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Abstract: In this paper, we present a new univariate flexible generator of distributions, namely, the
odd Perks-G class. Some special models in this class are introduced. The quantile function (QFUN),
ordinary and incomplete moments (MOMs), generating function (GFUN), moments of residual and
reversed residual lifetimes (RLT), and four different types of entropy are all structural aspects of
the proposed family that hold for any baseline model. Maximum likelihood (ML) and maximum
product spacing (MPS) estimates of the model parameters are given. Bayesian estimates of the model
parameters are obtained. We also present a novel log-location-scale regression model based on the
odd Perks–Weibull distribution. Due to the significance of the odd Perks-G family and the survival
discretization method, both are used to introduce the discrete odd Perks-G family, a novel discrete
distribution class. Real-world data sets are used to emphasize the importance and applicability of the
proposed models.

Keywords: Perks class; entropy; regression model; Bayesian estimation; discretization method;
COVID-19 data

1. Introduction

Over the past two decades, a number of generalized classes of statistical models have
been developed and explored for the modeling of data in a variety of applications, including
in the medical sciences, engineering, environmental and biological studies, life-testing chal-
lenges, demographics, actuarial science, and economics. As a result, a number of researchers
have presented novel distribution classes that broaden well-known statistical models while
also providing a high degree of adaptability for the analysis of data. As a result, various
classes have been proposed in the statistical literature for generating new distributions by
adding one or more factors. A few famous examples are as follows: the exponentiated
Weibull family presented by Mudholkar et al. [1]; the novel approach offered by Marshall
Olkin [2], involving the embedding of a parameter into a class of statistical models; the expo-
nentiated T-X family of distributions reported by Alzaghal et al. [3]; Type II half Logistic-G
by Hassan et al. [4]; the Weibull-G family by Bourguignon et al. [5]; the beta-generated
familyby Eugene et al. [6]; the gamma-generated family by Zografos et al. [7]; the addi-
tive Weibull-G family by Hassan et al. [8]; the odd Lindley-G family by Silva et al. [9];
odd inverse power generalized Weibull-G by Al-Moisheer et al. [10]; Marshall-Olkin odd
Burr III-G by Afify et al. [11]; Topp–Leone odd Fréchet-G by Al-Marzouki et al. [12]; the
transmuted odd Fréchet-G family of distributions by Badr et al. [13]; odd generalized
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N-H-G by Ahmad et al. [14]; generalized odd Burr III-G by Haq et al. [15] and the odd
Fréchet-G family by [16], among others. The Weibull-power Cauchy distribution, presented
by Tahir et al. [17], is also worthy of mention.Cordeiro et al. [18] created a new family of
generalized distributions. Different authors introduced new distribution to fit COVID-19
data as [19–21].

Perks [22] has presented a four-parameter extension of the Gompertz–Makeham
distribution with the following hazard rate function:

h(x) =
R + S e µx

1 + M e−µx + Ne µx .

When M = N = 0, the Gompertz–Makeham hazard rate function is obtained. The
parameters appear to have been designed by Perks to be non-negative, and Marshall and
Olkin [23] have demonstrated that N = 0 cannot be used. However, by setting M = 0
and choosing N −→ 0 as the limit, the Gompertz–Makeham distribution can be obtained.
Richards [24] has recently introduced a modified version of the Perks distribution, which
takes the hazard function of the Perks distribution into account:

h(x) =
λµe µx

1 + λe µx .

The Perks distribution has several applications in the field of actuarial science. Haber-
man et al. [25] and Richards [24] have shown that this distribution is a good fit for pensioner
mortality data. The parametric mortality projection is well-described by the Perks distri-
bution, according to Haberman et al. [25]. The cumulative distribution function (cdf) and
probability density function (pdf) of the Perks distribution are given as follows:

ψ(t; θ, β) = 1− 1 + β

1 + βeθx , β > 0, θ > 0, x > 0 (1)

and
π(t; θ, β) = βθeθx 1 + β(

1 + βeθx
)2 . (2)

The authors in [26] defined a new idea for the generation of larger families, making
use of any pdf as a generator. The above generator is a member of the T − X distribution
family, and its cdf is specified by

F(x) =
∫ Φ[G(x,δ)]

0
c (t)dt, (3)

where c(t) is the pdf of a random variable (RV) T ∈ [a, b] for −∞ < a < b < ∞, G(x, δ) is
the cdf of a random variable X, and Φ[G(x, δ)] is a function of G (x, δ), which satisfies the
following conditions:

(i) Φ[G (x, δ)] ∈ [a, b];
(ii) Φ[G (x, δ)] is differentiable and monotonically non-decreasing;
(iii) Φ[G (x, δ)] −→ a as x −→ −∞ and Φ[G (x, δ)] −→ b as x −→ ∞.

The relevant pdf can be obtained as follows:

f (x, β, θ, δ) =

{
d

dx
Φ [G (x, δ)]

}
c{Φ [G (x, δ)]}. (4)

Inspired by the T-X concept, we develop a new, broader, and more flexible class of
distributions, called the odd Perks-G (OP) class, by combining Φ[G(x, δ)] = G(x;δ)

1−G(x;δ) and

replacing c (t) by βθeθt 1+β

(1+βeθt)
2 , where t > 0, θ > 0; λ ≥ 0; G(x; δ) is the baseline cdf,
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which depends on a parameter vector δ; and G(x; δ) = 1− G(x; δ) is the baseline reliability
function. For each baseline G(x; δ), the OP cdf is provided as follows:

F(x; β, θ, δ) = βθ(1 + β)
∫ G(x;δ)

G(x;δ)

0

eθt(
1 + βeθt

)2 dt

= 1− (1 + β)

1 + βe
θ( G(x;δ)

G(x;δ)
)
.

(5)

The associated pdf may be obtained as follows:

f (x; β, θ, δ) =
βθ(1 + β)g(x; δ)e

θ( G(x;δ)
G(x;δ)

)

G(x; δ)2
[

1 + βe
θ( G(x;δ)

G(x;δ)
)
]2 , (6)

where g(x; δ) is the baseline pdf of a baseline model. X v OP − G (β, θ, δ) is used to
represent an RV X with density function (6). The survival function (SF) of the OP-G
family is:

F(x; β, θ, δ) =
(1 + β)

1 + βe
θ( G(x;δ)

G(x;δ)
)
, (7)

and the hazard rate function (HRF) is defined as

τ(x; β, θ, δ) =
βθ(1 + β)g(x; δ)e

θ( G(x;δ)
G(x;δ)

)

G(x; δ)2
[

1 + βe
θ( G(x;δ)

G(x;δ)
)
] . (8)

The OP-G family can be explained in the following way. Assume Y is a stochastic
system’s RV lifetime with a specified continuous G model, where G(x;δ)

G(x;δ)
is the odds ratio

that an individual (or item) may not be active (failure or death) at time x following a lifetime
Y. If the diversity of this chance of failure is denoted by the RV X and, as such, by the
extended exponential model with parameters β and θ, then the cdf of X is as follows:

P(Y ≤ x) = P(X ≤ G(x; δ)

G(x; δ)
) = F(x; β, θ, δ).

The primary motives for employing the OP-G family in practice are:

(i) To realize special models for all sorts of HRFs;
(ii) Under the same baseline distribution, to regularly provide better fits than alternative

produced models;
(iii) Compared to the baseline model, to increase the adjustability of the kurtosis;
(iv) To construct symmetric, left- and right-skewed, and inverted J-shaped distributions.

The association between survival time and numerous factors, such as sex, weight,
blood pressure, and many more, has recently sparked significant attention in the relevant lit-
erature. Different parametric regression models, including the log-location-scale regression
model, have been employed in a number of applications to quantify the effects of co-variate
variables on survival time. As it has been extensively utilized in clinical trials and many
other domains of application, the log-location-scale regression model stands out. In many
real-world applications involving lifetime data, determining the link between survival time
and independent (explanatory) variables is critical. In this context, the regression model
method can be applied. The linear log-location-scale regression odd Perks-X model can be
stated as follows:

yi = BT X + σ zi,
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where zi; i = 1, . . . , n is the random error, with density function f ( y−BT X
σ ); B = (B1, B2, . . . , Bk)

is a vector of unknown parameters of the explanatory variables; σ > 0 is the scale parame-
ter of the regression model; and X = (Xi1, Xi2, . . . , Xik) is the explanatory variable vector,
where k is the number of explanatory variables. For more information about linear location-
scale regression models, see, for example, [27–32].

The remainder of this paper is divided into several sections, structured as follows. In
Section 2, a useful expansion of OP-G is derived and some special models are obtained
by means of the OP-G generator. Several mathematical statistical properties, MOMs,
probability-weighted moments (PRWMOMs), residual life (RL) and reversed residual life
(RRL) FUNs, and entropy (EN) are investigated in Section 3. In Section 4, non-Bayesian
estimates of the model’s parameters are obtained. In Section 5, Bayesian estimates of
the model’s parameters are obtained. In Section 6, bootstrap confidence intervals for
the model’s parameters are obtained. In Section 7, the log-odd Perks–Weibull regression
model is introduced. Simulation studies are described in Section 8. Section 9 details the
discretization of the OP-G family. In Section 10, real-world data sets are used to demonstrate
the adaptability of the proposed family. Finally, we present our conclusions.

2. Density of the OP-G Class: Useful Expansions

We propose a handy linear representation of the OP-G density function in this section.
We can write, using the generalised binomial expansion,[

1 + βe
θ( G(x;δ)

G(x;δ)
)
]−2

=
∞

∑
i=0

(−1)i(i + 1)βi e
i θ( G(x;δ)

G(x;δ)
)
. (9)

Applying (9) in (6), we obtain

f (x; β, θ, δ) =
θ(1 + β) g(x; δ)

G(x; δ)2

∞

∑
i=0

(−1)i(i + 1)βi+1e
θ(i+1)( G(x;δ)

G(x;δ)
)
. (10)

For the exponential function, we can use the power series

e
θ(i+1)( G(x;δ)

G(x;δ)
)
=

∞

∑
j =0

θ j(i + 1)j

j !
G(x; δ)

j

G(x; δ)
j .

