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Abstract

This paper introduces new reduction and torsion codes for an octonary
code and determines their basic properties. These could be useful for
the classification of self-orthogonal and self dual codes over Z8. We also
focus our attention on the covering radius problem of octonary codes. In
particular, we determine lower and upper bounds of the covering radius
of several classes of repetition codes, simplex codes of type α and type β

and their duals, MacDonald codes, and Reed-Muller codes over Z8.

1 Introduction

Codes over finite rings is a well studied area investigated by many researchers in the
last two decades [2, 3, 5–7, 9, 14, 16–18, 21–23, 27–29, 31–33]. In particular, octonary
codes have received attention by many researchers [2, 5, 9, 19, 21, 23, 31]. For any
octonary linear code, we introduce binary and quaternary (over Z4) reduction and
torsion codes and study their basic properties with respect to self-orthogonality and
self-duality. One of the important properties of error correcting codes is that of
determining the covering radius. The covering radius of binary linear codes has been
studied in [10, 11]. It is shown in [4, 11] that the problem of computing covering
radii of codes is both NP-hard and Co-NP hard. In fact, this problem is strictly
harder than any NP-complete problem, unless NP=co-NP. The covering radius of
codes over Z4 has been investigated with respect to Lee and Euclidean distances [1].
Several upper and lower bounds on the covering radius of codes has been studied
in [1]. More recently, covering radius of codes over Z2s has been defined in [26] and
upper and lower bounds on the covering radius of several classes of codes over Z4

have been obtained [26]. We extend some of these results to octonary codes in this
paper.

A linear code C, of length n, over Z8 is an additive subgroup of Zn
8 . An element

of C is called a codeword of C and a generator matrix of C is a matrix whose rows
generate C. The Hamming weight wH(x) of a vector x in Z

n
8 is the number of
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non-zero components of x. The Homogeneous weight wHW (x) [13] of a vector x =
(x1, x2, . . . , xn) ∈ Z

n
8 is given by

∑n

i=1wHW (xi), where

wHW (xi) =

{
2, xi �= 4
4, xi = 4.

The Lee weight wL(x) of a vector x ∈ Z
n
8 is

∑n

i=1min{xi, 8 − xi}. The Euclidean
weight wE(x) of a vector x ∈ Z

n
8 is

∑n

i=1min{x2
i , (8− xi)

2}.
The Hamming, Homogeneous, Lee and Euclidean distances dH(x,y), dHW (x,y),

dL(x,y), and dE(x,y) between two vectors x and y are wH(x − y), wHW (x − y),
wL(x−y) and wE(x−y), respectively. The minimum Hamming, Homogeneous, Lee
and Euclidean weights, dH , dHW , dLand dE of C are the smallest Hamming, Homo-
geneous, Lee and Euclidean weights among all non-zero codewords of C respectively.
One can define an isometry between Z

n
8 → Z

4n
2 as a coordinate-wise extension of the

function from Z8 to Z
4
2 defined by 0 → (0, 0, 0, 0), 1 → (0, 1, 0, 1), 2 → (0, 0, 1, 1), 3 →

(0, 1, 1, 0), 4 → (1, 1, 1, 1), 5 → (1, 0, 1, 0), 6 → (1, 1, 0, 0), 7 → (1, 0, 0, 1) [8]. Such an
isometry φ is called as the generalized Gray map. The image φ(C), of a linear code C
over Z8 of length n by the generalized Gray map, is a binary code of length 4n [27].

Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be two vectors in Z
n
8 . Then the

inner product of x and y is defined by x · y = (x1y1 + x2y2 + . . . + xnyn)( mod 8).
The dual code C⊥ of C is defined as {x ∈ Z

n
8 | x · y = 0 for all y ∈ C}, where x · y

is the inner product of x and y. C is self-orthogonal if C ⊆ C⊥ and C is self-dual if
C = C⊥.

Two codes are said to be equivalent if one can be obtained from the other by
permuting the coordinates and (if necessary) changing the signs of certain coordi-
nates. Codes differing by only a permutation of coordinates are called permutation-
equivalent. Let C ⊆ Z

n
8 . If C has M codewords and minimum Homogeneous and

Euclidean distances dHW and dE respectively then C is called an (n,M, dHW , dE)
code. For more details about the octonary codes the reader is referred to any of the
papers from [19, 23].

This paper is organized as follows. In Section 2, we define new torsion and
reduction codes for an octonary code and obtain their basic properties. In Section 3
we present some results of the covering radius of octonary codes. Section 4, we discuss
about the covering radius of the Octonary repetition codes. Octonary simplex codes
of type α and β is discussed in Section 5. In Section 6, we consider MacDonald
codes Z8. Finally, Section 7 considers Reed-Muller codes and Section 8 considers
Octacode. Last section concludes the paper.

2 Reduction and Torsion Codes

The standard form of generator matrix G of the linear code C over Z8 [19] is of the
form

G =

⎛

⎝

Ik0 A0,1 A0,2 A0,3

0 2Ik1 2A1,2 2A1,3

0 0 4Ik2 4A2,3

⎞

⎠ , (1)
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where the matrices Ai,j are binary matrices for i > 0. A code with a generator matrix
in this form is of type {k0, k1, k2} and has 8k04k12k2 vectors.

