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Abstract. Most of the literature argues that surprisingness is an inherently 
subjective aspect of the discovered knowledge, which cannot be measured in 
objective terms. This paper departs from this view, and it has a twofold goal: 
(1) showing that it is indeed possible to define objective (rather than subjective) 
measures of discovered rule surprisingness; (2) proposing new ideas and 
methods for defining objective rule surprisingness measures. 

1 I n t r o d u c t i o n  

A crucial aspect of  data mining is that the discovered knowledge (usually expressed in 
the form of "if-then" rules) should be somehow interesting, where the term 
interestingness is arguably related to the properties of surprisingness 
(unexpectedness), usefulness and novelty of the rule [Fayyad et al. 96]. In this paper 
we are interested in quantitative, objective measures of one of the above three 
properties, namely rule surprisingness. 

In general, the evaluation of the interestingness of  discovered rules has both an 
objective (data-driven) and a subjective (user-driven) aspect. In the particular case of 
surprisingness, however, most of the literature argues that this property of  the 
discovered rules is inherently subjective - see e.g. [Liu et al. 97]. 

Hence, objective measures of  rule surprisingness seem to be something missing, or 
at least underexplored, in the literature, and this is part of  the motivation for the 
discussion presented in this paper. Another motivation, of course, is that objective 
measures of  rule surprisingness have one important advantage. Objectiveness is 
strongly related to domain independence, while subjectiveness is strongly related to 
domain dependence. Hence, objective measures of  rule surprisingness are, in 
principle, more generic than subjective measures. (However, subjective measures are 
still necessary - see below.) 

We should emphasize that the aim of the paper is not to propose a new rule 
surprisingness measure. Note that any rule interestingness measure is part of the bias 
of the corresponding data mining algorithm, and it is well-known that any data mining 
bias has a domain-dependent effectiveness. 



Hence, instead of investigating the effectiveness of any particular rule 
surprisingness measure, the aim of this paper is rather to suggest and discuss ideas 
that can be used to objectively measure the degree of rule surprisingness, in a generic 
way. We hope that this discussion will be a useful reference for other researchers who 
have a specific data mining problem to be solved, since these researches could use the 
ideas discussed in this paper to design their rule surprisingness measure. 

It should be noted that the goal of our work is to complement, rather than to 
replace, the existing subjective measures of rule surprisingness. Actually, in practice 
both objective and subjective approaches should be used to select surprising rules. In 
our case, the new ideas for objective rule suprisingness measures proposed in this 
paper can be used as a kind of filter to select potentially surprising rules, among the 
many rules discovered by a data mining algorithm. We can then return to the user a 
much smaller number of potentially surprising rules, and let him/her judge the 
ultimate surprisingness of those rules only. Obviously, the user will be able to save a 
lot of his/her rule analyzis time with this approach, particularly when the data mining 
algorithm discovers a large number of rules. 

This paper is organized as follows. Section 2 discusses how to measure the 
surprisingness of small disjuncts. Section 3 discusses how to measure the degree of 
surprisingness associated with individual attributes in a rule antecedent. Section 4 
discusses how we can discover surprising knowledge by detecting occurrences of 
Simpson's paradox. Finally, section 5 concludes the paper. 

2 On the Surprisingness of Small Disjuncts 

A rule set can be regarded as a disjunction of rules, so that a given rule can be 
regarded as a disjunct. The size of a disjunct (rule) is the number of tuples satisfied by 
the rule's antecedent - i.e. the "if part" of the rule. Thus, small disjuncts are rules 
whose number of covered tuples is small, according to some specified criterion (e.g. a 
fixed threshold, or a more flexible criterion). 

At first glance, it seems that small disjuncts are undesirable, since they have little 
generality and tend to be error-prone (see below). Based on this view, most data 
mining algorithms have a bias favoring the discovery of large disjuncts. 

However, small disjuncts have the potential to capture truly unexpected 
relationships, in the data. For instance, [Provost & Aronis 96] report an application 
where a small disjunct discovered by a data mining algorithm was considered truly 
interesting and led to substantial new research in the application domain. Hence, it 
would be nice if the data mining algorithm could automatically evaluate the 
surprisingness of small disjuncts, reporting to the user only the most promising ones. 

The remaining of this section is divided into two parts. Subsection 2.1 reviews 
previous research on small disjuncts, while subsection 2.2 proposes our idea to 
objectively measure the surprisingness of small disjuncts. 