When we substitute this expansion into Equation (11), we obtain the following:

f (x; β, θ, δ) = (1 + β)g(x; δ)
∞

∑
i,j =0

(−1)i(i + 1)βi+1θ j+1(i + 1)j

j !
G(x; δ)

j

G(x; δ)
j+2 . (11)

If | h |< 1 and f > 0 yield a true non-integer, then the following power series occurs:

(1− h)− f =
∞

∑
k=0

Γ( f + k)
k !Γ( f )

hk. (12)

Applying (12) in (11), for the term G(x; δ)i+2, the OP-G density function can be
expressed as an infinite mixture of expo-G density functions, as

f (x; β, θ, δ) =
∞

∑
j,k=0

vj,k h(j+k+1)(x), (13)

where hζ(x) = ζg(x)Gζ−1(x) is the expo-G pdf with power parameter ζ and

vj,k =
(1 + β)θ j+1

j !k !Γ(2 + j)(j + k + 1)

∞

∑
i =0

(−1)i(i + 1)βi+1(i + 1)j.
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The cdf of the OP-G class can also be expressed as a mixture of expo-G cdfs

F(x; β, θ, δ) =
∞

∑
j,k=0

vj,k H(j+k+1)(x),

where H(j+k+1)(x) is the cdf of the exp-G function with power parameter (j + k + 1). Thus,
several mathematical and statistical properties of the OP-G family can be determined
obviously from those of the expo-G family.

2.1. Special Models

In this section, we examine four different OP-G special models.

2.1.1. Odd Perks Uniform

Let the parent distribution be uniform in the range (0, α), α > 0, G(x; α) = x
α , and

g(x; α) = 1
α , 0 < x < α. The cdf and pdf of the odd Perks uniform (OPU) are respectively

given by

F(x; β, θ, α) = 1− (1 + β)

1 + βe
θ(

x
α

1− x
α
)

and

f (x; β, θ, α) =
βθ(1 + β)e

θ(
x
α

1− x
α
)

α(1− x
α )

2

[
1 + βe

θ(
x
α

1− x
α
)

]2 .

2.1.2. Odd Perks Exponential

The exponential cdf and pdf with parameter λ are G(x; λ) = 1− e−λx and g(x; λ) =
λe−λx. The cdf and pdf of the odd Perks exponential (OPE) are respectively given by

F(x; β, θ, λ) = 1− (1 + β)

1 + βeθ(eλx−1)

and

f (x; β, θ, λ) =
βθ(1 + β)λeθ(eλx−1)

e−λx
[
1 + βeθ(eλx−1)

]2 .

Figure 1 shows various pdf curves for OPE models with different parameter values.
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Figure 1. The pdf curves for OPE models with various parameter values.
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2.1.3. Odd Perks–Weibull

Let us consider the Weibull distribution with cdf and pdf values given by G(x; δ, λ) =

1− e−(
x
λ )

δ

and g(x; δ, λ) = δ
λδ xδ−1e−(

x
λ )

δ

, δ > 0, λ > 0. The odd Perks–Weibull (OPW) has
cdf and pdf given, respectively, by

F(x; β, θ, µ, γ) = 1− (1 + β)

1 + βeθ(e(
x
λ )

δ

−1)

and

f (x; β, θ, µ, γ) =
βθ(1 + β) δ

λδ xδ−1eθ(e(
x
λ )

δ

−1)

e−(
x
λ )

δ

[
1 + βeθ(e(

x
λ )

δ

−1)

]2 .

Figure 2 show various pdf curves for OPW models with different parameter values.
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Figure 2. The pdf curves for OPW models with various parameter values.

2.1.4. Odd Perks–Lomax

The Lomax cdf has the parameters a > 0 and b > 0, where G(x; a, b) = 1− (1 + x
b )
−a.

The odd Perks–Lomax (OPL) model has the cdf

F(x; β, θ, a, b) = 1− (1 + β)

1 + βeθ((1+ x
b )

a−1)
,

and the associated pdf is given by

f (x; β, θ, a, b) =
aβθ(1 + β)eθ((1+ x

b )
a−1)

b(1 + x
b )
−(a+1)

[
1 + βeθ((1+ x

b )
a−1)

]2 .

Figure 3 shows various pdf curves for OPL models with different parameter values.
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3. Statistical Features

The statistical features of the OP-G family are investigated in this section; specifically,
the QFUN, MOMs, incomplete MOMs, PRWMOMs, and RL and RRL FUNs.

3.1. Quantiles

The OP-G quantiles (e.g., x = Q(u)), may be derived by inverting (5), as shown below

F−1(u) = QG(u) = G−1


1
θ log

[
β+u

β(1−u)

]
1
θ log

[
β+u

β(1−u)

]
+ 1

, (14)

where QG(u) denotes the QFUN.

3.2. Moments

In this sub-section, the ordinary MOM and MOM GFUNs of the OP-G class are derived.
Most of the necessary characteristics and features of a distribution can be studied through
its MOMs.

Let Z(j+k+1) be an RV having the exp-G pdf h(j+k+1)(x) with power parameter (j +
k + 1). The rth moment of the OP-G family of distributions can be obtained from (13), as
follows

µ′r = E(X
r
) =

∫ ∞

−∞
xr f (x) dx =

∞

∑
j,k=0

vj,k E(Z
r

(j+k+1)). (15)

Another formula for the rth MOM follows from (2.5), as µ′r = E(Xr) = ∑∞
j,k=0 vj,k

E(Z
r

(j+k+1)).
Table 1 provides some numerical values of moments for the OPE model, including

µ′1, µ′2, µ′3, µ′4, variance (var), skewness (SK), kurtosis (KU), and the coefficient of variation
(CV).

Table 1. Some numerical values of moments with various parameters in the OPE model.

(β, θ, λ) µ′
1 µ′

2 µ′
3 µ′

4 Var SK KU CV

0.5, 0.5, 0.5 2.523 7.741 26.091 93.614 1.373 −0.23 2.312 0.464

0.8, 0.5, 0.5 2.344 6.863 22.392 78.425 1.369 −0.071 2.224 0.499

1.2, 0.5, 0.5 2.214 6.26 19.944 68.654 1.359 0.042 2.205 0.527

1.5, 0.5, 0.5 2.153 5.987 18.861 64.406 1.353 0.094 2.207 0.54

2.0, 0.5, 0.5 2.085 5.691 17.706 59.929 1.343 0.153 2.219 0.556

2.5, 0.5, 0.5 2.041 5.501 16.974 57.123 1.336 0.191 2.232 0.566

3.0, 0.5, 0.5 2.01 5.369 16.469 55.197 1.33 0.218 2.244 0.574

0.5, 0.8, 0.5 1.989 4.938 13.777 41.633 0.982 0.049 2.373 0.498

0.5, 1.2, 0.5 1.552 3.099 7.081 17.749 0.692 0.216 2.477 0.536

0.5, 1.5, 0.5 1.339 2.349 4.76 10.658 0.556 0.304 2.558 0.557

0.5, 2.0, 0.5 1.096 1.609 2.765 5.303 0.408 0.415 2.698 0.583

0.5, 2.5, 0.5 0.931 1.18 1.771 2.989 0.314 0.499 2.834 0.602

0.5, 3.0, 0.5 0.81 0.907 1.211 1.832 0.25 0.567 2.96 0.618

0.5, 0.5, 0.8 1.614 3.145 6.774 15.629 0.541 −0.12 2.405 0.456

0.5, 0.5, 1.2 1.076 1.398 2.007 3.087 0.24 −0.12 2.405 0.456
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For the MOM GFUN, we now introduce two formulas. According to Equation (13),
the first formula can be calculated by

MX(t) = E(etX) =
∞

∑
j,k=0

vj,k M(j+k+1))(t), (16)

where M(j+k+1))(t) is the MOM-GFUN of Z(j+k+1). As a result, the exp-G GFUN may read-
ily be used to determine MX(t). The second formula for MX(t) can be derived from (13) as

MX(t) =
∞

∑
j,k=0

vj,k M(j+k+1)(t),

where Mκ(t) is the mgf of the RV Zκ , given by

Mκ(t) =
∫ ∞

−∞
etX g(x)G(x)κ−1,κ > 0

= κ
∫ 1

0
uκ−1etQG(u)du.

For each real s > 0, the sth incomplete MOMs of X, defined by χs(t), can be written as

χs(t) =
∫ t

−∞
xs f (x)dx =

∞

∑
j,k=0

vj,k

∫ t

−∞
xs χs,(j+k+1)(t)dx, (17)

where

χs,b(t) =
∫ G(t)

0
ub−1QG(u)sdu,

which can be evaluated numerically.

The (s, r)th PRWMOMs of the OP-G class are provided by:

Υ(s,r) = E{XrF(x)r} =
∫ ∞

−∞
xsF(x)r f (x)dx, (18)

based on (5) and (6). Then, after some calculation, we obtain

f (x)F(x)r =
∞

∑
j,k=0

Φj,k h(j+k+1)(x),

where

Φj,k =
θ j+1βm+1Γ(j + k + 2))

j!k!m!Γ(j + 2)Γ(j + k + 1)

∞

∑
i,m =0

(−1)i+m(m + 1)j (1 + β)i+1Γ(i + m + 2)
Γ(i + 2)

.

As a result, (s, r)th PRWMOMs of the OP-G class can be expressed as

Υ(s,r) =
∞

∑
j,k=0

Φ(r)
j,k

∫ ∞

−∞
xsh(j+k+1)(x)dx.