The matrix (1) can also be written in the following form over Z8:

G =

⎛

⎝

Ik0 B0,1 + 2B1
0,1 + 4B2

0,1 B0,2 + 2B1
0,2 + 4B2

0,2 B0,3 + 2B1
0,3 + 4B2

0,3

0 2Ik1 2A1,2 2A1,3

0 0 4Ik2 4A2,3

⎞

⎠ ,

(2)
where B0,i, B

1
0,i, and B2

0,i are binary matrices for i > 0 and the matrices Ai,j are
binary matrices for i > 0. For a quaternary linear code one can define reduction
code and torsion code [14, 27]. These codes have been generalized for a linear code
C over Z8 in the form of four binary torsion/reduction codes in [19]. For 0 ≤ i ≤ 3,

Tori(C) = {v (mod 2) | 2iv ∈ C}.

The generator matrices of Tor0(C), T or1(C), T or2(C) are the following three binary
matrices:

GTor0 =
(
Ik0 B0,1 + 2B1

0,1 + 4B2
0,1 B0,2 + 2B1

0,2 + 4B2
0,2 B0,3 + 2B1

0,3 + 4B2
0,3

)

GTor1 =

(
Ik0 B0,1 + 2B1

0,1 + 4B2
0,1 B0,2 + 2B1

0,2 + 4B2
0,2 B0,3 + 2B1

0,3 + 4B2
0,3

0 Ik1 A1,2 A1,3

)

GTor2 =

⎛

⎝

Ik0 B0,1 + 2B1
0,1 + 4B2

0,1 B0,2 + 2B1
0,2 + 4B2

0,2 B0,3 + 2B1
0,3 + 4B2

0,3

0 Ik1 A1,2 A1,3

0 0 Ik2 A2,3

⎞

⎠ ,

where
| C |=| Tor0(C) || Tor1(C) || Tor2(C) |= 23k0+2k1+k2

The reduction and torsion code of quaternary linear code can also be generalized
for linear codes over Z8 in another interesting way. We define two binary (over Z2)
torsion codes and two quaternary (Z4) torsion codes for a given linear code over Z8

as follows:

C(1) = {c (mod 2) | c ∈ C},
C(2) = {c (mod 4) | c ∈ C},
C(3) = {c | 2c ∈ C},
C(4) = {c | 4c ∈ C}.

The generator matrices G(1), G(2), G(3), G(4) of C(1), C(2), C(3), C(4) are obtained
from equation (2) as follows:

G(1) =
(
Ik0 B0,1 B0,2 B0,3

)
,

G(2) =

(
Ik0 B0,1 + 2B1

0,1 B0,2 + 2B1
0,2 B0,3 + 2B1

0,3

0 2Ik1 2A1,2 2A1,3

)

, (3)
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G(3) =

⎛

⎝

Ik0 B0,1 + 2B1
0,1 B0,2 + 2B1

0,2 B0,3 + 2B1
0,3

0 Ik1 A1,2 A1,3

0 0 2Ik2 2A2,3

⎞

⎠ , (4)

G(4) =

⎛

⎝

Ik0 B0,1 B0,2 B0,3

0 Ik1 A1,2 A1,3

0 0 Ik2 A2,3

⎞

⎠ .

Note that the number of elements of C is 8k04k12k2 = 23k0+2k1+k2. The number
of elements of C(1), C(2), C(3), C(4) are 2k0, 4k02k1 , 4k0+k12k2 and 2k0+k1+k2 respectively.
Thus for a linear code C over Z8 we have the following relationship.

Proposition 1

| C |=| C(1) | × | C(3) |=| C(2) | × | C(4) | .

Remark 1 Note that the above proposition admits a more natural proof by consid-
ering the kernel and image of the reduction map and applying the first isomorphism
theorem.

Note that if k1 = k2 = 0 then C(2) = C(3). It is easy to observe the following.

Proposition 2

C(1) ⊆ C(4) and C(2) ⊆ C(3).

The next result is a simple generalization of self-orthogonality characterization from
[24]. For c ∈ C and 0 ≤ i ≤ 7, let wi(c) denotes the composition of symbol i in the
codeword c.

Proposition 3 A linear code C over Z8 is self-orthogonal if and only if each gener-
ator matrix of C has all its rows ω1 + ω3 + ω5 + ω7 + 4ω2 + 4ω6 = 0 (mod 8) and
every pair of rows of the generator matrix is orthogonal.

Proof. The proof is straightforward. �

Now we determine few relationships among various reduction and torsion codes
if code C is self-orthogonal or self-dual.

Proposition 4 If C is a self-orthogonal code over Z8 then C(1), C(4) are self-orthog-
onal codes over Z2 and C(2), C(3) are self-orthogonal codes over Z4.

Proof. The self-orthogonality of C(1), C(2) follows from [19]. It remains to see
the self- orthogonality of C(3), and C(4). Let v ∈ C(3). By definition of C(3) we
have 2v ∈ C. As C is self orthogonal, < 2v, u >= 0 (mod 4) for all u ∈ C. So
2
∑

viui ≡ 0 (mod 8) for all u ∈ C. Then
∑

viui ≡ 0 (mod 4) for all u ∈ C. This

implies < v, u >= 0 for all u ∈ C(3) as C(3) is a code over Z4. So v ∈ C(3)⊥. Hence
C(3) is self orthogonal. The self-orthogonality of C(4) can be proved similarly. �
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Proposition 5 If C is self orthogonal code over Z8 then C(4) ⊆ C(1)⊥ and C(3) ⊆

C(2)⊥.

Proof. Let v ∈ C(4). By definition of C(4), we have 4v ∈ C. As C is self-orthogonal,
< 4v, u >= 0 (mod 8) for all u ∈ C. So 4

∑
viui = 0 (mod 8) for all u ∈ C.