2.1 A Review of Small Disjuncts 

As mentioned above, small disjuncts are error-prone. Since they cover a small number 
of tuples, it is possible that they cover mainly noise. At first glance, it seems that this 
problem can be solved by simply discarding small disjuncts. 

Unfortunately, however, prediction accuracy can be significantly reduced if all 
small disjuncts are discarded by the data mining algorithm, as shown by [Holte et al. 
89]. This is a particularly serious problem in domains where the small disjuncts 
collectively match a large percentage of the number of tuples belonging to a given 
class [Danyluk & Provost 93]. The main problem is that a small disjunct can represent 
either a true exception occurring in the data or simply noise. In the former case the 
disjunct should be maintained, but in the latter case the disjunct is error prone and 
should be discarded. Unfortunately, however, it is very difficult to tell which is the 
case, given only the data. 

[Holte et al. 89] suggested that one remedy for the problem of small disjuncts was 
to evaluate these disjuncts by using a bias different from the one used to evaluate 
large disjuncts. Hence, they proposed that small disjuncts be evaluated by a 
maximum-specificity bias, in contrast with the maximum-generality bias (favoring the 
discovery of more general rules) used by most data mining algorithms. [Ting 94] 
further investigated this approach, by using an instance-based learner (as far as we 
can go with the maximum-specificity bias) to evaluate small disjuncts. 

It should be noted that the above literature has studied the effect of small disjuncts 
mainly in the classification accuracy of the discovered knowledge. In this paper we 
are rather interested in the effect of small disjuncts in the surprisingness of the 
discovered knowledge, as will be discussed in the next subsection. 

2.2 Measuring the Surprisingness of Small Disjuncts 

We propose that a small disjunct be considered as surprising knowledge to the 
extent that it predicts a class different from the class predicted by the minimum 
generalizations of the disjunct. The minimum generalizations of a disjunct are defined 
as follows. (Henceforth, we use simply the term disjunct to refer to small disjuncts.) 

Let the disjunct be composed by the conjunction of m conditions, of the form 
cond, AND cond 2 AND ... condm, where each condo, k=l ..... m, is a triple of the form 
<Att op Val>, where Att is an attribute, op is a relational operator in the set 
{<,>,_>,_<,=} and Val is a value belonging to the domain of Att. Also, following a 
common practice in data mining algorithms, if the attribute Att is continuous (real- 
valued), then op is in the set {<,>,_>,_<,} ; whereas if the attribute Att is categorical then 
op is the "--" operator. 

A disjunct has m minimum generalizations, one for each of its m conditions. The 
k-th minimum generalization of the disjunct, associated with cond k, k=l  ..... m, is 
defined as follows. If  Att in cond k is categorical, then the k-th minimum 
generalization of the disjunct is achieved by removing cond, from the disjunct. If  Art 
in cond k is continuous, then the k-th minimum generalization of the disjunct can be 



defined in two ways, namely: (a) by removing cond k from the disjunct; (b) by adding 
a small value cr to the value of the "cut-point" Val in cond k, when op in {<,<}, or 
subtracting ot from Val in condo, when op in {>,>}; where ~ is a user-defined, 
problem-dependent constant. It is up to the user to choose one of these two definitions 
of minimum generalization for continuous attributes, depending on the application. 

To clarify the above definition (b) of minimum generalization, let us consider, as 
an example, the following rule condition: "Age < 23". Supposing that c~ is specified 
as 5, the minimum generalization of this condition would be "Age < 28". In practice 
there might be several continuous attributes, and different absolute values for ~ would 
be necessary, due to differences of scale among the attributes - for instance, for the 
attribute "Yearly Income", a = 5 is too small. Obviously, it would be tedious to 
specify a different absolute value of c~ for each continuous attribute. A solution is to 
specify a relative value of ~, such as 5%. Then, for each continuous attribute, the 
actual absolute value for o~ would be automatically calculated as 5% of the highest 
value observed for that attribute. An alternative definition of minimum generalization 
for continuous attributes could use some kind of percentile-based approach. 

In any case, note that a minimum generalization produces a new disjunct which 
covers a superset of the tuples covered by the original disjunct. As a result, the class 
distribution of the tuples covered by the new disjunct (produced by minimum 
generalization of the original disjunct) can be significantly different from the class 
distribution of the tuples covered by the original disjunct. 