Thus, the (s, r)th PRWMOMs of X may be generated by combining an unlimited
number of exp-G MOMs, provided as

Υ(s,r) =
∞

∑
j,k=0

Φ(r)
j,k E

(
Z

s

(j+k+1)

)
.
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3.3. Residual Lifetimes

The rth-order MOM of the RL is given as:

µr(t) = E((X− t)r | X > t) =
1

F(t)

∫ ∞

t
(x− t)r f (x)dx, r ≥ 1

=
1

F(t)

∞

∑
j,k=0

v∗j,k

∫ ∞

t
xrh(j+k+1)(x)dx,

(19)

where v∗j,k = vj,k ∑r
m=0 (

r
m)(−t)r−m. Such a procedure may be used to calculate the rth-

order MOM of the RRL.

mr(t) = E((t− X)r | X ≤ t) =
1

F(t)

∫ t

0
(t− x)r f (x)dx, r ≥ 1

=
1

F(t)

∞

∑
j,k=0

v∗j,k

∫ t

0
xrh(j+k+1)(x)dx.

(20)

3.4. Four Different Types of Entropy

The Rényi EN (REN) (see [33]) is characterized by (ρ > 0, ρ 6= 1)

IR(ρ) =
1

1− ρ
log
[∫ ∞

−∞
f ρ(x)dx

]
. (21)

Again using the binomial expansion (13) in (6), we obtain:

f ρ(x) =
∞

∑
j,k=0

Λj,k g(x, δ)ρ G(x, δ)j+k,

where

Λj,k =
∞

∑
i=0

(−1)i βρ+iθρ+j(1 + β)ρ(i + ρ)jΓ(2ρ + i)Γ(2ρ + j + k)
i !k!Γ(2ρ)Γ(2ρ + j)

.

As a result, the REN of the OP-G class is given by

IR(ρ) =
1

1− ρ
log

{
∞

∑
j,k=0

Λj,k

∫ ∞

−∞
g(x)ρ G(x)j+kdx

}
. (22)

The Tsallis EN (TEN) measure (see [34]) is defined as

TR(ρ) =
1

ρ− 1

1−
∞∫
−∞

( f (z))ρdz

, ρ 6= 1, ρ > 0.

The Havrda and Charvat EN (HCEN) measure (see [35]) is defined as

HaChR(ρ) =
1

21−ρ − 1


 ∞∫
−∞

( f (z))ρdz

 1
ρ

− 1

, ρ 6= 1, ρ > 0.

The Arimoto EN (AEN) measure (see [36]) of OP-G is defined as

ArR(ρ) =
ρ

1− ρ


 ∞∫
−∞

( f (z))ρdz

 1
ρ

− 1

, ρ 6= 1, ρ > 0.

Numerical values of the REN, TEN, HCEN, and AEN under various parameter values
in the OPE model are provided in Table 2.
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Table 2. Numerical values of the REN, TEN, HCEN, and AEN for the OPE model.

(β, θ, λ)
ρ = 0.5 ρ = 1.5 ρ = 2.5

REN TEN HCEN AEN REN TEN HCEN AEN REN TEN HCEN AEN

0.5, 0.5, 0.5 0.669 2.802 3.669 2.322 0.651 1.8 1.179 1.054 0.618 1.364 0.957 0.588

0.8, 0.5, 0.5 0.671 2.812 3.686 2.329 0.652 1.803 1.181 1.056 0.626 1.369 0.965 0.59

1.2, 0.5, 0.5 0.669 2.804 3.671 2.323 0.649 1.797 1.177 1.053 0.626 1.369 0.965 0.59

1.5, 0.5, 0.5 0.668 2.795 3.657 2.316 0.646 1.792 1.173 1.05 0.624 1.368 0.963 0.59

2.0, 0.5, 0.5 0.666 2.783 3.635 2.306 0.642 1.784 1.167 1.045 0.621 1.366 0.96 0.589

2.5, 0.5, 0.5 0.664 2.774 3.618 2.298 0.639 1.778 1.163 1.041 0.618 1.364 0.957 0.588

3.0, 0.5, 0.5 0.663 2.766 3.604 2.291 0.636 1.773 1.159 1.039 0.616 1.362 0.955 0.587

0.5, 0.8, 0.5 0.628 2.563 3.25 2.123 0.575 1.652 1.07 0.968 0.549 1.315 0.886 0.567

0.5, 1.2, 0.5 0.557 2.169 2.604 1.797 0.494 1.481 0.946 0.867 0.47 1.242 0.796 0.535

0.5, 1.5, 0.5 0.509 1.925 2.23 1.595 0.442 1.363 0.864 0.798 0.419 1.183 0.732 0.51

0.5, 2.0, 0.5 0.442 1.6 1.765 1.325 0.369 1.181 0.74 0.692 0.344 1.076 0.631 0.464

0.5, 2.5, 0.5 0.385 1.345 1.425 1.114 0.306 1.014 0.628 0.594 0.281 0.96 0.536 0.414

0.5, 3.0, 0.5 0.335 1.137 1.164 0.942 0.252 0.859 0.527 0.503 0.225 0.836 0.445 0.36

0.5, 0.5, 0.8 0.507 1.914 2.214 1.585 0.444 1.366 0.866 0.8 0.414 1.177 0.726 0.507

0.5, 0.5, 1.2 0.331 1.12 1.143 0.927 0.268 0.906 0.558 0.531 0.238 0.866 0.467 0.373

4. Non-Bayesian Estimation

In this section, we examine two different non-Bayesian estimation approaches for the
OP-G family parameters: The maximum likelihood and maximum product of spacings
methods.

4.1. Likelihood Method

Various parameter estimation strategies have been introduced in the literature, the
most prominent of which is the maximum likelihood (ML) method, which may be used
to create confidence ranges for model parameters, as well as in the testing of statistics.
Using complete samples, we can calculate the ML estimates (MLEs) of the parameters for
the proposed class. Let x1, ..., xn be a random sample of size n from the OP-G class with
parameters β, θ, and δ. The log-likelihood (LL) FUN is given as

Ln = n log(β) + n log(θ) + n log(1 + β) +
n

∑
i=1

log g(xi; δ) + θti − 2
n

∑
i=1

log G(xi; δ)− 2
n

∑
i=1

log(1 + βeθti ), (23)

where ti =
G(xi ;δ
G(xi ;δ)

. The components of the score vector U(Ω) = ∂Ln
∂Ω =

(
∂Ln
∂β , ∂Ln

∂θ , ∂Ln
∂δ

)T
are

given by

Uβ =
∂Ln

∂β
=

n
β
+

n
1 + β

− 2
n

∑
i=1

eθti

1 + βeθti
, (24)

Uθ =
∂Ln

∂θ
=

n
θ
+ ti − 2

n

∑
i=1

βti eθti

1 + βeθti
, (25)

and

Uδk =
∂Ln

∂δk
=

n

∑
i=1

g′(xi; δ)

g(xi; δ)
+ θ

n

∑
i=1

G ′(xi; δ)

G2
(xi; δ)

+ 2
n

∑
i=1

G ′(xi; ξ)

G(xi; δ)
− 2

n

∑
i=1

βeθti

1 + βeθti
∂ti∂δk, (26)

where g′(xi; δ) = ∂g(xi ;δ)
∂δ , G′(xi; δ) = ∂G(xi ;δ)

∂δk
, G′(xi; δ) = ∂G(xi ;δ)

∂δk
, and δk is the kth element

of the vector of parameters δ.



Symmetry 2022, 14, 883 11 of 29

4.2. Maximum Product of Spacings (MPS) Estimation

The authors in [37] developed the MPS methodology as an alternative to the MLE
method for estimating the parameters of continuous univariate distributions. They argued
that, by replacing the likelihood function with a product of spacings, the MPS approach
possesses most of the properties of ML. The authors in [38] also considered the MPS
technique as an independent approximation of the Kullback–Leibler information measure.

Let (X1 < X2 < · · · < Xn) be from the OP-G family with cdf (5) and parameters β, θ,
and δ. Then, the uniform spacings of this random sample are defined as

Gs(β, θ, δ|data) =

(
n+1

∏
i=1

Di(xi, β, θ, δ)

) 1
n+1

, (27)

where

Di(xi; β, θ, δ) =


F(x1; β, θ, δ) if i = 1,
F(xi; β, θ, δ)− F(xi−1; β, θ, δ) if i = 2, · · · , n,
1− F(xn; β, θ, δ) if i = n.

The MPSEs can be obtained by maximizing the product of spacings, as follows

Gs(β, θ, δ|data) =


1− (1 + β)

1 + βe
θ(

G(x1;δ)
G(x1;δ)

)

 (1 + β)

1 + βe
θ( G(xn ;δ)

G(xn ;δ)
)

n

∏
i=2

(1 + β)

1 + βe
θ(

G(xi−1;δ)
G(xi−1;δ)

)
− (1 + β)

1 + βe
θ(

G(xi ;δ)
G(xi ;δ)

)


1

n+1

. (28)

The MPSEs of β, θ, and δ are calculated by first solving the non-linear equations. The
logarithm of the product of spacings in Equation (28) is then differentiated with respect to
each parameter. Non-linear optimization algorithms (e.g., the Newton–Raphson method)
can be used to numerically solve these equations, as they are difficult to solve analytically.
An asymptotic variance–covariance matrix and normal approximation confidence intervals
are computed after the ACI.