∑
viui = 0 (mod 2) for all u ∈ C.

∑
(vi (mod 2))(ui (mod 2)) = 0 (mod 2)

for all u (mod 2) ∈ C. As C(4) is a code over Z2, vi (mod 2) = vi and as C(1) is
a code over Z2,

∑
vi(ui (mod 2)) = 0 (mod 2) for all u ∈ C(1). So < v, u >= 0

(mod 2) for all u ∈ C(1). This implies v ∈ C(1)⊥. The second inclusion C(3) ⊆ C(2)⊥

can be proved similarly. �

Proposition 6 If C is self-dual over Z8 then C(4) = C(1)⊥ and C(3) = C(2)⊥.

Proof. We know that C(4) ⊆ C(1)⊥ from Proposition 5. It remains to show C(1)⊥ ⊆

C(4). Let v ∈ C(1)⊥. So < v,w >≡ 0 (mod 2) for all w ∈ C(1).
∑

viwi ≡ 0 (mod 2)
for all w ∈ C(1). 4

∑
viwi ≡ 0 (mod 8) for all w ∈ C.

∑
4viwi ≡ 0 (mod 8) for all

w ∈ C. < 4v, w >= 0 (mod 8) for all w ∈ C. 4v ∈ C⊥ = C. This implies v ∈ C(4).
Hence proved. The proof of second result is similar. �

We know that C(2) and C(3) are codes over Z4. Thus it is natural to consider the
torsion and reduction code of C(2) and C(3). We get the following:

C(21) = {c (mod 2) | c ∈ C(2)},
C(22) = {c | 2c ∈ C(2)},
C(31) = {c (mod 2) | c ∈ C(3)},
C(32) = {c | 2c ∈ C(3)}.

The generator matrices G(21), G(22), G(31), G(32) of C(21), C(22), C(31), C(32) are obtained
from (3) and (4) as follows:

G(21) =
(
Ik0 B0,1 B0,2 B0,3

)
= G(1),

G(22) =

(
Ik0 B0,1 B0,2 B0,3

0 Ik1 A1,2 A1,3

)

,

G(31) =

(
Ik0 B0,1 B0,2 B0,3

0 Ik1 A1,2 A1,3

)

= G(22),

G(32) =

⎛

⎝

Ik0 B0,1 B0,2 B0,3

0 Ik1 A1,2 A1,3

0 0 Ik2 A2,3

⎞

⎠ .

All the codes C(21), C(22), C(31), C(32) are codes over Z2. It is easy to see the following
results from their generator matrices:
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Proposition 7 If C is a code over Z8 then C(21) = C(1), C(1) ⊆ C(22), C(31) = C(22),
C(31) ⊆ C(32), and C(32) = C(4).

It is also natural to obtain the following from [14].

Proposition 8 If C is self-orthogonal over Z8 then

1. C(21) ⊆ C(22) ⊆ C(21)⊥.

2. C(31) ⊆ C(32) ⊆ C(31)⊥.

Thus we have an interesting family of codes from a linear octonary codes having
beautiful inclusions.

3 Covering Radius of Octonary Codes

In this section, first we collect some known facts of the covering radius of codes over
Z8 with respect to Homogeneous and Euclidean distances [26] and then derive some
of its properties. Let d be either a Homogeneous distance or Euclidean distance.
Then the covering radius of code C over Z8 with respect to distance d is given by

rd(C) = max
u∈Z

n

8

{

min
c∈C

d(u, c)

}

.

We can easily see [26] that rd(C) is the minimum value rd such that

Z
n
8 = ∪c∈CSrd(c),

where
Srd(u) = {v ∈ Z

n
8 | d(u,v) ≤ rd}

for any element u ∈ Z
n
8 .

The coset of C is the translate u+ C = {u+ c | c ∈ C} where u ∈ Z
n
8 . A vector

of least weight in a coset is called a coset leader. The following proposition is well
known [26].

Proposition 9 The covering radius of C with respect to the general distance d is the
largest minimum weight among all cosets.

Proposition 10 For any octonary code over Z8,

1
2
rHW (C) ≤ rE(C) ≤ 5rHW (C),
rL(C) ≤ rE(C),
rHW (C) ≤ 2rL(C).

Proof. We observe that 1
2
dHW (x,y) ≤ dE(x,y) ≤ 5dHW (x,y), so the first inequal-

ity follows. As dL(x,y) ≤ dE(x,y), the second inequality follows. Further the third
inequality follows since we have dHW (x,y) ≤ 2dL(x,y). �

The following proposition is also well known [26].
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Proposition 11 Let C be a code over Z8 and φ(C) the generalized Gray map image
of C. Then rHW (C) = rH(φ(C)).

The following two results are the two upper bounds of the covering radius of
codes over Z8 with respect to Homogeneous weight.

Proposition 12 (Sphere-Covering Bound) For any code C of length n over Z8,

24n

|C|
≤

∑rHW (C)
i=0

(
4n
i

)
,

24n

|C|
≤

∑rE(C)
i=0 Vi,

where
∑16n

i=0 Vix
i = (1 + 2x+ 2x4 + 2x9 + x16)n.

Proof. The proof of both inequality over Z8 is similar to the proof over Z4 given
in [1] (see also [26]) and hence omitted. �

Let C be a code over Z8 and let s(C⊥) = |
{
i | Ai(C

⊥) �= 0, i �= 0
}
|, where Ai(C

⊥)
is the number of codewords of homogenous weight i in C⊥.

