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ON Φ-SYMMETRIC KENMOTSU MANIFOLDS

U. C. DE

(Communicated by Yusuf YAYLI)

Abstract. The object of the present paper is to study φ-symmetric Kenmotsu
manifolds.

1. Introduction

The notion of local symmetry of Riemannian manifolds have been weakened by
many authors in several ways to a different extent. As a weaker version of local
symmetry, Takahashi [10] introduced the notion of locally φ-symmetry on Sasakian
manifolds. Generalizing the notion of locally φ-symmetry, one of the authors, De, [4]
introduced the notion of φ-recurrent Sasakian manifolds. In the context of contact
Geometry the notion of φ-symmetry is introduced and studied by Boeckx, Buecken
and Vanhecke [3] with several examples. On the other hand Kenmotsu [6] defined
a type of contact metric manifold which is called nowadays Kenmotsu manifold. It
may be mentioned that a Kenmotsu manifold is not a Sasakian manifold. Also a
Kenmotsu manifold is not compact because of divξ = 2n. In [6], Kenmotsu showed
that locally a Kenmotsu manifold is a warped product I ×f N of an interval I and
Kahler manifold N with warping function f(t) = set, where s is a nonzero constant.
The present paper is organized as follows:
Section 2 is devoted to preliminaries. In section 3 we prove that a φ-symmetric
Kenmotsu manifold is an Einstein manifold. In the next section it is proved that
a three-dimensional Kenmotsu manifold is locally φ-symmetric if and only if the
scalar curvature is constant. Finally we give some examples of φ-symmetric and
locally φ-symmetric Kenmotsu manifolds.

2. Preliminaries

Let M2n+1(φ, ξ, η, g) be an almost contact Riemannian manifold, where φ is a
(1,1) tensor field, η is a 1-form and g is the Riemannian metric. It is well known
that

(2.1) φξ = 0, η(φX) = 0, η(ξ) = 1,
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(2.2) φ2(X) = −X + η(X)ξ,

(2.3) g(X, ξ) = η(X),

(2.4) g(φX, φY ) = g(X, Y )− η(X)η(Y ),

for any vector fields X, Y on M [1]. If, moreover,

(2.5) (∇Xφ)Y = −η(Y )φ(X)− g(X, φY )ξ, X, Y ∈ χ(M),

(2.6) ∇Xξ = X − η(X)ξ,

where ∇ denotes the Riemannian connection of g, then (M, φ, ξ, η, g) is called an
almost Kenmotsu manifold [6].

Kenmotsu manifolds have been studied by many authors such as De and Pathak
[4], Jun, De and Pathak [5], Binh, Tamassy, De and Tarafdar [2], Özgür and De
[9], Özgür [7], [8] and many others. In Kenmotsu manifolds the following relations
hold [6]:

(2.7) (∇Xη)Y = g(X,Y )− η(X)η(Y ),

(2.8) η(R(X, Y )Z) = η(Y )g(X,Z)− η(X)g(Y, Z),

(2.9) R(X, Y )ξ = η(X)Y − η(Y )X,

(2.10) R(ξ, X)Y = η(Y )X − g(X,Y )ξ,

(2.11) S(X, ξ) = −2nη(X),

(2.12) (∇ZR)(X, Y )ξ = g(Z,X)Y − g(Z, Y )X −R(X,Y )Z,

for every vector fields X,Y, Z, where R is the Riemannian curvature tensor and S
is the Ricci tensor.

Definition 2.1. A Kenmotsu manifold is said to be locally φ-symmetric if

(2.13) φ2((∇W R)(X, Y )Z) = 0,

for all vector fields X, Y, Z, W orthogonal to ξ. This notion was introduced for
Sasakian manifold by Takahashi[10].

Definition 2.2. A Kenmotsu manifold is said to be φ-symmetric if

(2.14) φ2((∇W R)(X, Y )Z) = 0,

for arbitrary vector fields X, Y, Z, W.
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3. φ-symmetric Kenmotsu manifolds

Let us consider a φ-symmetric Kenmotsu manifold. Then by virtue of (2.2) and
(2.14) we have

(3.1) −(∇W R)(X, Y )Z + η((∇W R)(X, Y )Z)ξ = 0,

from which it follows that

(3.2) −g((∇W R)(X, Y )Z, U) + η((∇W R)(X, Y )Z)g(ξ, U) = 0.