5. Bayesian Estimation

In this section, we consider the Bayesian estimation of the parameters of the model ob-
tained when data are observed based on the squared error loss function (SELF), defined by

LSELF = (Ω, Ω̌) = (Ω̌−Ω)2,

where Ω̌ is an estimator of Ω. We denote the prior and posterior distributions of Ω by π(Ω)
and π∗(Ω | x), respectively. Under the SELF, the Bayesian estimate of any FUN B(Ω) of Ω
is given by

ṽSELF = E[B(Ω) | x] =
∫ ∞

0
B(Ω)π∗(Ω | x)dΩ. (29)

A prior distribution is important for the development of Bayes estimators.
Under the assumption of gamma prior distributions, we investigate this estimation

problem. Therefore, it is assumed that β, θ, and δ follow independent gamma distributions,
with β1 ∼ Γ(η1, ζ1), θ ∼ Γ(η2, ζ2), and δ ∼ Γ(η3, ζ3) if δ > 0 and if δ is an individual
parameter, with respective pdfs given by

π(β) ∝ βη1−1e−
β

ζ1 , β > 0, η1, ζ1 > 0

π(θ) ∝ θη2−1e−
θ

ζ2 , θ > 0, η2, ζ2 > 0 (30)

π(δ) ∝ δη3−1e−
δ

ζ3 , δ > 0, η3, ζ3 > 0
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Using the informative prior (30) and the likelihood FUN (6), the joint posterior density
may be calculated as follows:

π∗(β, θ, δ) ∝ βn+η1−1θn+η2−1(1 + β)nδη3−1e−
β

ζ1
− δ

ζ3

n

∏
i=1

g(xi; δ)e
−θ

[
1

ζ2
− G(xi ;δ)

G(xi ;δ)

]

G(xi; δ)2

[
1 + βe

θ
G(xi ;δ)
G(xi ;δ)

]2 . (31)

The marginal posterior densities of the parameters β, θ, and δ can be derived as

π∗(β) ∝ βn+η1−1(1 + β)ne−
β

ζ1

n

∏
i=1

1[
1 + βe

θ
G(xi ;δ)
G(xi ;δ)

]2 (32)

π∗(θ) ∝ θn+η2−1
n

∏
i=1

e
−θ

[
1

ζ2
− G(xi ;δ)

G(xi ;δ)

]
[

1 + βe
θ

G(xi ;δ)
G(xi ;δ)

]2 (33)

π∗(δ) ∝ δη3−1e−
δ

ζ3

n

∏
i=1

g(xi; δ)e
θ

G(xi ;δ)
G(xi ;δ)

G(xi; δ)2

[
1 + βe

θ
G(xi ;δ)
G(xi ;δ)

]2 . (34)

As the marginal posterior densities in (32), (33) and (34) are not well-known distribu-
tions, we utilize the Metropolis–Hastings sampler to produce values for β, θ, and δ, using
the normal proposed distribution in (32), (33) and (34).

Furthermore, the approach of Chen and Shao [39] has been widely used to create
highest posterior density (HPD) intervals for Bayesian estimates with uncertain benefit
distribution parameters. For example, using the two endpoints from MCMC sample
outputs, the 2.5% and 97.5% percentiles, a 95% HPD interval can be produced. The
Bayesian credible intervals for the parameters β, θ, and δ are calculated as follows:

1. Sort the parameters as β̃[1] < β̃[2] < ... < β̃[N], θ̃[1] < θ̃[2] < ... < θ̃[N], δ̃[1] < δ̃[2] <

... < δ̃[N], and R[1] < R[2] < ... < R[N], where N is the length of the generated MCMC.
2. The 95% symmetric credible intervals for β̃, θ̃, and δ̃ become

(
β̃L 25

1000 , β̃L 975
1000

)
,(

θ̃L 25
1000 , θ̃L 975

1000

)
, and

(
δ̃L 25

1000 , δ̃L 975
1000

)
.

6. Bootstrap CI

We propose bootstrap confidence intervals as an alternative to the asymptotic confi-
dence interval for the parameters of the model. For this objective, we created parametric
bootstrap samples and discovered two unique bootstrap confidence intervals. First, we
employed the Efron [40] percentile bootstrap method (boot-p). Use of the bootstrap-t tech-
nique was then proposed, based on the concept of Hall [41] (boot-t). For further information
on how these bootstrap confidence intervals work, see [42–44].

(i) Boot-p method

Step 1: Generate x∗1 , x∗2 , ...., x∗n separate bootstrap samples after computing the MLEs
for all parameters, with β̂, θ̂, and δ̂ as the actual parameters.

Step 2: Calculate the MLEs of all parameters according to the bootstrap samples,
denoted by β̂, θ̂, and δ̂.

Step 3: Repeat Step 2 B times, as needed, in order to obtain a set of bootstrap estimates
for β̂, θ̂, and δ̂.
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Step 4: Arrange (β̂1, θ̂1, δ̂1), (β̂2, θ̂2, δ̂2),...,(β̂B, θ̂B, δ̂B) in ascending order, as
(β̂[1], θ̂[1], δ̂[1]), (β̂[2], θ̂[2], δ̂[2]),...,(β̂[B], θ̂[B], δ̂[B]).

Step 5: Then, the approximate 100(1− p)% CIs for β̂, θ̂, and δ̂ are calculated as follows(
β
∗[B P

2 ]
(Boot−p), β

∗[B(1− P
2 )]

(Boot−p)

)
,
(

θ
∗[B P

2 ]
(Boot−p), θ

∗[B(1− P
2 )]

(Boot−p)

)
,
(

δ
∗[B P

2 ]
(Boot−p), δ

∗[B(1− P
2 )]

(Boot−p)

)
.

(ii) Boot-t method

Step 1: The approach is the same as that in the boot-p approach.
Step 2: Compute the bootstrap estimate of RF by replacing the parameters in Equa-

tion (24) with their bootstrap estimates, denoting them by R∗F and the following statistics

T∗1 =
β∗ − β√

V̂(β∗)
, T∗2 =

θ∗ − θ√
V̂(θ∗)

, T∗3 =
δ∗ − δ√

V̂(δ∗)
.

Step 3: Step 2 should be repeated B times, as needed.
Step 4: Arrange (T∗1j , T∗2j , . . . , T∗Bj ), where j = 1, 2, 2 + length(δ), in ascending order

as (T∗[1]j , T∗[2]j , . . . , T∗[B]j ).
Step 5: The approximate 100(1− p)% CIs are then obtained by(

β + T∗[B
P
2 ]

1

√
V̂(β∗), β + T∗[B(1−

P
2 )]

1

√
V̂(β∗)

)
,

(
θ + T∗[B

P
2 ]

2

√
V̂(θ∗), θ + T∗[B(1−

P
2 )]

2

√
V̂(θ∗)

)
,(

δ + T∗[B
P
2 ]

3

√
V̂(δ∗), δ + T∗[B(1−

P
2 )]

3

√
V̂(δ∗)

)
.

7. The Log-Odd Perks–Weibull Regression Model

If X is an RV with an odd Perks–Weibull (OPW) distribution, Y = log(x) is an RV with
a log-OPW (LOPW) distribution with the transformation parameters δ = 1

σ and µ = log(λ).
As a result, the pdf and cdf of the LOPW distribution are as follows:

F(y; β, θ, µ, σ) = 1− (1 + β)

1 + βe
θ

(
ee

y−µ
σ −1

) (35)

and

f (y; β, θ, µ, σ) =
βθ(1 + β) 1

σ e
y−µ

σ e
θ

(
ee

y−µ
σ −1

)

e−e
y−µ

σ

1 + βe
θ

(
ee

y−µ
σ −1

)
2 , (36)

where −∞ < µ < ∞ is the location parameter, β, θ > 0 are the shape parameters, and σ > 0
is the scale parameter. The SF and HRF are provided by

F(y; β, θ, µ, σ) =
(1 + β)

1 + βe
θ

(
ee

y−µ
σ −1

) (37)
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and

τ(y; β, θ, µ, σ) =
βθ 1

σ e
y−µ

σ e
θ

(
ee

y−µ
σ −1

)

e−e
y−µ

σ

1 + βe
θ

(
ee

y−µ
σ −1

)
. (38)

If z = y−µ
σ is the standardized RV for y in Equation (36), then z has the following pdf:

f (z; β, θ) =
βθ(1 + β)ezeθ

(
eez−1

)
e−ez

[
1 + βeθ(eez−1)

]2 , −∞ < z < ∞, (39)

with SF denoted as

SF(z) =
(1 + β)

1 + βeθ(eez−1)
. (40)

Using the linear location-scale regression model in Equation (1), where µ = BT X, the
SF of yi|X can thus be written as:

SF(yi|X) =
(1 + β)

1 + βe
θ

ee
yi−BT Xi

σ −1

 . (41)

MLE Method for Parameters of the Regression Model

The likelihood FUN of the regression model can be expressed as:

L(β, θ, σ, BT) =n[log(β) + log(θ) + log(1 + β)] +
n

∑
i=1

log(zi) +
n

∑
i=1

log
[
θ
(

eez − 1
)]

+
n

∑
i=1

ezi

− 2
n

∑
i=1

log
[

1 + βeθ
(

eezi−1
)]

,
(42)

where zi =
yi−BT Xi

σ .
By maximizing the log-likelihood function (42), the MLEs β̂, θ̂, σ̂, and B̂T of β, θ, σ, and

BT can be obtained. The survival function for yi can be computed using the fitted model (1):

F(y; β̂, θ̂, σ̂, B̂T) =
(1 + β̂)

1 + β̂e
θ̂

ee
y−B̂T X

σ̂ −1

 . (43)

The survival function for t = ey is derived, using the invariance characteristics of the
MLE, as follows:

F(t) =
(1 + β̂)

1 + β̂eθ̂(e

(
t
λ̂

)δ̂

−1)

,

where δ̂ = 1
σ̂ and λ̂ = e(B̂T X)

The asymptotic distribution of
√

n(Θ̂ − Θ) is multivariate normal N(0, IM−1(Θ)),
where IM−1(Θ) is the information matrix, when the requirements are met for the parameter
vector Θ = (β, θ, σ, BT) in the interior of the parameter space but not at the boundary.
The approximated multivariate normal distribution can be used to build approximate
confidence areas for particular parameters in Θ in the traditional manner.
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8. Simulation Studies
8.1. Simulation for OPE Distribution

To demonstrate the performance of the MLE, MPS, and Bayesian estimation methods
with respect to the OPE distribution parameters, we ran a Monte Carlo simulation; that is,
for two separate sets of parameter values, we randomly produced 10,000 samples of sizes
30, 70, and 150 from the OPE distribution:

In Table 3, β = 0.4, θ = 0.5, λ = 0.6, β = 0.4, θ = 0.5, λ = 3, β = 0.4, θ = 2, λ = 0.6,
and β = 0.4, θ = 2, λ = 3;
In Table 4, β = 2, θ = 0.5, λ = 0.6, β = 2, θ = 0.5, λ = 3, β = 2, θ = 2, λ = 0.6, and
β = 2, θ = 2, λ = 3

The parameter estimates were obtained by computing the bias and mean square
error (MSE), as well as the length of the confidence interval (L.CI) for MLE and MPS
by asymptotic CI, in addition to the bootstrap CI approach for MLE and the credible CI
determined using the HPD interval for Bayesian estimation.The simulation outcomes are
shown in Tables 3 and 4. As a result of these findings, we concluded that as the sample
size increased, the empirical means tended to approach the true value of the parameters.
Furthermore, as the sample size grew larger, the MSEs and biases decreased.