Theorem 1 (Delsarte Bound) Let C be a code over Z8 then rHW (C) ≤ s(C⊥) and
rE(C) ≤ 5s(C⊥).

Proof. The first result is obtained in [26]. The second result follows from [1] and
Proposition 10. �

The following result of Mattson [10] is useful for computing covering radii of codes
over rings [26].

Proposition 13 (Mattson) If C0 and C1 are codes over Z8 generated by matrices
G0 and G1 respectively and if C is the code generated by

G =

(
0 G1

G0 A

)

,

then rd(C) ≤ rd(C0) + rd(C1) and the covering radius of D (concatenation of C0 and
C1) satisfies the following

rd(D) ≥ rd(C0) + rd(C1),

for all distances d over Z8.

Now we determine a bound on the covering radius of octonary code and its
corresponding reduction and torsion codes. The following result is a generalization
of Theorem 4.4 of [1].

Theorem 2 For a code over Z8, let d1, d2, d3, d4 denote the minimum Hamming
distances of linear codes C(1), C(2), C(3), C(4) respectively. If d1 ≥ 8, d2 ≥ 18, d3 ≥
25
4
, d4 ≥

25
16

then

rE(C) ≥ 9 min
{

⌊d1
8
⌋, ⌊d2

18
⌋, 4⌊d3

25
⌋, 16⌊d4

25
⌋
}

,

rHW (C) ≥ 2 min
{

⌊d1
8
⌋, ⌊d2

18
⌋, 4⌊d3

25
⌋, 16⌊d4

25
⌋
}

.
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Proof. Let t = min
{

⌊d1
8
⌋, ⌊d2

18
⌋, 4⌊d3

25
⌋, 16⌊d4

25
⌋
}

. Hence t > 0. Let x =

(00 . . . 0 44 . . .4
︸ ︷︷ ︸

t

). Let C be a code over Z8. Let c = (c1, c2, . . . , cn) ∈ C such that

ci = 0 or 4. Hence c

4
∈ C(4). So wt(C(4)) ≥ d4 as the minimum Hamming distance

of C(4) is d4. Thus wt(
c

4
) ≥ d4 ≥ t. Let c = (00 . . . 0 44 . . . 4

︸ ︷︷ ︸

≥d4

). Hence

dE(c,x) = 16(d4 − t) ≥ 9t,
dHW (c,x) = 4(d4 − t) ≥ 2t.

Similarly for c ∈ C such that c

2
∈ C(3) we get

dE(c,x) ≥ 4d3 − 16t ≥ 9t,
dHW (c,x) ≥ 2d3 − 4t ≥ 2t.

For c ∈ C such that c (mod 4) ∈ C(2) we have

dE(c,x) ≥ d2 − 9t ≥ 9t,
dHW (c,x) = 2d2 ≥ 2t.

Finally for c ∈ C such that c (mod 2) ∈ C(1) we have

dE(c,x) = d1 + 8t ≥ 9t,
dHW (c,x) = 2d1 ≥ 2t.

Hence the result follows. �

4 Octonary Repetition Codes

A q-ary repetition code C over a finite field Fq = {α0 = 0, α1 = 1, α2, α3, . . . , αq−2}
is an [n,1,n]-code C = {α | α ∈ Fq}, where α = {α, α, . . . , α}. The covering radius

of C is ⌈n(q−1)
q

⌉ [20]. In [26], several classes of repetition codes over Z4 have been
studied and their covering radius has been obtained. Now we generalize those results
for codes over Z8. Consider the repetition codes over Z8. One can define seven
basic repetition codes Cαi

, (1 ≤ i ≤ n) of length n over Z8 generated by Gα1
=

[11 . . . 1
︸ ︷︷ ︸

n

], Gα2
= [22 . . . 2

︸ ︷︷ ︸

n

], Gα3
= [33 . . . 3

︸ ︷︷ ︸

n

], Gα4
= [44 . . . 4

︸ ︷︷ ︸

n

], Gα5
= [55 . . . 5

︸ ︷︷ ︸

n

], Gα6
=

[66 . . . 6
︸ ︷︷ ︸

n

], Gα7
= [77 . . . 7

︸ ︷︷ ︸

n

]. So the repetition codes are Cα1
= Cα3

= Cα5
= Cα7

=

{(00 . . . , 0), (11 . . . 1), (22 . . .2), (33 . . . 3), (44 . . . 4), (55 . . .5),
(66 . . . 6), (77 . . .7)}, Cα2

= Cα6
= {(00 . . . 0), (22 . . .2), (44 . . . 4), (66 . . .6)} and Cα4

=

{(00 . . . 0), (44 . . . 4)}. The following theorems determine the covering radius of Cαi

for 1 ≤ i ≤ 7.

Theorem 3 rE(Cα1
) = rE(Cα3

) = rE(Cα5
) = rE(Cα7

) = 11n
2

and rHW (Cα1
)