Let {ei}, i = 1, 2, ........, (2n + 1), be an orthonormal basis of the tangent space at
any point of the manifold. Then putting X = U = ei in (3.2) and taking summation
over i, 1 ≤ i ≤ 2n + 1, we get

(3.3) −(∇W S)(Y, Z) +
2n+1∑

i=1

η((∇W R)(ei, Y )Z)η(ei) = 0.

The second term of (3.3) by putting Z = ξ takes the form

(3.4) η((∇W R)(ei, Y )ξ)η(ei) = g((∇W R)(ei, Y )ξ, ξ)g(ei, ξ),

which is denoted by E. In this case E vanishes. Namely we have

g((∇W R)(ei, Y )ξ, ξ) = g(∇W R(ei, Y )ξ, ξ)− g(R(∇W ei, Y )ξ, ξ)(3.5)
− g(R(ei,∇W Y )ξ, ξ)− g(R(ei, Y )∇W ξ, ξ)

at p ∈ M . Since {ei} is an orthonormal basis, ∇Xei = 0 at P . Using (2.9) we have

g(R(ei,∇W Y )ξ, ξ) = g(η(ei)∇W Y − η(∇W Y )ei, ξ)(3.6)
= η(ei)g(∇W Y, ξ)− η(∇W Y )g(ei, ξ)
= g(ei, ξ)g(∇W Y, ξ)g(ei, ξ)
= 0.

Using (3.6) in (3.5) we obtain

(3.7) g((∇W R)(ei, Y )ξ, ξ) = g(∇W R(ei, Y )ξ, ξ)− g(R(ei, Y )∇W ξ, ξ).

Since g(R(ei, Y )ξ, ξ) = −g(R(ξ, ξ)Y, ei) = 0 we have

(3.8) g(∇W R(ei, Y )ξ, ξ) + g(R(ei, Y )ξ,∇W ξ) = 0.

By using (3.8) in (3.7) we get

g((∇W R)(ei, Y )ξ, ξ) = −g(R(ei, Y )ξ,∇W ξ)− g(R(ei, Y )∇W ξ, ξ).

Using (2.6) we obtain

g((∇W R)(ei, Y )ξ, ξ) = −g(R(ei, Y )ξ, W ) + η(W )g(R(ei, Y )ξ, ξ)
+g(R(ei, Y )W, ξ)− η(W )g(R(ei, Y )ξ, ξ)
= 0,

i.e.,

(3.9) g((∇W R)(ei, Y )ξ, ξ) = 0.

Using (3.9) from (3.3) we get

(3.10) (∇W S)(Y, ξ) = 0.

We know that

(∇W S)(Y, ξ) = ∇W (S(Y, ξ))− S(∇W Y, ξ)− S(Y,∇W ξ).
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Using (2.6), (2.7), and (2.11) we get

(3.11) (∇W S)(Y, ξ) = −2ng(W,Y )− S(Y,W ).

Using (3.11) in (3.10) we obtain

(3.12) S(Y, W ) = −2ng(W,Y ).

This leads to the following:

Theorem 3.1. A φ-symmetric Kenmotsu manifold is an Einstein manifold.

4. Three-dimensional locally φ-symmetric Kenmotsu manifolds

It is known [4] that in a three dimensional Kenmotsu manifold the curvature
tensor has the following form

(4.1)
R(X,Y )Z = r+4

2 [g(Y,Z)X − g(X, Z)Y ]
− r+6

2 [g(Y, Z)η(X)ξ − g(X, Z)η(Y )ξ + η(Y )η(Z)X − η(X)η(Z)Y ].

Taking covariant differentiation of (4.1) we have

(∇W R)(X, Y )Z =
dr(W )

2
[g(Y,Z)X − g(X,Z)Y ]

− dr(W )
2

[g(Y,Z)η(X)ξ − g(X, Z)η(Y )ξ

+ η(Y )η(Z)X − η(X)η(Z)Y ](4.2)

− r + 6
2

[g(Y, Z)(∇W η)(X)ξ + g(Y,Z)η(X)∇W ξ

− g(X, Z)(∇W η)(Y )ξ − g(X,Z)η(Y )∇W ξ + (∇W η)(Y )η(Z)X
+ η(Y )(∇W η)(Z)X − (∇W η)(X)η(Z)Y − η(X)(∇W η)(Z)Y ].