Table 3. MLE, MPS, and Bayesian estimation methods for parameters of OPE distribution.

β = 0.4 MLE MPS Bayesian

θ λ n Bias MSE L.CI L.BP L.BT Bias MSE L.CI Bias MSE L.CI

0.5

0.6

30
β 0.0446 0.0554 0.9067 0.0289 0.0297 0.0979 0.0812 0.9959 0.1079 0.0528 0.7230
θ −0.0009 0.0396 0.7808 0.0243 0.0243 0.1134 0.0715 0.8355 0.0660 0.0741 0.9372
λ 0.0353 0.0147 0.4541 0.0152 0.0152 −0.0398 0.0137 0.5062 0.0259 0.0175 0.4776

70
β 0.0045 0.0129 0.4455 0.0142 0.0143 0.0405 0.0302 0.6271 0.0663 0.0318 0.6188
θ 0.0023 0.0116 0.4225 0.0132 0.0133 0.0619 0.0258 0.5218 0.0322 0.0397 0.7238
λ 0.0116 0.0048 0.2690 0.0088 0.0088 −0.0256 0.0057 0.3164 0.0168 0.0099 0.3732

150
β 0.0107 0.0107 0.4038 0.0132 0.0135 0.0151 0.0140 0.4563 0.0251 0.0149 0.4517
θ 0.0049 0.0159 0.4934 0.0159 0.0157 0.0361 0.0119 0.3719 0.0090 0.0150 0.4616
λ 0.0091 0.0042 0.2505 0.0079 0.0078 −0.0154 0.0027 0.2183 0.0094 0.0037 0.2304

3

30
β 0.0578 0.1240 1.3625 0.0437 0.0437 0.1456 0.1497 1.3182 0.0887 0.0453 0.6658
θ 0.0639 0.0623 0.9462 0.0317 0.0318 0.1182 0.0805 0.9572 0.0635 0.0350 0.6478
λ 0.0103 0.1448 1.4920 0.0479 0.0470 −0.2354 0.2201 1.8373 −0.0341 0.1352 1.3905

70
β 0.0319 0.0566 0.9248 0.0302 0.0303 0.0450 0.0533 0.8748 0.0521 0.0305 0.5807
θ 0.0425 0.0454 0.8185 0.0254 0.0256 0.0873 0.0448 0.7118 0.0360 0.0191 0.5039
λ 0.0161 0.1114 1.3074 0.0410 0.0406 −0.1550 0.1214 1.3947 −0.0133 0.0746 1.0636

150
β 0.0182 0.0340 0.7191 0.0237 0.0238 0.0298 0.0281 0.6348 0.0127 0.0118 0.3992
θ 0.0411 0.0344 0.7097 0.0221 0.0221 0.0525 0.0219 0.5317 0.0150 0.0059 0.2762
λ −0.0204 0.0703 1.0365 0.0349 0.0349 −0.0972 0.0632 0.9861 −0.0007 0.0249 0.6179

2

0.6

30
β 0.0425 0.0994 1.2251 0.0398 0.0400 0.1859 0.1904 1.4047 0.0869 0.0384 0.6382
θ −0.0429 0.0856 1.1353 0.0382 0.0382 0.0509 0.0773 0.9783 −0.0216 0.0803 1.2539
λ 0.0405 0.0134 0.4260 0.0130 0.0129 −0.0251 0.0107 0.4585 0.0267 0.0117 0.3827

70
β 0.0478 0.0606 0.9473 0.0310 0.0308 0.0983 0.0466 0.8826 0.0619 0.0263 0.5548
θ −0.0412 0.0893 1.1611 0.0367 0.0365 0.0494 0.0321 0.5847 −0.0118 0.0790 1.1261
λ 0.0241 0.0074 0.3248 0.0101 0.0101 −0.0208 0.0043 0.2886 0.0141 0.0059 0.2877

150
β 0.0116 0.0153 0.4822 0.0150 0.0150 0.0502 0.0120 0.5232 0.0216 0.0118 0.3925
θ 0.0019 0.0037 0.2386 0.0072 0.0072 0.0305 0.0133 0.4067 −0.0155 0.0037 0.2062
λ 0.0037 0.0015 0.1490 0.0048 0.0048 −0.0146 0.0019 0.1802 0.0073 0.0011 0.1372

3

30
β 0.3058 0.7826 3.2557 0.1044 0.1042 0.2925 0.3949 2.1947 0.1068 0.0491 0.6704
θ −0.1049 0.6079 3.0301 0.0951 0.0941 0.0830 0.2070 1.5667 0.0095 0.1283 1.3565
λ 0.3745 0.6661 2.8440 0.0907 0.0910 −0.1532 0.2509 2.3979 0.0176 0.1194 1.3171

70
β 0.1345 0.6876 3.2091 0.1065 0.0947 0.1228 0.1015 1.1647 0.0643 0.0266 0.5542
θ −0.0322 0.3965 2.4663 0.0797 0.0799 0.0900 0.1366 1.2837 0.0154 0.0759 1.0942
λ 0.1747 0.3802 2.3193 0.0741 0.0736 −0.1296 0.1323 1.6370 −0.0014 0.0615 0.9628

150
β 0.0776 0.0719 1.0063 0.0323 0.0331 0.0566 0.0338 0.7071 0.0225 0.0109 0.3860
θ −0.0590 0.2817 2.0688 0.0605 0.0595 0.0586 0.0757 0.9369 0.0111 0.0215 0.5600
λ 0.1491 0.2541 1.8886 0.0602 0.0605 −0.0759 0.0642 1.1735 0.0010 0.0210 0.5712
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Table 4. MLE, MPS, and Bayesian estimation methods for parameters of OPE distribution.

β = 2 MLE MPS Bayesian

θ λ n Bias MSE L.CI L.BP L.BT Bias MSE L.CI Bias MSE L.CI

0.5

0.6

30
β 0.0353 0.0964 1.2101 0.0408 0.0403 0.0199 0.0124 0.4456 0.0118 0.0377 0.7393
θ −0.0025 0.0921 1.1901 0.0377 0.0367 0.1384 0.0910 1.1635 0.0749 0.0718 0.9038
λ 0.0731 0.0398 0.7277 0.0230 0.0230 −0.0288 0.0279 0.7468 0.0237 0.0198 0.5344

70
β 0.0270 0.0426 0.8021 0.0268 0.0267 0.0092 0.0048 0.2881 0.0003 0.0343 0.7287
θ 0.0007 0.0455 0.8363 0.0264 0.0264 0.0778 0.0543 0.7847 0.0345 0.0367 0.7005
λ 0.0311 0.0157 0.4759 0.0152 0.0151 −0.0235 0.0130 0.4915 0.0157 0.0111 0.3987

150
β 0.0032 0.0534 0.9059 0.0280 0.0284 0.0047 0.0009 0.1125 −0.0002 0.0215 0.5613
θ 0.0029 0.0224 0.5867 0.0179 0.0180 0.0448 0.0234 0.5314 0.0103 0.0128 0.4194
λ 0.0157 0.0071 0.3258 0.0101 0.0101 −0.0151 0.0063 0.3368 0.0079 0.0043 0.2467

3

30
β 0.0034 0.3211 2.2222 0.0670 0.0668 0.0590 0.1090 1.2186 0.0116 0.0390 0.7513
θ 0.0675 0.1574 1.5334 0.0490 0.0490 0.2546 0.2976 1.7051 0.0471 0.0313 0.5955
λ 0.1402 0.6195 3.0375 0.0976 0.0981 −0.3374 0.7280 3.5511 0.0031 0.1466 1.4590

70
β 0.0026 0.1587 1.5624 0.0511 0.0508 0.0138 0.0397 0.7687 0.0091 0.0362 0.7484
θ 0.0177 0.0633 0.9840 0.0314 0.0315 0.1006 0.0716 0.8896 0.0217 0.0134 0.4037
λ 0.1094 0.3170 2.1662 0.0681 0.0680 −0.1599 0.3233 2.4094 0.0048 0.0773 1.0600

150
β 0.0144 0.0902 1.1767 0.0357 0.0357 −0.0017 0.0222 0.6009 −0.0051 0.0225 0.5526
θ 0.0071 0.0187 0.5357 0.0177 0.0177 0.0559 0.0254 0.5360 0.0095 0.0039 0.2356
λ 0.0491 0.1425 1.4677 0.0457 0.0460 −0.1084 0.1501 1.6164 −0.0047 0.0235 0.5870

2

0.5

30
β 0.0167 0.5651 2.9475 0.0874 0.0884 0.1262 0.3467 2.1462 0.0048 0.0418 0.7697
θ −0.1275 0.9648 3.8197 0.1137 0.1147 0.2443 0.7177 2.8095 −0.0127 0.1736 1.5779
λ 0.1517 0.1161 1.1966 0.0391 0.0388 −0.0016 0.0516 1.0439 0.0349 0.0161 0.4711