= rHW (Cα3
) = rHW (Cα5

) = rHW (Cα7
) = 2n.
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Proof. We know that rE(Cαi
) = max

x∈Z
n

8

{dE(x, Cαi
)}. Let x ∈ Z

n
8 . If x has

composition
(ω0, ω1, ω2, ω3, ω4, ω5, ω6, ω7) where

∑7
i=0 ωi = n, then

dE(x, 0̄) = n− ω0 + 3ω2 + 8ω3 + 15ω4 + 8ω5 + 3ω6,

dE(x, 1̄) = n− ω1 + 3ω3 + 8ω4 + 15ω5 + 8ω6 + 3ω7,

dE(x, 2̄) = n− ω2 + 3ω0 + 3ω4 + 8ω5 + 15ω6 + 8ω7,

dE(x, 3̄) = n− ω3 + 8ω0 + 3ω1 + 3ω5 + 8ω6 + 15ω7,

dE(x, 4̄) = n− ω4 + 15ω0 + 8ω1 + 3ω2 + 3ω6 + 8ω7,

dE(x, 5̄) = n− ω5 + 8ω0 + 15ω1 + 8ω2 + 3ω3 + 3ω7,

dE(x, 6̄) = n− ω6 + 3ω0 + 8ω1 + 15ω2 + 8ω3 + 3ω4,

dE(x, 7̄) = n− ω7 + 3ω1 + 8ω2 + 15ω3 + 8ω4 + 3ω5.
Hence,

dE(x, Cα1
) ≤ 8n+36(ω0+ω1+ω2+ω3+ω4+ω5+ω6+ω7)

8
= 11n

2
.

Thus rE(Cα1
) ≤ 11n

2
.

Let x = 00 . . . 0
︸ ︷︷ ︸

t

11 . . . 1
︸ ︷︷ ︸

t

22 . . . 2
︸ ︷︷ ︸

t

33 . . . 3
︸ ︷︷ ︸

t

44 . . . 4
︸ ︷︷ ︸

t

55 . . . 5
︸ ︷︷ ︸

t

66 . . . 6
︸ ︷︷ ︸

t

77 . . . 7
︸ ︷︷ ︸

n−7t

∈ Z
n
8 , where

t = ⌊n
8
⌋. Then dE(x, 0̄) = n + 36t, dE(x, 1̄) = 4n + 12t, dE(x, 2̄) = 9n − 28t,

dE(x, 3̄) = 16n− 84t, dE(x, 4̄) = 9n− 28t, dE(x, 5̄) = 4n + 12t, dE(x, 6̄) = n + 36t,
dE(x, 7̄) = 44t. Thus

rE(Cα1
) ≥ 44n+36t+12t−28t−84t−28t+12t+36t+44t

8
= 11n

2
.

Thus rE(Cα1
) = rE(Cα3

) = rE(Cα5
) = rE(Cα7

) = 11n
2
. The gray map φ(Cα1

) will be a

binary repetition code of length 4n. Thus rHW (Cα1
) = ⌈4n(2−1)

2
⌉ = 2n = rHW (Cα3

) =
rHW (Cα5

) = rHW (Cα7
). �

Theorem 4 rE(Cα2
) = rE(Cα6

) = 6n and rHW (Cα2
) = rHW (Cα6

) = 2n.

Proof. The proof is similar to the proof of Theorem 3, hence omitted.

Theorem 5 rE(Cα4
) = 8n and rHW (Cα4

) = 2n.

Proof. The proof is similar to the proof of Theorem 3, hence omitted.
In order to determine the covering radius of Simplex code Sα

k over Z8, we have to
define a block repetition code over Z8 and find its covering radius. Thus the covering
radius of the block repetition code BRepm1+m2+...+m7 with parameters

n = m1 +m2 + . . .+m7,

M = 8,
dHW = min{2m1 + 2m2 + 2m3 + 4m4 + 2m5 + 2m6 + 2m7,

2m1 + 4m2 + 2m3 + 2m5 + 4m6 + 2m7,

4m1 + 4m3 + 4m5 + 4m7},
dE = min{m1 + 4m2 + 9m3 + 16m4 + 9m5 + 4m6 +m7,

4m1 + 16m2 + 4m3 + 4m5 + 16m6 + 4m7,

9m1 + 4m2 +m3 + 16m4 +m5 + 4m6 + 9m7,

16m1 + 16m3 + 16m5 + 16m7}.
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and generator matrix G = [11 . . . 1
︸ ︷︷ ︸

m1

22 . . . 2
︸ ︷︷ ︸

m2

33 . . . 3
︸ ︷︷ ︸

m3

44 . . . 4
︸ ︷︷ ︸

m4

55 . . . 5
︸ ︷︷ ︸

m5

66 . . . 6
︸ ︷︷ ︸

m6

77 . . . 7
︸ ︷︷ ︸

m7

]

is given in the following theorems.

Theorem 6 rE(BRepm1+m2+...+m7) = 11
2
(m1 +m3 +m5 +m7) + 6(m2 +m6) + 8m4.

Proof. By proposition 13 and Theorem 3, 4, 5 we have rE(BRepm1+m2+...+m7) ≥
11
2
(m1 +m3 +m5 +m7) + 6(m2 +m6) + 8m4.
On the other hand, let x = (x1 | x2 | x3 | x4 | x5 | x6 | x7) ∈ Z

m1+m2+...+m7

8 with
x1,x2,x3,x4,x5,x6,x7 have compositions (p0, p1, . . . , p7), (q0, q1, . . . , q7), (r0, r1, . . . ,
r7), (s0, s1, . . . , s7), (t0, t1, . . . , t7), (u0, u1, . . . , u7), (w0, w1, . . . , w7) such that p0+p1+
. . .+p7 = m1, q0+ q1+ . . .+ q7 = m2, r0+ r1+ . . .+ r7 = m3, s0+ s1+ . . .+ s7 = m4,
t0 + t1 + . . .+ t7 = m5, u0 + u1 + . . .+ u7 = m6, w0 + w1 + . . .+ w7 = m7.