Therefore, after a new disjunct is produced by minimum generalization, its 
predicted class (i.e. the consequent of the rule) is re-computed. More precisely, the 
class predicted by the new disjunct is determined by using the same procedure used 
by the data mining algorithm that discovered the original disjunct. (Typically, picking 
up the class with largest relative frequency among the tuples covered by the disjunct.) 

We are now ready to define a way to objectively measure the surprisingness of 
small disjuncts discovered by a data mining algorithm. Let C be the class predicted by 
the original disjunct and C~ be the class predicted by the disjunct produced by the k-th 
minimum generalization of the original disjunct, k=l  ..... m, as explained above. We 
then compare C against each C~, k=l ..... m, and count the number of times C differs 
from C k. This result, an integer number in the interval 0...m, is defined as the raw 
surprisingness of the original disjunct, denoted DisjSurp~,w. The higher DisjSurp~,w, the 
more surprising the disjunct is. 

Note that the value of DisjSurp~w is significantly influenced by the number of 
conditions m in the disjunct, which is in turn a measure of syntactic complexity. 
Several data mining algorithms already use a measure of syntactic complexity as part 
of their inductive bias. In this case, to avoid confusion between measures of syntactic 
complexity and measures of disjunct surprisingness, we can render the latter 
somewhat more independent from the former by defining a normalized disjunct 
surprisingness measure, as follows: DisjSurp.,~ = DisjSurp~w / m; where m is the 
number of conditions of the disjunct. Clearly, DisjSurp,o~ takes on values in the 
interval [0..1]. The higher DisjSurp~ the more surprising the disjunct is. However, it 
should be noted that this normalized measure has a bias towards rules with fewer 



conditions, since it will probably be difficult for rules with many conditions to hold a 
high normalized value. The suitability of thi s bias depends on the application domain. 

Finally, note that the above measure of small disjunct surprisingness is being 
proposed as a post-processing approach, applied once the rules have been discovered. 
This approach seems consistent with top-down, specialization-driven rule induction 
algorithms, that iteratively add conditions to a candidate rule, in order to specialize it. 
Note that this is the most common kind of rule induction algorithm used in practice. 

3 On The Surprisingness of  a Rule's Individual Attributes 

Most rule surprisingness measures (or, more generally, rule interestingness measures) 
consider the rule antecedent as a whole, without paying attention to the individual 
attributes occurring in the rule antecedent - see e.g. the well-known rule 
interestingness measure proposed by [Piatetsky-Shapiro 91]. 

In some sense, these rule surprisingness measures are coarse-grained. However, 
two rules with the same value of a coarse-grained rule surprisingness measure can 
have very different degrees of interestingness for the user, depending on which 
attributes occur in the rule antecedent. 

In order to evaluate the surprisingness of predicting attributes in a rule antecedent, 
denoted AttSurp, we propose an information-theory-based measure, as follows - see 
[Cover & Thomas 91] for a comprehensive review of information theory. First, we 
calculate InfoGain(Ai), the information gain of each predicting attribute A~ in the rule 
antecedent, using formulas (1), (2) and (3). In these formulas, Info(G) is the 
information of the goal (class) attribute G, Info(GIAi) is the information of the goal 
attribute G given predicting attribute Ai, A~j denotes the j-th value of attribute A~, Gj 
denotes the j-th value of the goal attribute G, Pr(X) denotes the probability of X, 
Pr(XIY) denotes the conditional probability of X given Y, and all the logs are in base 
2. The index j in formulas (2) and (3) varies in the interval 1..n, where n is the number 
of goal attribute values. The index k in formula (3) varies in the interval 1..m, where 
m is the number of values of the predicting attribute A~. 

where 

InfoGain(Ai) = Info(G) - Info(GIA~) (1) 

n (2) 
Info(G) =-  • Pr(Gj) log Pr(Gj) 

j=l 

m n 

Info(GIAi) = ~=Pr(A~) ( - ~.= Pr(GjlA,k)log Pr(GjlAi0 ) 
(3) 

Attributes with high information gain are good predictors of class, when these 
attributes are considered individually, i.e. one at a time. However, from a rule 
interestingness point of view, it is likely that the user already knows what are the best 



predictors (individual attributes) for its application domain, and rules containing these 
attributes would tend to have a low degree of surprisingness for the user. 