70
β −0.0039 0.1432 1.4838 0.0453 0.0453 0.0706 0.1601 1.4701 0.0001 0.0417 0.7755
θ −0.0384 0.2948 2.1242 0.0680 0.0678 0.1627 0.3545 2.0451 −0.0283 0.0947 1.1598
λ 0.0419 0.0212 0.5466 0.0178 0.0176 −0.0134 0.0207 0.6175 0.0223 0.0074 0.3225

150
β −0.0020 0.1114 1.3092 0.0430 0.0431 0.0317 0.0605 0.9227 0.0031 0.0224 0.5720
θ −0.0217 0.2058 1.7772 0.0545 0.0546 0.0914 0.1538 1.3825 −0.0066 0.0284 0.6484
λ 0.0254 0.0130 0.4352 0.0136 0.0134 −0.0127 0.0090 0.4066 0.0050 0.0022 0.1816

3

30
β 0.0509 1.4323 4.6895 0.1567 0.1567 0.1498 0.8266 3.4183 0.0169 0.0408 0.7719
θ 0.1807 1.3530 4.5067 0.1437 0.1442 0.4253 0.8080 2.8612 0.0338 0.1195 1.2912
λ 0.4268 1.6337 4.7251 0.1509 0.1514 −0.2270 0.6723 3.7438 0.0110 0.1310 1.4191

70
β 0.0753 1.3008 4.4633 0.1404 0.1400 0.0511 0.3985 2.4920 0.0152 0.0433 0.7950
θ 0.2224 1.0997 4.0193 0.1316 0.1306 0.2476 0.3650 2.1360 0.0001 0.0634 0.9824
λ 0.1619 0.7878 3.4226 0.1065 0.1071 −0.1647 0.3518 2.5612 0.0053 0.0703 1.0374

150
β 0.0299 0.3799 2.4144 0.0767 0.0779 0.0685 0.2049 1.7162 −0.0015 0.0233 0.6047
θ 0.0961 0.3194 2.1841 0.0690 0.0696 0.2059 0.2005 1.4498 −0.0018 0.0217 0.5667
λ 0.0529 0.3443 2.2919 0.0742 0.0733 −0.1644 0.2002 1.8495 0.0045 0.0222 0.5659

8.2. Simulation of the LOPW Regression Model

Next, we conducted a Monte Carlo simulation to examine the performance of the ML
parameter estimates of the LOPW regression model. The lifetimes were obtained from the
OPW distribution, and independent variables xi1, xi2 were generated using the uniform
distribution in the range (0, 1). A total of 1000 samples were created, using the parameters
detailed below.

In Table 5: multiple regression β = 2, θ = 1.6, B1 = 1, B2 = 0.5, σ = 0.15,
β = 2, θ = 1.6, B1 = 1, B2 = 0.5, σ = 0.6, β = 2, θ = 0.6, B1 = 1, B2 = 0.5, σ = 0.15,
and β = 2, θ = 0.6, B1 = 1, B2 = 0.5, σ = 0.6.
In Table 6: simple regression β = 2, θ = 1.6, B1 = 1, σ = 0.15, β = 2, θ = 1.6,
B1 = 1, σ = 0.6, β = 2, θ = 0.6, B1 = 1, σ = 0.15, and β = 2, θ = 0.6, B1 = 1, σ = 0.6.

The simulation was conducted using n = 30, 70, and 150.
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Table 5. Point and interval estimates by MLE for multiple regression.

β = 2, B1 = 1, B2 = 0.5 σ = 0.15 σ = 0.6

θ n Bias MSE L.CI L.BP L.BT Bias MSE L.CI L.BP L.BT

0.6

30

β 0.0092 0.0021 0.1756 0.0056 0.0055 0.0525 1.1150 4.1362 0.1498 0.1346
θ 0.0495 0.0996 1.2225 0.0386 0.0381 0.1116 0.2449 1.8909 0.0585 0.0577
σ −0.0018 0.0024 0.1904 0.0061 0.0063 0.0019 0.0430 0.8128 0.0265 0.0260
B1 −0.0039 0.0023 0.1885 0.0058 0.0058 −0.0070 0.0415 0.7987 0.0247 0.0246
B2 −0.0105 0.0009 0.1090 0.0035 0.0035 −0.0440 0.0205 0.5343 0.0168 0.0166

70

β 0.0003 0.0012 0.1376 0.0055 0.0044 0.0162 0.0630 0.9822 0.0321 0.0325
θ 0.0164 0.0252 0.6192 0.0197 0.0197 0.0244 0.0306 0.6789 0.0218 0.0219
σ −0.0003 0.0008 0.1109 0.0035 0.0035 0.0005 0.0133 0.4516 0.0141 0.0142
B1 0.0002 0.0009 0.1188 0.0039 0.0039 0.0026 0.0152 0.4827 0.0157 0.0158
B2 −0.0050 0.0003 0.0610 0.0019 0.0019 −0.0122 0.0141 0.4632 0.0197 0.0137

150

β 0.0042 0.0003 0.0696 0.0022 0.0022 −0.0021 0.0400 0.7847 0.0249 0.0248
θ 0.0061 0.0105 0.4007 0.0133 0.0133 0.0080 0.0131 0.4475 0.0151 0.0153
σ −0.0011 0.0004 0.0782 0.0025 0.0025 −0.0030 0.0077 0.3439 0.0108 0.0106
B1 0.0005 0.0004 0.0773 0.0024 0.0024 0.0026 0.0064 0.3133 0.0099 0.0099
B2 −0.0023 0.0001 0.0403 0.0014 0.0014 −0.0198 0.0045 0.2514 0.0080 0.0080

1.6

30

β 0.0095 0.0113 0.4152 0.0136 0.0134 −0.0057 1.0174 3.9558 0.1865 0.1212
θ 0.0051 0.2508 1.9638 0.0615 0.0610 0.4050 1.2582 4.1025 0.1290 0.1294
σ −0.0114 0.0031 0.2134 0.0069 0.0068 −0.0171 0.0701 1.0359 0.0315 0.0325
B1 −0.0133 0.0032 0.2143 0.0066 0.0066 −0.0263 0.0695 1.0290 0.0324 0.0327
B2 −0.0069 0.0007 0.0975 0.0031 0.0031 0.0011 0.4616 2.6645 0.0880 0.0877

70

β 0.0009 0.0051 0.2791 0.0089 0.0087 −0.0320 0.5069 2.7894 0.0959 0.0954
θ 0.0299 0.1220 1.3647 0.0431 0.0432 0.1741 0.3256 2.1311 0.0689 0.0694
σ −0.0039 0.0012 0.1337 0.0042 0.0042 −0.0111 0.0264 0.6354 0.0208 0.0201
B1 −0.0034 0.0013 0.1417 0.0046 0.0046 −0.0016 0.0248 0.6182 0.0204 0.0204
B2 −0.0038 0.0003 0.0649 0.0020 0.0020 −0.0126 0.0359 0.7417 0.0279 0.0221

150

β 0.0064 0.0047 0.2675 0.0083 0.0085 0.0011 0.4616 2.6645 0.0880 0.0877
θ 0.0091 0.0610 0.9677 0.0303 0.0301 0.0707 0.1333 1.4049 0.0445 0.0445
σ −0.0035 0.0006 0.0934 0.0031 0.0030 −0.0039 0.0221 0.5829 0.0181 0.0181
B1 −0.0011 0.0006 0.0949 0.0031 0.0030 0.0034 0.0130 0.4477 0.0144 0.0144
B2 −0.0017 0.0001 0.0434 0.0014 0.0014 −0.0257 0.0281 0.6502 0.0210 0.0198

Table 6. Point and interval estimates by MLE for simple regression.

β = 2, B1 = 1 σ = 0.15 σ = 0.6

θ n Bias MSE L.CI L.BP L.BT Bias MSE L.CI L.BP L.BT

1.6

30

β 0.0185 0.1410 1.4709 0.0517 0.0445 0.0307 1.0297 3.9779 0.1324 0.1294
θ 0.1023 0.2396 1.8774 0.0613 0.0611 0.3429 0.7685 3.1642 0.1019 0.1029

B1 0.0075 0.0033 0.2245 0.0070 0.0071 −0.0002 0.0612 0.9701 0.0312 0.0311
σ −0.0055 0.0043 1.4709 0.0517 0.0445 −0.0130 0.0215 3.9779 0.1324 0.1294

70

β 0.0166 0.0166 0.5013 0.0161 0.0161 −0.0301 0.5529 2.9139 0.0910 0.0908
θ 0.0467 0.1203 1.3479 0.0416 0.0416 0.1416 0.2211 1.7584 0.0524 0.0536

B1 0.0026 0.0015 0.1496 0.0050 0.0050 0.0017 0.0232 0.5977 0.0199 0.0198
σ −0.0063 0.0007 0.5013 0.0161 0.0161 0.0043 0.0088 2.9139 0.0910 0.0908

150

β 0.0023 0.0081 0.3522 0.0111 0.0111 −0.0173 0.3164 2.2052 0.0713 0.0716
θ 0.0236 0.0551 0.9158 0.0294 0.0294 0.0706 0.0980 1.1964 0.0387 0.0387

B1 0.0016 0.0008 0.1074 0.0034 0.0034 0.0001 0.0122 0.4333 0.0140 0.0139
σ −0.0011 0.0002 0.3522 0.0111 0.0111 0.0007 0.0034 2.2052 0.0713 0.0716
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Table 6. Cont.

