be transformed into a formal

proof in 7.
We assume A and the negation of the formula after the first arrow,

i.e. the formula
3) (2)(BX){Bord(X) & (U)[F{U, )X < U)]} -

Our aim ig to derive a contradiction from these assumptions.
First we uge the axiom of choice and derive from (3)

(4) (BY)(a){Bord (Y™) & (U)[#(U, 2) (Y LT}

Let Y satisty the condition stated above. From axiom IV we easily
derive that there is a Z such that the following equivalence holds for
arbitrary a,a’,n,n’:

(8) (a, (2, n) = f{a < ') V[(a~a) & @Y0)]}.

We want to ghow that Y® can be imbedded into Z. The imbf}ddh%g
function is obviougly the map n— <&, n). Formally speaking, we (d;afme F
y i N ) .
as {b: (En)(bm {n,(a,n)))} and prove using D10 that Fn(F™). BSince

1Y® 1’ = (a, n)Z(a,n'},
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we infer using D1 that Imb(F®, ¥ 7). Henee by D12
(6) Yz,

On the other hand, we can derive from (5) that Bord(Z) and hence,
according to (1) and (2} that there lS an o and a U gueh that ¥(U,a)
and Z < U. Using (6) we obtain Y@ 21 sinee the transitivity of < s
provable in 7. But now we have a contradiction since, according to (4)
for ne U such that ¥(U, a) does the formula Y <2 U hold. Our 1he(>rem
is thug proved.

We do not know whether this theorem remains valid when the axiom
scheme V of choice is removed from the axioms of T.

We shall formulate theorem 1 in a semantical way. Let 2t be a model
of T and let K = {X e San: [=m Bord[X]}. We shall say that a set (/C Sy
is unbounded if for every X in K there is a U in € such that X < ql.

We say that a rvelation D C Ny x Sy covers € if for every element X
in ¢ there is an 2 in Ny such that {a, X» ¢ D. This can be expressed as
CC1J{Dg: @ Ny} where D, i3 the set {X e Sm: <{a, X ¢ D}

The pigeon hole prineiple in its semantical form iy the following
result:

TuroREM 2. If M 48 a wmodel of T and D is a definable relation
C Ny x San which covers an unbounded definable set ¢ C Sm, then ot loast
one Dy is unbounded.

Proof. It is sufficient to fake in theorem 1. for ¢ a formula Whl(‘h
defines ¢ and for ¥ a formula which defines the relation D.

5. A theorem on f-models. In this section we shall use the
pigeon. hole principle in order to establish our main result.

TumorEM 3. For any denwmerable §-moddl IR, there exists an ©-model
which is an elementary exiension of M and is not a f-model.

Proof. We introduce, as auxiliary symbols, the constant symbols 4,,
for every element m of I and the constant symbol R. The language L
augmented by those symbols is denoted by L,. '

The interpretation of the symbols of the language is determined by
the structure M.

The value of R will in most cases be an element of Sy which. gatisfies
the formula Bord(X) in .

In the relatiomal systems of type L,, which we shall consider, the
constant 4., will always be interpreted as m. Hence the relational systens
are determined by the value R of the constant B and can be denoted
by (M, R).

‘We shall agsume that the arithmetical part of D has been 1dent1fmd
with %, (¢f. p. 86) and elements of Sy with sets of integers. We can and
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will interpret each element X of Sqy as abinary relation {<{m, 1)>: l=pm I n};
in case this relation is many-one we can speak of X as being a function.

"As in seetion 4 we denote by K the set of all X in Sy for which
[=m Bord [A].

Let A be the set of all sentences of I, which do not contain symbol R
and are true in the structure . We can represent the set A as the union
of an increasing sequence <A, ne. Of finite sets of sentences for which the
following condition (A) holds:

(Bv)(N(v) & F(v)) € dg = (TD)(F(dy) € Ay} -

Let us fix an enumeration {®;) i, of all the sentences of the lunguage L;.
Let us say that R is in the class Dgliy, ..., {) if the following con-
ditions are satisfied: ‘
I. ReK and Se K.
IL. iy Riner. ty Big and in # fne1 7 oy 7 1o
YIX. There is & funetion in W which maps the fidd of S order-iso-
morphically into the R-predecessors of in.

. It is obvious that D is extensional in the following sense: whenever §
and 8 are in Pt and there is in MM a function which establishes an iso-
morphism Dbetween 8 and &, then Dsliy, ..., in) = Dgliy, .., in). More
generally, this equation holds for arbitrary 8, § in Sm such that § <m &'
and & <m 8.