On the other hand, the user would tend to be more surprised if (s)he saw a rule 
containing attributes with low information gain. These attributes were probably 
considered as irrelevant by the users, and they are kind of irrelevant for classification 
when considered individually, one at a time. However, attribute interactions can 
render an individually-irrelevant attribute into a relevant one, and this phenomenon is 
intuitively associated with rule surprisingness. Therefore, all other things (such as the 
prediction accuracy, coverage and completeness of the rule) being equal, we argue 
that rules whose antecedent contain attributes with low information gain are more 
surprising than rules whose antecedent contain attributes with high information gain. 
This idea can be expressed mathematically by defining AttSurp as follows: 

#att (4) 
AttSurp = 1 / ( Z InfoGain(A~) / #att ), 

i=l 

where InfoGain(A~) is the information gain of the i-th attribute occurring in the rule 
antecedent and #att is the number of attributes occurring in the rule antecedent. The 
larger the value of AttSurp, the more surprising the rule is. 

4 On the Surprisingness of the Occurrence of Simpson's Paradox 

4.1 A Review of Simpson's Paradox 

Simpson's paradox [Simpson 51] can be defined as follows. Let a population be 
partitioned into two mutually exclusive and exhaustive populations, denoted Pop, and 
Pop2, according to the value of a given binary attribute, denoted lstPartAtt (First 
Partitioning Attribute). Let G be a binary goal attribute, which takes on a value 
indicating whether or not a given situation of interest has occurred in a population, 
and let G~ and G 2 be the value of the attribute G in each of the respective populations 
Pop~ and POP2. Let Pr(G,) and Pr(G2) denote the probability that the situation of 
interest has occurred in Pop, and POP2, respectively. Assume that Pr(G 1) > Pr(G2). 

Let us now consider the case where both the populations Pop, and Pop2 are further 
partitioned, in parallel, according to the value of a given categorical attribute, denoted 
2ndPartAtt. Let this attribute have m distinct categorical values. We can now compute 
the probability Pr(G) in each population, for each of these m categories, which we 
denote by Gij, where i=1,2 is the id of the population and j=l  ..... m is the id of the 
value of 2ndPartAtt. Let Pr(G,j) and Pr(G2j ) denote the probability that the situation of 
interest has occurred in Pop~ and Pop2, in the j-th category of 2ndPartAtt, j=l  ..... m. 

Finally, Simpson's paradox occurs when, although the overall value of Pr(G) is 
higher in Pop, than in Pop2, i.e. Pr(G,) > Pr(G2), in each of the categories produced by 
2ndPartAtt the value of Pr(G) in Pop, is lower than or equal to its value in Pop2, i.e. 
Pr(G,j) < Pr(Gzj), j=l  ..... m. The paradox also occurs in the dual situation, i.e. when 
Pr(G l) < Pr(G2) but Pr(Gaj) _> Pr(G2j ), j=l  ..... m. 



Some real-life examples of the occurrence of this paradox are mentioned in 
[Wagner 82]. For instance, the paradox occurred in a comparison of tuberculosis 
deaths in New York City and Richmond, Virginia, during the year 1910. Overall, the 
tuberculosis mortality rate of New York was lower than Richmond's one. However, 
the opposite was observed when the data was further partitioned according to two 
racial categories: white and non-white. In both the white and non-white categories, 
Richmond had a lower mortality rate. In terms of the above notation, the 1 stPartAtt 
was city; the situation of interest measured by attribute G was the occurrence of death 
in a tuberculosis case; and the 2ndPartAtt was racial category. 

Some authors have drawn attention to Simpson's paradox in the context of data 
mining - see e.g. [Glymour et al. 97]. However, most of this literature regards this 
paradox as a kind of danger, or obstacle, for data mining algorithms. In particular, the 
existence of this paradox in a given data set can easily fool a data mining algorithm, 
causing the algorithm to misinterpret a given relationship between some attributes. 
For instance, decision-tree learners usually build a tree by selecting one attribute at a 
time. Hence, they can select an attribute that seems to have a certain relationship with 
a given class, when in reality the true relationship (taking into account attribute 
interactions) is the reverse of the apparent one. 

Instead of considering Simpson's paradox as an obstacle, in this paper we are 
interested in the potential that the occurrence of Simpson's paradox offers for the 
discovery of truly surprising knowledge, as discussed in the next subsection. 

4.2 Discovering Surprising Knowledge via the Detection of Simpson's Paradox 

We suggest to make a data mining algorithm to explicitly search for occurrences of 
S impson ' s  paradox and to report the discovered occurrences for the user, as a kind of 
surprising knowledge. 