dE(x, 0̄) = m1 +m2 +m3 +m4 +m5 +m6 +m7 − p0 + 3p2 + 8p3 + 15p4 + 8p5 +
3p6 − q0 + 3q2 + 8q3 + 15q4 + 8q5 + 3q6 − r0 + 3r2 + 8r3 + 15r4 + 8r5 + 3r6 − s0 +
3s2 + 8s3 + 15s4 + 8s5 + 3s6 − t0 + 3t2 + 8t3 + 15t4 + 8t5 + 3t6 − u0 + 3u2 + 8u3 +
15u4 + 8u5 + 3u6 − w0 + 3w2 + 8w3 + 15w4 + 8w5 + 3w6, where 0̄ is the first vector
of BRepm1+m2+...+m7 .

dE(x, c1) = m1+m2+m3+m4+m5+m6+m7−p1+3p3+8p4+15p5+8p6+3p7−q2+
3q0+3q4+8q5+15q6+8q7−r3+8r0+3r1+3r5+8r6+15r7−s4+15s0+8s1+3s2+3s6+
8s7−t5+8t0+15t1+8t2+3t3+3t7−u6+3u0+8u1+15u2+8u3+3u4−w7+3w1+8w2+
15w3 + 8w4 + 3w5, where c1 = (11 . . . 1

︸ ︷︷ ︸

m1

22 . . . 2
︸ ︷︷ ︸

m2

33 . . . 3
︸ ︷︷ ︸

m3

44 . . . 4
︸ ︷︷ ︸

m4

55 . . . 5
︸ ︷︷ ︸

m5

66 . . . 6
︸ ︷︷ ︸

m6

77 . . . 7
︸ ︷︷ ︸

m7

)

is the second vector of BRepm1+m2+...+m7 .
dE(x, c2) = m1+m2+m3+m4+m5+m6+m7−p2+3p0+3p4+8p5+15p6+8p7−q4+

15q0+8q1+3q2+3q6+8q7−r6+3r0+8r1+15r2+8r3+3r4−s0+3s2+8s3+15s4+8s5+
3s6−t2+3t0+3t4+8t5+15t6+8t7−u4+15u0+8u1+3u2+3u6+8u7−w6+3w0+8w1+
15w2 + 8w3 + 3w4, where c2 = (22 . . . 2

︸ ︷︷ ︸

m1

44 . . . 4
︸ ︷︷ ︸

m2

66 . . . 6
︸ ︷︷ ︸

m3

00 . . . 0
︸ ︷︷ ︸

m4

22 . . . 2
︸ ︷︷ ︸

m5

44 . . . 4
︸ ︷︷ ︸

m6

66 . . . 6
︸ ︷︷ ︸

m7

)

is the third vector of BRepm1+m2+...+m7 .
dE(x, c3) = m1+m2+m3+m4+m5+m6+m7−p3+8p0+3p1+3p5+8p6+15p7−q6+

3q0+8q1+15q2+8q3+3q4−r1+3r3+8r4+15r5+8r6+3r7−s4+15s0+8s1+3s2+3s6+
8s7−t7+3t1+8t2+15t3+8t4+3t5−u2+3u0+3u4+8u5+15u6+8u7−w5+8w0+15w1+
8w2+3w3+3w7, where c3 = (33 . . . 3

︸ ︷︷ ︸

m1

66 . . . 6
︸ ︷︷ ︸

m2

11 . . . 1
︸ ︷︷ ︸

m3

44 . . . 4
︸ ︷︷ ︸

m4

77 . . . 7
︸ ︷︷ ︸

m5

22 . . . 2
︸ ︷︷ ︸

m6

55 . . . 5
︸ ︷︷ ︸

m7

) is

the fourth vector of BRepm1+m2+...+m7 .
dE(x, c4) = m1+m2+m3+m4+m5+m6+m7−p4+15p0+8p1+3p2+3p6+8p7−q0+

3q2+8q3+15q4+8q5+3q6−r4+15r0+8r1+3r2+3r6+8r7−s0+3s2+8s3+15s4+8s5+
3s6−t4+15t0+8t1+3t2+3t6+8t7−u0+3u2+8u3+15u4+8u5+3u6−w4+15w0+8w1+
3w2+3w6+8w7, where c4 = (44 . . . 4

︸ ︷︷ ︸

m1

00 . . . 0
︸ ︷︷ ︸

m2

44 . . . 4
︸ ︷︷ ︸

m3

00 . . . 0
︸ ︷︷ ︸

m4

44 . . . 4
︸ ︷︷ ︸

m5

00 . . . 0
︸ ︷︷ ︸

m6

44 . . . 4
︸ ︷︷ ︸

m7

) is

the fifth vector of BRepm1+m2+...+m7 .
dE(x, c5) = m1+m2+m3+m4+m5+m6+m7−p5+8p0+15p1+8p2+3p3+3p7−q2+

3q0+3q4+8q5+15q6+8q7−r7+3r1+8r2+15r3+8r4+3r5−s4+15s0+8s1+3s2+3s6+
8s7−t1+3t3+8t4+15t5+8t6+3t7−u6+3u0+8u1+15u2+8u3+3u4−w3+8w0+3w1+
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3w5 + 8w6 + 15w7, where c5 = (55 . . . 5
︸ ︷︷ ︸

m1

22 . . . 2
︸ ︷︷ ︸

m2

77 . . . 7
︸ ︷︷ ︸

m3

44 . . . 4
︸ ︷︷ ︸

m4

11 . . . 1
︸ ︷︷ ︸

m5

66 . . . 6
︸ ︷︷ ︸

m6

33 . . . 3
︸ ︷︷ ︸

m7

)

is the sixth vector of BRepm1+m2+...+m7 .
dE(x, c6) = m1+m2+m3+m4+m5+m6+m7−p6+3p0+8p1+15p2+8p3+3p4−q4+