" We define by induction a monotonically inereasing sequence <{Buw)neo
of finite sets of sentences of the language I, and 2 sequence of natural
numbers (i, nco. These sequences are required to satisfy the following
conditions <Cuinew

(i) Bord(R) is in By,

(i) 4a€ B,

(i) if n> 0, then the semtences A, Bd;, and —(di, = 4,,) are
in By,

{iv) for j < n, either &5 or —P; is in Ba,

(v) if j<n, O; is in B, end @; has the. form (Ev)(N(V) &‘F(v)),
then W(A;) is in By for some i in o,

(vi) for every § in the class K, there is an B such that B € Ds(igy vy in)
and j=(5m,R)Bn.

Construetion of the sequences.

Step 0.
Determination of the number i;. i, can be any natural pumber, say 0.

Determination of the set B,. We take 4, v {Bord(R)} as B,.
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Verification of the conditions ¢,. Conditions (i) and (ii) are evident,
Conditions (iii), (iv) and (v) are true vacuously. Finally, (vi} is satisfied,
because for every § in K there is an R in K such that the last element
of the field of R is 4, and there is a function I in M which maps the field
of § order-isomorphically into the set of R-predecessors ofd,. If e.g. ¢, =0,
then it is sufticient to take F(n) = n+1 and define E as the set consisting
of all pairs (7, O)m and of pairs {F(n), F{m))m with 2 8m.

Step n+1. We assume that we have already defined the sequences
By oxicn 208 {ipdogjan which satisfy conditions (Cydocjga. Let I, e the
clags of all § such that § e K and

(HR) (R € Ds(’io,..., ’l:n) & ‘?(gn‘R)Bn & ‘:(g]z,m (D;) v

where = € {0, 1} and ®h = @, and @L = —P,. Since the set B, is finite,
the set I, is definable in the strueture (I, R). We ghall show that either I,
or I, coincides with the class K of all well-orderings of  in the strueture
M. Let us assume S ¢ I, for some § in the class K. Hence

(VR)m (R € Dgliyy -y in) & [~z B = ‘=(5m,R) - @n) .

By our inductive assumption (vi), there is an R such that B € Dg{dy, ..., )
and |=gnamBa. S it therefore in I;. Thus we proved that T, v I, =K.
The set I, is monotone in the sense that if 8" eI, and 8§ <m &', then
SeI,. Sinee I, I = K, either I, or I, is cofinal with K. The set which
is cofinal with & and is monotone must coineide with K. Hence either I,
or I, coincides with XK. Let & be the smallest ¢ guch that I, = K.
Determination of the number tn+i. Let 8 be in the set &, if and only if

S8 ¢ K & (ER)(R ¢ Dsliyy ey iny 1) &
=@ m Ba v {@n, AR sy, 1 (Ao Ag)})

Let § be in the set K and 8* be an element in K whose order type is the
successor of that of §. By our choice of Z, there is an B e Dgu(ty, ..., tn)
such that |=mz Br v {Pn}. Let 1* be the greatest element in the ordering S*
and let ¢ e the image of i* by an order-preserving map in 9 of the field
of §* into the R-predecessors of 4. The conditions R e Dg(ty; ooy @y 9)
and e (AR Ay} v {1(di s 44,)} are satisfied. We have proved,
theretore, (V 8)(8 « K = (Hi)(8 ¢ Ka)). Since the relation § ¢ K is definable
in M, we can apply the pigeon hole principle to prove

(T (V) (S e K = (A8 (S <m S & § ¢« Ky)) .

Since the sots K; are monotone, (Hi)(VS)(Se K = SeKi). We take
a8 inss the least smeh 4.
Determanation of the set Byiq.
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Case 1. (15;‘1 is already in B,. We take By v Apjv {di,, Rds} v
{7 {dip = A} a8 By

Case 2. CDE, is not in By.

Subease 21. 5=1, or =0 and @y, s mot of the form (BEv)(N(v) &
W(v)). We take By v Auer v (B, dipa Bdiny 1 (dtpy = A )} a5 Bria.

Subcase 2.2. e = 0 and @, is of the form

(Bx,) (N (%)) & ... & (Bxe) (N (xe) & P (x5 oo ) )

where ‘I’(El, vy Xg) 48 ot 0f such o form.