This search can be performed by the Algorithm 1 below. The input for the 
algorithm is a list L~ of user-defined binary goal attributes, each of them indicating 
whether or not a given situation of interest has occurred. The algorithm below is 
specified in a high level of abstraction, so the two statements that identify the 
attributes to be put in lists L, and L 2 can be expanded in different procedures, using 
different criteria, as long as three conditions hold: (a) all attributes in L, are binary; 
(b) all attributes in L~ are categorical; (c) any goal attribute contained in L c does not 
appear in L 1 nor in L~. Note that these conditions are not very strict, and in particular 
they allow the possibility that an attribute is contained in both L 1 and L 2 (since binary 
attributes are a particular case of categorical attributes). This possibility justifies the 
use of the condition A 2 ~ A 1 in the third FOR EACH statement of Algorithm 1. In 
practice, this and other more strict conditions may be directly implemented in the two 
statements that identify the attributes to be put in lists L, and L2, when Algorithm 1 is 
refined to achieve a particular implementation. 

Algorithm 1 only detects occurrences of Simpson's paradox. Extending the 
algorithm to explain why the paradox has occurred is beyond the scope of this paper. 



INPUT: list of  user-defined goal attributes, denoted L~ 
BEGIN 

identify attributes that can be used as lstPartAtt and put them in list Lt 
identify attributes that can be used as 2ndPartAtt and put them in list L 2 
FOR EACH goal attribute G in L~ 

FOR EACH attribute A 1 in L~ 
partition population into Pop~ and Pop2, according to the values of  A~ 
Pr(GI) = Pr(G="yes"lA~=l) 
Pr(G2) = Pr(G="yes"lA~=2) 
FOR EACH attribute A 2 in L 2 such that A s ~ A~ 

FOR i=1,2 
partition PoPi into m new populations Pop. . . .  Popi m, 

according to the values of  A s 
FOR j= 1 ..... m 

Pr(G~j) = Pr(G="yes"lA~=i,A2=j) 
IF (Pr(G~) > Pr(G2) AND Pr(GL) < Pr(G2j), j= l  ..... m ) 

OR (Pr(GI)  < Pr(G2) AND Pr(Glj) > Pr(G:j), j= l  ..... m ) 
report the occurrence of the paradox to the user 

END 
Algor i thm 1: Search for occurrences of  Simpson's  paradox. 

5 Conclusion 

We cannot overemphasize that a rule surprisingness measure (or, more generally, a 
rule interestingness measure) is a bias, and so there is no universally best rule 
surprisingness measure across all application domains. Each researcher or practitioner 
must adapt/invent a rule surprisingness measure to his/her particular target problem. 

Hence, as mentioned in the introduction, in order to render the contribution of the 
paper generic, the main goal of  this paper was not to introduce yet another rule 
surprisingness measure. Rather, this paper had the twofold goal of: (1) showing that it 
is possible to define objective (rather than subjective) measures of discovered rule 
surprisingness, unlike what we might infer from the literature; (2) proposing new 
ideas for defining objective rule surprisingness measures, which will hopefully be 
useful for other data mining researchers. 

More precisely, the main new ideas proposed in this paper were: (a) a method for 
measuring the surprisingness of  discovered small disjuncts, essentially based on how 
much the prediction of the small disjunct differs from the predictions of  its minimum 
generalizations; (b) an information-theoretic, fine-grain method for measuring the 
surprisingness of  a discovered rule by considering the surprisingness of  individual 
attributes in the rule antecedent, rather than the rule antecedent as a whole (the 
conventional coarse-grain approach); (c) a method for discovering surprising 
knowledge via the explicit detection of occurrences of  Simpson's paradox, in the form 
of a high-level algorithm specifically designed for this task. 



One limitation of  this paper is that our discussion has not taken into account the 
interaction between rules in the discovered rule set. In principle, however, the issue of  
rule interaction is somewhat orthogonal to the issue of  individual rule surprisingness, 
in the sense that the measure of  rule interaction (typically a measure of  rule 
overlapping) is often independent of  the measure of individual rule surprisingness (or, 
more generally, interestingness). Hence, it should be possible to use the rule 
surprisingness measures proposed in this paper together with rule interaction 
measures. The reader interested in rule selection procedures taking into account rule 
interaction is referred to [Gebhardt 91], [Major & Mangano 95]. 

A natural direction for further research is to implement the new ideas for defining 
objective rule surprisingness measures proposed by this paper in some data mining 
algorithm(s), in order to evaluate their effectiveness in some real-world data sets. 
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