15q0+8q1+3q2+3q6+8q7−r2+3r0+3r4+8r5+15r6+8r7−s0+3s2+8s3+15s4+8s5+
3s6−t6+3t0+8t1+15t2+8t3+3t4−u4+15u0+8u1+3u2+3u6+8u7−w2+3w0+3w4+
8w5 + 15w6 + 8w7, where c6 = (66 . . . 6

︸ ︷︷ ︸

m1

44 . . . 4
︸ ︷︷ ︸

m2

22 . . . 2
︸ ︷︷ ︸

m3

00 . . . 0
︸ ︷︷ ︸

m4

66 . . . 6
︸ ︷︷ ︸

m5

44 . . . 4
︸ ︷︷ ︸

m6

22 . . . 2
︸ ︷︷ ︸

m7

)

is the seventh vector of BRepm1+m2+...+m7 .
dE(x, c7) = m1+m2+m3+m4+m5+m6+m7−p7+3p1+8p2+15p3+8p4+3p5−q6+

3q0+8q1+15q2+8q3+3q4−r5+8r0+15r1+8r2+3r3+3r7−s4+15s0+8s1+3s2+3s6+
8s7−t3+8t0+3t1+3t5+8t6+15t7−u2+3u0+3u4+8u5+15u6+8u7−w1+3w3+8w4+
15w5 + 8w6 + 3w7, where c7 = (77 . . . 7

︸ ︷︷ ︸

m1

66 . . . 6
︸ ︷︷ ︸

m2

55 . . . 5
︸ ︷︷ ︸

m3

44 . . . 4
︸ ︷︷ ︸

m4

33 . . . 3
︸ ︷︷ ︸

m5

22 . . . 2
︸ ︷︷ ︸

m6

11 . . . 1
︸ ︷︷ ︸

m7

)

is the eighth vector of BRepm1+m2+...+m7 . Thus

d(x, BRepm1+m2+...+m7) ≤ 11
2
(m1 +m3 +m5 +m7) + 6(m2 +m6) + 8m4.

Hence the equality.

Theorem 7 min{2m1 +2m2 + 2m3 +2m4 +2m5 + 2m6 +2m7, 2m2 + 2m3 +2m4 +
4m5 +2m6 + 2m7, 2m1 + 2m2 + 2m4 +2m5 +2m6 + 4m7, 4m1 + 2m2 + 2m3 +2m4 +
2m6 + 2m7, 2m1 + 2m2 + 4m3 + 2m4 + 2m5 + 2m6} ≤ rHW (BRepm1+m2+...+m7) ≤
11(m1 +m3 +m5 +m7) + 12(m2 +m6) + 16m4.

Proof. By choosing x = (11 . . . . . . . . . 1
︸ ︷︷ ︸

m1+m2+...+m7

) ∈ Z
m1+m2+...+m7 and computing the

homogenous distance from each codeword we get dHW (x, BRepm1+m2+...+m7) =
min{2m1 + 2m2 + 2m3 +2m4 + 2m5 + 2m6 + 2m7, 2m2 + 2m3 + 2m4 + 4m5 + 2m6 +
2m7, 2m1+2m2+2m4+2m5+2m6+4m7, 4m1+2m2+2m3+2m4+2m6+2m7, 2m1+
2m2 + 4m3 + 2m4 + 2m5 + 2m6}. Hence the first inequality follows. The second in-
equality follows from Proposition 10 and Theorem 6. �

5 Octonary Simplex Codes of Type α and β

Simplex codes of type α and β have been studied in [25]. The linear code Sα
k is a

type α simplex code over Z8 with parameters (n = 8k,M = 8k, dHW = 23(k+1)−2)
generated by

Gα
k =

[
00 · · ·0 11 · · ·1 22 · · ·2 33 · · ·3 44 · · ·4 55 · · ·5 66 · · ·6 77 · · ·7
Gα

k−1 Gα
k−1 Gα

k−1 Gα
k−1 Gα

k−1 Gα
k−1 Gα

k−1 Gα
k−1

]

(5)
with Gα

1 = [01234567]. The number of vectors in Sα
k is 23k. The dual code of Sα

k is
denoted by Sα

k
⊥.
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The linear code Sβ
k is a type β simplex code over Z8 with parameters (n =

22(k−1)(2k − 1),M = 8k, dHW = 22k−1(2k − 1)) generated by

G
β
2 =

[
11111111 0 2 4 6
01234567 1 1 1 1

]

and for k > 2

G
β
k =

[
11 · · ·1 00 · · ·0 22 · · ·2 44 · · ·4 66 · · ·6

Gα
k−1 G

β
k−1 G

β
k−1 G

β
k−1 G

β
k−1

]

,

where Gα
k−1 is the generator matrix of Sα

k−1. The dual code of S
β
k is denoted by S

β
k

⊥
.

Theorem 8 rHW (Sα
k ) ≥ 23k+1 and rE(S

α
k ) ≤ 6(8k − 1) + 2.

Proof. The proof can be obtained using the Proposition 13, Theorem 6, equation
(5) and is similar to the Z4 case [26]. Hence it is omitted.

�

Theorem 9 rE(S
β
k ) ≤

3
2
(8k − 1)− 5

3
(4k − 1)− 39

2
+ rE(S

β
2 ) and rHW (Sβ

k ) ≤ 3(8k −

1)− 10
3
(4k − 1)− 139 + rHW (Sβ

2 ).