Let ¥(a) be the formula

Flprila), ..., pre(a))
and let fi(e) be the value of the term pri(d,) in M. Then we have the
equivalence
Fanm P (de) == Fam ¥ dnes - dpsa) -
Let 8 in the set C, if and only if
8eK & (AR)(E € Dsliyy ooy int1) &
[ mBav Ansa v {P(4e), At Bty = (At~ du)} -

We upply, onee again, the pigeon hole principle to the sequence (Corren
which is definable in 9. By our choice of the numbers i,:1 and &,
(Vv S)(S e K = (He)(Se Ce)). By applying the pigeon hele principle,

(o) (VA) (S e B = (TS (B < & & e 0. .
Since the sets €, are monotone; (He)(VS)(S ¢ K = 8eC,). We take as ¢
the least such e. We take a8 Bnysy, in this subease,
Bo v duin o (¥ Agian - Ara) s (B) [N (x) &
W (Ausys s Aty 52 ey P} U ernR A} (= (B ™ A0}

Yerification of the conditions Cpii. In all eases conditions (i)-(iv)
are elearly satistied. Conditions (v) and (vi) are satisfied in subcase 2.1
because of our choice of the numbers inys and & and beeause of property (A)
of the sequence | ) Adn= 4. Conditions (v) and (vi) are sabisfied in the

n

subease 2.2 because of property (A) of the sequence U4, =4 and
A

because of the choice of the mumbers i1y £y €
Let us consider the set B= | Bn. This set is congistent since every

' n
finite subset of B has a model by condition (vi). The set B is w-cloged
by condition (v). By the Henkin-Orey completeness theorem for w-closed
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consistent theories (cf. [2], p. 231) there is an w-standard model Lt for the
theory B. The structure 3, is an «-model sinee M, s o-standard. The
structure 9%, is an elementary extension of 9N since the seb A4 is included
in the set B. Consider the value R, of the constant symbol R in M. By
condition. (i), [=m, Bord[R,]. By condition (iti), the sequenee {iz»ne, forms
a descending chain with respect to the ordering B;. The w-model flJE,.
is not, therefore, a f-model. Thus the L-reduct of M, is the required
model of T and our theorem is proved.

CororLARY 1. Hor any p-model I of T, there is an clementarily
equivalent w-model M, which s not o [-model. ' s

Proof. Every f-model M is an elementary extension of a denn-
merable f-model 2, [1].

COROLLARY 2. If there is an w-model M for a set of sentences A, then
there is an w-model M, for the set A which is wnot @ f-model. e

ARE I
6. An application to set theory. Using the construction carried
out in section 5, we can congtruct 2 new family of non-standard models
for set theory. '
Let § be a consistent extension of ZF. A formula ¢ with one free varia-
ble is said to define a cardinal in 8§ if the sentence (B!v){p(v)&
(v)[p{v)=Card(v)]} is provable in §. We denote by ¢t the formuls

Card (vo) & (v,) [p{vy) vy < vy &

(v2) (72)[(ve < Vo) Card (vs) & g (v3) > (va << W) -

A model 9 for § is called g-standard if there is no infinite descending ‘

¢hain oy 3m gy o ... of ordinals smaller than the cardinal s (M, ¢} where
& (M, @) is the unique element of M which satisfies the formula ¢ in M.

The existence of a ¢-standard, p*-non-standard model is known in
the case when ¢ is a formula defining the first infinite cardinal s,
{ef. [31).

We shall prove the following

TarorEM 4. For any denumerable ¢-stondard model M for S there is
an elementary ewtension I, or M which is p- standard but is not ot - staridaid.

Proof. We introduce, as auxiliary symbols, the constant symbols A,
for every element m of 9, the constant symbol R and an unary predimté
symbol N. The interpretation of the symbols 4,, of the extended langunage
is the same as in the proof of theorem 3. The symbol N is interpreted ay
the set of ordinals smaller than » (9, ¢). We can define the sequences
{Buynew and {in'yueo in almost the same way as above. The pigeon hole
principle which played a crucial role in the previous eonstruction can be
used in the present sitnation. To see this we merely notice that s (9, ¢)

e ©
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and (9, ¢*) are different cardinals of IR and, since M is a model ZF,
the pigeon hole princinle holds in 9 for these cardinals.

We can also prove the following corollaries:

COROLLARY 3. For any g-standard model M of S there is an elemen-
tarily equivalent structure I, which is p-standard bul not g -standard.

COROLLARY 4. For any set of semiences 4, if there is a g-standard
model M of A, then there is o ¢-standard, ¢+ -non-standard model of A.

Note added on June 20, 1968. Several weeks after the present paper was
accepted for publication we saw a paper: H. J. Keisler and M. Morley, Elementary
Erlensions of Models of Set Theory (Israel Jour. Math. 6 (1968), pp. 49-63) which appeared
in March 1068. From the strictly logical point of view the results contained in Sectionsl-5
of our paper are independent from results established by Keisler and Morley. However,
the methods used by these anthors are the same as those which were used by us. The
results of onr Seetionm 6 are weaker than those established by Keisler and Morley.

After some deliberations we decided not to withdraw our paper becanse we believe
that the readers who will compars both papers will get useful insights into the close
relationship which exists between the meta-mathematics of set theory and that of the
second order arithmetic.

Note added on March 19, 1959. Results of our section 6 were also obtained
by K. Hrbatek who used a completely different method.
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