β = 2, B1 = 1 σ = 0.15 σ = 0.6

θ n Bias MSE L.CI L.BP L.BT Bias MSE L.CI L.BP L.BT

0.6

30

β 0.0239 0.4157 2.5269 0.1237 0.0706 0.0992 2.6615 6.3865 0.2204 0.1994
θ 0.0411 0.0547 0.9033 0.0287 0.0287 0.0559 0.0998 1.2197 0.0397 0.0396

B1 −0.0008 0.0023 0.1881 0.0059 0.0059 −0.0063 0.0391 0.7748 0.0247 0.0247
σ −0.0028 0.0012 0.1379 0.0055 0.0041 −0.0238 0.0448 0.8251 0.0316 0.0274

70

β −0.0006 0.0060 0.3042 0.0148 0.0091 0.2146 0.9229 5.5153 0.2045 0.2014
θ 0.0015 0.0256 0.6278 0.0203 0.0200 −0.0036 0.0598 0.9588 0.0316 0.0294

B1 0.0017 0.0009 0.1192 0.0038 0.0038 0.0076 0.0178 0.5227 0.0175 0.0167
σ −0.0039 0.0009 0.1167 0.0041 0.0037 −0.0347 0.0241 0.5939 0.0192 0.0189

150

β 0.0066 0.0043 0.2552 0.0085 0.0082 0.0091 0.0383 0.7670 0.0248 0.0247
θ 0.0052 0.0075 0.3399 0.0106 0.0107 0.0054 0.0069 0.3249 0.0101 0.0100

B1 0.0003 0.0009 0.1196 0.0048 0.0038 −0.0023 0.0059 0.3024 0.0096 0.0093
σ −0.0081 0.0007 0.0987 0.0031 0.0031 −0.0066 0.0016 0.1565 0.0049 0.0048

9. Discretization

There are a variety of approaches in the statistical literature for converting a continuous
distribution to a discrete one. The survival discretization method is the most often-used
methodology for generating discrete distributions; for further information, see Roy [45]. It
requires the existence of a cdf, a continuous and non-negative survival function, and times
separated into unit intervals. The discrete distribution PMF is defined as follows:

P(X = x) = P(x ≤ X ≤ x + 1) = F(x; β, θ, δ)− F(x + 1; β, θ, δ); x = 0, 1, 2, ... (44)

Then, the PMF of the discrete OP-G family can be expressed as

P(X = x; β, θ, δ) =
(1 + β)

1 + βe
θ
(

G(x;δ)
G(x;δ)

) − (1 + β)

1 + βe
θ
(

G(x+1;δ)
G(x+1;δ)

) . (45)

The cdf of the discrete OP-G family is given as follows

P(X ≤ x; β, θ, δ) = 1− (1 + β)

1 + βe
θ
(

G(x+1;δ)
G(x+1;δ)

) , (46)

and the HRF of the discrete OP-G family is

h(X = x; β, θ, δ) = 1− 1 + βe
θ
(

G(x;δ)
G(x;δ)

)

1 + βe
θ
(

G(x+1;δ)
G(x+1;δ)

) . (47)

Regarding the OPE distribution, the PMF of the discrete OPE (DOPE) distribution is

P(X = x; β, θ, λ) =
1 + β

1 + βeθ(eλx−1)
− 1 + β

1 + βeθ(eλ(x+1)−1)
. (48)

Figure 4 shows various PMFs for the DOPE distribution under various parameters.
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Figure 4. DOPE PMFs under different parameters.

The HRF of the DOPE distribution is given as

h(X = x; β, θ, λ) = 1− 1 + βeθ(eλx−1)

1 + βeθ(eλ(x+1)−1)
. (49)

Figure 5 shows various HRFs for the DOPE distribution.
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Figure 5. DOPE HRFs under different parameters.

10. Applications

We utilized three real data sets to test the superiority of the continuous distribution,
COVID-19 data from Saudi Arabia to test the superiority of the discrete distribution,
and Stanford heart transplant data to test the superiority of the regression model. We
used various statistical measures, including Kolmogorov–Smirnov (KOS) with p-value
(PV), Cramér–von Mises (CVOM), Anderson–Darling (AND), and Chi-squared (X2), using
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different criteria, including the Akaike information criterion (INC) (AKINC), Bayesian INC
(BINC), Hannan–Quinn INC (HQINC), and consistent AKINC (CAKINC) statistics

10.1. Radiation Failure Mice

We first examined the genuine data set of radiation failure mice (RFM) reported by
Hoel [9], obtained from a laboratory experiment in male mice aged 5–6 weeks that had been
exposed to a 300 roentgen radiation dosage. Our goal was to look at other causes of death
that were not related to the two main causes of death: Reticulum cell sarcoma and thymic
lymphoma. The data were 40, 42, 51, 62, 163, 179, 206, 222, 228, 252, 249, 282, 324, 333, 341,
366, 385, 407, 420, 431, 441, 461, 462, 482, 517, 517, 524, 564, 567, 586, 619, 620, 621, 622, 647,
651, 686, 761, and 763. Table 7 presents the MLE with SE and different measures for the
RFM data. Table 7 presents the comparison between our model and different distributions:
The Marshall–Olkin alpha power exponential (MOAPEx) introduced by [46], the Marshall–
Olkin alpha power Weibull (MOAPW) introduced by [47], the Weibull–Lomax (WL) model
introduced by [48], the Kumaraswamy Weibull (KWW) introduced by [49], the alpha power
inverse Weibull (APIW) introduced by [50], and the generalized inverse Weibull (GIW)
introduced by [51]. Based on these results, we present the measured values of AKINC,
BINC, KOS, CVOM, and AND. The smallest values were observed for the OPE distribution,
while the largest values were seen with the PV. Based on the results presented in Table 7, we
note that OPE can be considered as the best model to fit the RFM data. Figure 6 confirms the
results shown in Table 7. Figure 7 shows the PP-plot and QQ-plot for the OPE distribution
on the RFM data set.

Table 7. MLE with SE and different measures on RFM data set.

Estimator SE AKINC BINC KOS PV CVOM AND

OPE

β 4.2151 0.3543

524.9292 529.9199 0.0741 0.9830 0.0223 0.2115θ 0.1519 0.0820

λ 0.0043 0.0011

MOAPEx

α 1.0032 2.4779

530.1173 535.1079 0.0773 0.9740 0.0690 0.5233β 0.0075 0.0012

θ 21.0635 28.8155

MOAPW

α 0.4165 0.6660

532.4730 539.1272 0.0823 0.9542 0.0716 0.5382β 0.9552 0.3223

θ 42.2525 65.8585

λ 117.1953 93.1536

WL

α 0.0181 0.0181

536.8698 543.5240 0.1152 0.6786 0.1477 1.0796β 7.8622 0.9723

θ 0.1518 0.0879

λ 0.7153 0.171395

KWW

α 1.4444 0.0038

597.8468 604.5011 0.3922 0.0000 0.2680 1.8237β 0.4863 0.0016

θ 1.1697 0.0118

λ 0.0401 0.0064

APIW

α 55.910 71.791

560.7260 565.7166 0.0741 0.9830 0.5353 3.3246β 1.3827 0.1509

θ 593.7153 477.1075

GIW

α 12.1509 1.5983

570.1081 570.7938 0.2392 0.0230 0.6934 4.1369β 19.6826 2.2009

θ 1.0330 0.1118
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Figure 6. Estimated cdfs and pdfs for RFM data.
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Figure 7. PP-plot and QQ-plot for OPE applied to RFM data.

10.2. Failure Times of a Certain Product

The second data set, that of Gacula and Kubala [52], contains 26 observations and
indicates failure times for a specific product. This information has also been utilized by
Nassar at al. [46]. The data are 24, 24, 26, 26, 32, 32, 33, 33, 33, 35, 41, 42, 43, 47, 48, 48, 48, 50,
52, 54, 55, 57, 57, 57, 57, and 61. Table 8 presents the MLE with SE and different measures
for the failure time data. Table 8 presents a comparison between our model and different
distributions, including the MOAPEx, MOAPW, WL, KWW, APIW, and GIW distributions.
Based on these results, we found that the measured values of AKINC, BINC, KOS, CVOM,
and AND were the smallest for the OPE distribution, while the largest values were obtained
with PV. Based on the results in Table 8, we note that the OPE represented the best model
to fit the failure time data. Figure 8 confirms the results shown in Table 8. Figure 9 shows
the PP-plot and QQ-plot for the OPE distribution on the failure time data set.
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Figure 8. Estimated cdfs and pdfs for the failure time data set.
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Figure 9. PP-plot and QQ-plot for OPE on the failure time data set.

Table 8. MLE with SE and different measures on the failure time data set.

Estimator SE AKINC BINC KOS PV CVOM AND

OPE

β 4.2097 12.0939

206.6919 210.4662 0.1525 0.5812 0.0917 0.6362θ 0.0131 0.0143

λ 0.0924 0.0175

MOAPEx

α 28.6726 257.2552

209.6720 213.4463 0.1525 0.5806 0.1243 0.8005β 0.1384 0.0240

θ 113.0771 323.4044

MOAPW

α 1.0028 2.0842

208.2018 213.2342 0.1579 0.5355 0.0976 0.6453
β 4.2182 1.2248

θ 1.1493 1.8492

λ 46.4453 7.6819

WL

α 0.5025 4.9775

208.2155 213.2479 0.1548 0.5620 0.0987 0.6498
β 4.3083 3.0575

θ 1.0024 2.2157

λ 40.4271 172.0853

KWW

α 1.7996 0.0017

268.6272 273.6596 0.4831 0.0001 0.1257 0.7863
β 0.7313 0.0019

θ 1.1749 0.0105

λ 0.0362 0.0071

APIW

α 17786.526 16383.931

214.0297 217.8040 0.1810 0.3621 0.1933 1.2076β 3.6454 0.2983

θ 49924.7906 24.3221

GIW

α 15.4371 0.4222

214.4336 215.5245 0.1845 0.3388 0.2019 1.2680β 16.9912 0.3147

θ 3.4156 0.4999
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10.3. Mechanical Data

The third data set comprises the times measured between failures for repairable
mechanical equipment items, obtained from the work of Seber et al. [53]. The data are
0.11, 0.30, 0.40, 0.45, 0.59, 0.63, 0.70, 0.71, 0.74, 0.77, 0.94, 1.06, 1.17, 1.23, 1.23, 1.24, 1.43,
1.46, 1.49, 1.74, 1.82, 1.86, 1.97, 2.23, 2.37, 2.46, 2.63, 3.46, 4.36, and 4.73. These data have
been used to fit the extended inverse Gompertz distribution, which was compared to
different distributions by Elshahhat et al. [54]. The results shown in Table 9 indicate
that the smallest values of the AKINC, BINC, KOS, CAKINC, and HQINC were obtained
by OPE, while the largest values were obtained by the PV for KOS, when comparing
our results with those discussed by Elshahhat et al. [54]. Thus, the OPE distribution
performed better than the inverse-Weibull, APIW, inverse gamma, generalized inverse
Weibull (GIW), exponentiated inverted-Weibull, generalized inverted half-logistic, inverted
Kumaraswamy, inverted Nadarajah–Haghighi, alpha-power inverse-Weibull, and extended
inverse Gompertz (EIGo), which were discussed in [54]. Figure 10 shows the estimated cdf,
estimated pdf, PP-plot, and QQ-plot for the OPE distribution, which confirm the good fit
of the OPE distribution to these data.
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Figure 10. Estimated cdf, pdf, PP-plot, and QQ-plot for the OPE distribution on the mechanical
data set.