Proof. The first inequality is proved using Theorem 6 and is similar to the Z4

case [26]. The case of homogeneous weight is similar. �

Theorem 10 rE(S
α
k
⊥) ≤ 3, rHW (Sα

k
⊥) = 1 and rHW (Sβ

k

⊥
) = 2.

Proof. By Lemmaa 4.2 and Theorem 4.3 of [25], rE(S
α
k
⊥) ≤ 3. By Theorem

4.3(3) of [25], rHW (Sα
k
⊥) ≤ 1. Sience rHW (Sα

k
⊥) ≥ 1, so rHW (Sα

k
⊥) = 1. By

Theorem 4.4 of [25] and by Theorem 1, rHW (Sβ
k

⊥
) ≤ 2 and as rHW (Sβ

k

⊥
) ≥ 1 thus

rHW (Sβ
k

⊥
) = 1 or 2 but rHW (Sβ

k

⊥
) �= 1 by Proposition 12. Hence the result follows.

�

Theorem 11 Sα
k and S

β
k are self orthogonal codes over Z8.

Proof. The proof follows from Proposition 3.

6 Octonary MacDonald Codes of Type α and β

The q-ary MacDonald code Mk,u(q) over the finite field Fq is a unique [ q
k−qu

q−1
, k,

qk−1 − qu−1] code in which every nonzero codeword has weight either qk−1 or qk−1 −
qu−1 [15]. In [12], authors have defined the MacDonald codes over Z4 using the
generator matrices of simplex codes. In a similar manner one can define MacDonald
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code over Z2s . For 1 ≤ u ≤ k − 1, let Gα
k,u

(

G
β
k,u

)

be the matrix obtained from

Gα
k

(

G
β
k

)

by deleting columns corresponding to the columns of Gα
u

(
Gβ

u

)
. i.e,

Gα
k,u =

[

Gα
k \ 0

Gα
u

]

,

and
G

β
k,u =

[

G
β
k \ 0

G
β
u

]

,

where [A\ 0

B
] is the matrix obtained by deleting the matrix 0 and B from A where

B is a (k−u)× 2su matrix in (6)
(
resp. (k − u)× 2(s−1)(u−1)(2u − 1)

)
matrix in (6).

The code

M
α
k,u : [2sk − 2su, sk]

(

M
β
k,u : [2(s−1)(u−1)(2k − 1)− 2(s−1)(u−1)(2u − 1), sk]

)

generated by the matrix Gα
k,u

(

G
β
k,u

)

is the punctured code of Sα
k

(

S
β
k

)

and is called

a MacDonald code of type α (β).
The next theorem provides basic bounds on the covering radii of MacDonald

codes over Z8.

Theorem 12

rE(M
α
k,u) ≤ 6(8k − 8r) + rE(M

α
r,u) for u < r ≤ k.

Proof. Similar to Z4 case [26]. �

7 Octonary Reed-Muller Code

In this section, we give covering radius of octonary first order Reed Muller code [25].
Let 1 ≤ i ≤ m− 2. Let vi be a vector of length 2m−2 consisting of successive blocks
of 0’s and 1’s each of size 2(m−2)−i and let 1 = (111 . . . 11) ∈ Z

2m−2

2 . Let G be a
(m−1)×2m−2 matrix given by (consisting of the rows as 1 and 4vi (1 ≤ i ≤ m−2))

G =

⎡

⎢
⎢
⎢
⎣

0 0 · · · 0 0 4 4 · · · 4 4
...

...
. . .

...
...

...
...

. . .
...

...
0 4 · · · 0 4 0 4 · · · 0 4
1 1 · · · 1 1 1 1 · · · 1 1

⎤

⎥
⎥
⎥
⎦
.

The code generated by G is called the first order Reed-Muller code over Z8, denoted
R

1,m−2. It is a (n = 2m−2,M = 2m+1, dHW = 2m−1) type α linear code over Z8 [25].
The following proposition gives the covering radius of the first order binary Reed-
Muller code for even m [30].

Proposition 14 The covering radius of the binary first order Reed-Muller code
RM(1, m) for even m is given by

r(RM(1, m)) = 2m−1 − 2
m
2
−1.

From Propositions 11 and 14 we obtain the following result.

Theorem 13 rHW (R1,m−2) = 2m−1 − 2
m
2
−1for even m.
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8 Octonary Octa Codes

The octa code over Z8 is generated by the following matrix.

G =

⎡

⎢
⎢
⎣

5 7 5 6 1 0 0 0
5 0 7 5 6 1 0 0
5 0 0 7 5 6 1 0
5 0 0 0 7 5 6 1

⎤

⎥
⎥
⎦
.

From Proposition 12 we get the following result.

Theorem 14 If C is the code generated by G then rHW (C) ≥ 6.

9 Conclusion

In this work, we have introduced new torsion and reduction codes for any linear
octonary code and obtained a nice relationship between various reduction and torsion
codes. Further, we have extended some of the results regarding covering radius of [26]
to the octonary case. In particular, we have found exact values and the bounds of
the covering radius of Repetition codes, Simplex codes of Type α and Type β and
their duals, MacDonald codes, and first order Reed-Muller codes, Octacode over Z8.
New reduction and torsion codes can be used to classify octonary linear codes.
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Chinese Remainder Theorem, Hokkaido Math. J. 28 (1999), 253–283.

[18] S.T. Dougherty, M. Harada and P. Solé, Shadow codes over Z4, Finite Fields
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