Now applying φ2 to both sides of (4.2) we obtain

φ2(∇W R)(X,Y )Z = −dr(W )
2

[g(Y, Z)X − g(X, Z)Y − g(Y,Z)η(X)ξ

+ g(X, Z)η(Y )ξ + η(X)η(Z)Y − η(Y )η(Z)X]

+
r + 6

2
[(∇W η)(Y )η(Z)X + η(Y )(∇W η)(Z)X(4.3)

− (∇W η)(X)η(Z)Y − (∇W η)(Z)η(X)Y
− (∇W η)(Y )η(Z)η(X)ξ + η(Z)(∇W η)(X)η(Y )ξ].

Now taking X,Y, Z orthogonal to ξ and using (2.14), we finally get

(4.4)
dr(W )

2
[g(Y, Z)X − g(X, Z)Y ] = 0.

Thus we can state the following:

Theorem 4.1. A three-dimensional Kenmotsu manifold is locally φ-symmetric if
and only if the scalar curvature is constant.
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5. Examples

In this section we give some examples of φ-symmetric Kenmotsu manifolds.

Example 5.1. It is known that [6] a conformally flat Kenmotsu manifold of di-
mension greater than three is a space of constant curvature −1.

Hence the conformally flat Kenmotsu manifold of dimension greater than three
is φ-symmetric.

Example 5.2. Kenmotsu [6] proved that if a Kenmotsu manifold is a space of
constant φ-holomorphic sectional curvature, then the manifold is a space of constant
curvature.

Therefore a Kenmotsu manifold of constant φ-holomorphic sectional curvature
is φ-symmetric.

Example 5.3. We consider the three-dimensional manifolod M = {(x, y, z) ∈ R3},
where (x, y, z) are the standard coordinates in R3 The vector fields

e1 = z
∂

∂x
, e2 = z

∂

∂y
, e3 = −z

∂

∂z

are linearly independent at each point of M. Let g be the Riemannian metric defined
by

g(e1, e3) = g(e2, e3) = g(e1, e2) = 0, g(e1, e1) = g(e2, e2) = g(e3, e3) = 1.

Let η be the 1-form defined by η(Z) = g(Z, e3) for any Z ∈ χ(M). Let φ be the
(1,1) tensor field defined by φ(e1) = −e2, φ(e2) = e1, φ(e3) = 0. Then using the
linearity of φ and g we have

η(e3) = 1, φ2Z = −Z + η(Z)e3, g(φZ, φW ) = g(Z, W )− η(Z)η(W ),

for any Z, W ∈ χ(M). Thus for e3 = ξ, (φ, ξ, η, g) defines an almost contact metric
structure on M.

Let ∇ be the Levi-Civita connection with respect to the metric g. Then we have

[e1, e2] = 0, [e1, e3] = e1, [e2, e3] = e2.

The Rimennian connection ∇ of the metric g is given by

2g(∇XY, Z) = Xg(Y, Z) + Y g(Z, X)− Zg(X,Y )
−g(X, [Y, Z])− g(Y, [X,Z]) + g(Z, [X, Y ]),

which is known as Koszul’s formula.
Koszul’s formula yields

∇e1e3 = e1, ∇e1e2 = 0, ∇e1e1 = −e3,
∇e2e3 = e2, ∇e2e2 = e3, ∇e2e1 = 0,
∇e3e3 = 0, ∇e3e2 = 0, ∇e3e1 = 0.

From the above it follows that the manifold satisfies ∇Xξ = X−η(X)ξ, for ξ = e3.
Hence the manifold is Kenmotsu Manifold. With the help of the above results we
can verify the following results.

R(e1, e2)e2 = −e1, R(e1, e3)e3 = −e1, R(e2, e1)e1 = −e2,
R(e2, e3)e3 = −e2, R(e3, e1)e1 = −e3, R(e3, e2)e2 = −e3.
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From the above expressions of the curvature tensor we obtain that the manifold
under consideration is locally φ-symmetric. Also it follows that the scalar curvature
r of the manifold is equal to −6.
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