Table 9. MLE with SE and different measures on the mechanical data set.

Estimator SE AKINC BINC KOS PV CAKINC HQINC

OPE

β 0.3830 0.3571

87.055 88.259 0.076 0.995 87.978 88.400θ 32.6162 1.1026

λ 0.0345 0.0760

EIGo

α 3.5359 1.4251

87.536 88.459 0.089 0.971 88.459 88.459β 2.3986 2.3986

θ 2.3986 2.3986

GIW

α 1.073 0.1314

98.751 102.950 0.134 0.656 99.674 100.100β 0.0761 0.8851

θ 11.92 148.78

APIW

α 99.979 157.11

92.376 92.376 0.113 0.836 92.376 93.721β 1.4079 0.1745

θ 0.1922 0.0751

10.4. Stanford Heart Transplant Data

Data for n = 103 patients were acquired from the work of Kalbfleisch and Prentice [55].
The number of days between admittance to a heart transplant program and death was used



Symmetry 2022, 14, 883 24 of 29

to calculate the patient survival times. Each patient was linked to the following data: yi,
log survival follow-up time (days); xi1, age (in years); and xi2, prior surgery (coded as 0 =
No, 1 = Yes). We present the fitting results for the following model:

yi = B0 + B1xi1 + B2xi2 + σzi,

where yi follows the LOPW distribution. Table 10 shows MLE, SE, and Z-values, as well as
PVs, for the LOPW regression model, while Table 11 provides different measures obtained
for the LOPW regression model. Figure 11 shows the correlation values.
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Figure 11. Correlation matrix.

Table 10. MLE, SE, and Z-values, along with PVs, for the LOPW regression model.

Estimate SE Z-Value PV

β 39.5488 0.0002 161,758.8862 2× 10−16

θ 37.9709 0.0246 1541.6783 2× 10−16

B1 −0.0218 0.0175 −1.2478 0.2121

B0 10.9676 0.8773 12.5019 2× 10−16

B3 0.7329 0.3468 2.1136 0.0346

σ 1.1515 0.1075 10.7146 2× 10−16

Table 11. Different measures for the LOPW regression model.

LOG (L) AKINC BINC CAKINC HQINC

measures 115.7447 243.4894 256.894 244.8442 248.8074

Then,
ŷi = 10.9676− 0.0218 xi1 + 0.7329 xi2 + 1.1515 zi.

The results regarding the prediction of dependent variables using the regression model
are shown in Figure 12.
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Figure 12. Data prediction using the regression model.

10.5. COVID-19 Data

We used a COVID-19 data set from Saudi Arabia that spanned 32 days (from 1 Septem-
ber 2021 to 4 October 2021). This data set was comprised of newly reported instances of
daily deaths. The data were as follows: 6, 7, 8, 5, 7, 7, 6, 6, 7, 6, 6, 7, 6, 5, 5, 7, 5, 6, 5, 5, 6, 5, 7,
5, 4, 6, 5, 5, 5, 3, 3, and 2. These data were obtained from the World Health Organization (at
https://covid19.who.int/ 3 March 2022). Table 12 shows the data values, real frequency
(count), and frequencies estimated using different discrete distributions. The distributions
used for comparison were the discrete Marshall–Olkin inverse Toppe–Leone (DMOITL)
introduced by [56], discrete Burr (DB) introduced by [57], discrete inverse Weibull (DIW)
introduced by [58], negative binomial distribution (NBinom) introduced by [59], Poisson
(Pois), discrete generalized exponential (DGE) suggested by [60], discrete alpha power in-
verse Lomax (DAPL) introduced by [61], discrete Lindley (DL) introduced by [62], discrete
inverse Toppe–Leone (DITL) introduced by [63], exponentiated discrete Weibull introduced
by [64], and discrete Marshall–Olkin generalized exponential (DMOGE) introduced by [65].
Figure 13 shows that the DOPE distribution was the best model for fitting these data, with
an estimated frequency close to the real frequency. To confirm this conclusion, we used the
KS value and Chi-squared (X2) test to determine the best model fit for these data, as well
as the AKINC, CAKINC, BINC, and HQINC measures. The results are shown in Table 13.
We note that all of these measures had the smallest values with the DOPE distribution.
Figure 14 shows the cdf and PMF for the DOPE distribution of these data.

Table 12. Estimated count of values determined by each model.

Value Count DMOITL DB DIW NBinom Poisson DGE DAPL DL DITL EDW DMOGE DOPE

2 1 0.134 4.425 1.100 2.195 1.903 0.106 0.908 3.564 3.399 0.380 0.270 0.539

3 2 0.955 2.581 3.823 3.684 3.527 2.011 3.355 3.423 2.351 1.570 1.102 1.275

4 1 4.230 1.732 4.832 4.774 4.903 6.485 6.135 3.124 1.725 4.312 3.860 3.309

5 11 9.675 1.262 4.345 5.090 5.453 8.260 7.155 2.756 1.323 8.234 9.181 8.008

6 9 9.469 0.970 3.482 4.648 5.054 6.523 6.054 2.373 1.050 9.954 10.307 11.448

7 7 4.715 0.774 2.692 3.737 4.015 4.052 4.044 2.007 0.855 6.105 5.129 5.871

8 1 1.764 0.636 2.070 2.698 2.790 2.235 2.271 1.674 0.711 1.334 1.571 1.068

https://covid19.who.int/
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Figure 13. Graphical plots of the expected frequencies and the data obtained using the PMFs of
different distributions.

Table 13. MLE with SE and different measures for the compared models.

Estimator SE KS X2 PV AKINC CAKINC BINC HQINC

DOPE

β 0.0100 0.0166

0.3115 4.6557 0.7937 111.1127 111.9698 115.5099 112.5702θ 1.2542 1.9135

λ 0.2484 0.1502

DMOITL
θ 357,128.462 4.58× 10−7

0.2882 7.3500 0.2897 124.3470 124.7340 127.3997 125.3880
λ 9.6755 0.2239

DB
θ 8.0592 0.4985

0.5189 57.4840 0.0000 228.7236 229.1107 231.7763 229.7647
λ 0.9313 0.0499

DIW
θ 1.83 × 10−25 1

1.0000 15.5424 0.0164 147.5908 147.9779 150.6435 148.6319
λ 2.5021 0.76406

NB α 0.8620 0.4002 0.3683 12.5463 0.0508 137.8408 137.9658 139.3672 138.3613

Poisson θ 5.4427 0.4002 0.3623 10.9623 0.0895 134.3836 134.5086 135.9100 134.9042

DGE
θ 0.4928 0.0474

0.3838 10.7090 0.0978 130.7385 131.1256 133.7912 131.7796
λ 40.1642 19.8297

DAPL

α 2.11× 10−19 5.00× 10−7

0.22901 10.36277 0.11018 122.62439 123.48153 127.02160 124.08194θ 1.5680 0.19853

λ 4.55× 10−8 0.000005

DL α 0.7419 0.0273 0.4267 26.0725 0.0002 174.5213 174.6463 176.0477 175.0418

DITL θ 0.7707 0.1322 0.5156 44.7417 0.0000 223.7540 223.8790 225.2804 224.2745

EDW

α 5.9850 0.4457

0.3295 4.9470 0.7632 111.3641 112.2212 115.7613 112.8216θ 0.9058 0.0470

λ 1.0000 0.1740

DMOGE

α 5.9850 1.8723

0.3295 4.9470 0.7632 111.3641 112.2212 115.7613 112.8216θ 0.9058 0.3984

λ 1.0000 0.0801
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Figure 14. cdf and PMF for DOPE distribution.

11. Concluding Remarks

In this study, we explored the novel odd Perks-G family, and several of its statistical
and mathematical features were established. We obtained some of its special models,
including the OPU, OPE, OPW, and OPL distributions. The associated model parameters
were estimated using the ML technique, the MPS method, and the Bayesian estimation
approach, and simulation tests were conducted to evaluate the effectiveness of the OPE
estimators using various estimation methods based on biases, MSE, and the CI length. In
addition, the OPW distribution was used to develop a new log-location regression model.
The unknown parameters of the new regression model were estimated using ML estimation
methods. Furthermore, we introduced the discrete odd Perks-G family using the survival
discretization method and obtained the DOPE distribution as a special model. Finally,
we examined the utility of OP-G family distributions using three real data sets, analyzed
Stanford heart transplant data using the LOPW regression model, and analyzed COVID-19
data using the discrete model. The OPE distribution outperformed other state-of-the-art
distributions in terms of goodness of fit, according to our findings. Furthermore, the
LOPW regression model fit the Stanford heart transplant data well. Additionally, the DOPE
distribution provided a good fit to the COVID-19 data. In our future research, the new
suggested family will be used to generate more new distributions, the statistical properties
of which will be explored. We also intend to study the statistical inferences of new models
generated using the odd Perks-G family.
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