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Abstract—The development of appropriate Electric Vehicle (EV) 

charging strategies has been identified as an effective way to 

accommodate an increasing number of EVs on Low Voltage (LV) 

distribution networks. Most research studies to date assume that 

future charging facilities will be capable of regulating charge 

rates continuously, while very few papers consider the more 

realistic situation of EV chargers that support only on-off 

charging functionality. In this work, a distributed charging 

algorithm applicable to on-off based charging systems is 

presented. Then, a modified version of the algorithm is proposed 

to incorporate real power system constraints. Both algorithms 

are compared with uncontrolled and centralized charging 

strategies from the perspective of both utilities and customers.  

Index Terms—Distributed algorithms, Power system simulation, 

Electric vehicle, Mixed-integer-linear-programming  

 

I. INTRODUCTION 

Full EV and Plug-in hybrid cars are considered to be a 

green alternative to the normal combustion engine vehicles. 
Even though this point might be disputed, see [1], many 

vehicle manufacturers are investing heavily in developing full 

electric and plug-in hybrid vehicles, for example the Nissan 

Leaf [2] and the Toyota RAV4 EV [3]. Also, in many 

countries there are financial and other incentives for drivers 

of EVs and a public charging infrastructure is provided [4], 

[5]. These measures lead to an expected increase in the 

penetration of such vehicles [6], [7]. With increasing numbers, 

the charging load will grow and, if there is uncoordinated 

coincident charging of many vehicles, the power grid is likely 

to be overloaded. This will lead to higher power losses, 

higher peak demand, reduced transformer life, and voltage 
instability [7], [8], which ultimately means poorer power 

quality and increased cost for the consumer. Therefore, EV 

charging control is regarded as a necessity to mitigate against 

these effects and to increase the possible penetration level of 

EVs.  

 

Numerous algorithms exist to coordinate vehicle charging 

in various ways (see for example [1], [6], [7], [9], [10] and 

[11]). Due to the expected high number of agents 

participating, a centralized control strategy would incur a 

prohibitively high communication load, so that many authors 
propose distributed algorithms, for example from the above 

only [6], [11] present centralized solutions. In this paper, we 

also suggest a distributed algorithm with minimal 

communication requirements. 

 

In previous work the authors investigated an algorithm 

which requires only the broadcast of a single bit signal to 

govern EV charging [10]. This assumed a continuously 

adaptable charge rate. However, such an assumption may not 

be valid if vehicle chargers only support binary control, i.e. 

on or off operation. In [11] such limitations in charger 
capabilities are studied and a centralized quadratic 

programming approach proposed for managing the operation 

of on-off charging infrastructure. Also there are other 

appliances where binary control is most likely to be the only 

option, e.g. heat storage systems. For such systems there exist 

many control algorithms [13], [14], [15]. 

 

In previous work the authors have accordingly suggested a 

distributed algorithm for binary EV charging control relying 

on the same broadcast signal as in [12]. The focus in this 

paper is to validate the algorithm proposed in [12] using a 

realistic power grid model. The performance of the algorithm 
is investigated in terms of improvements to power grid 

stability and the impact on the customer. We compare the 

algorithm with a centralized version which maximizes the 

improvements for the power grid and an uncontrolled 
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scenario, which represents maximal advantage for the 

customers. Further, we introduce an enhancement to the 

original algorithm proposed in [12] that enables local grid 

power and voltage constraints to be taken into account.  
 

In Section II the EV charging problem is formulated 

mathematically. Then Section III describes the three charging 

control strategies investigated in the paper. Section IV 

presents some simulations results and then in Section V we 

conclude the paper. 

 

II. PROBLEM FORMULATION 

This section presents the EV charging problem including 

several realistic power grid constraints. 

In our previous work [16], a mathematical framework is 

presented for formulating EV charging problems while 

considering both power system and charging infrastructure 

constraints for both instantaneous and temporal based 

optimization objectives. This framework is adapted here to 
incorporate two different operational constraints of the power 

grid, namely plug-in constraints and power system constraints. 

In order to reduce the technical requirements of the charging 

station, they support only binary control actions, i.e. on or off. 

Additionally, the power delivered to the EVs should be close 

to the maximal allowed power. 

We consider the specific EV charging scenario depicted in 

Figure 1, where the EVs are denoted by Z. The distribution 

network is modeled with the TN-C-S earthing system [17]. 

The EVs and an office building are connected to the 

distribution transformer, which is powered by an external the 

Medium Voltage (MV) level utility grid system. This 
scenario represents a workplace environment with EV 

charging. To be consistent with the framework defined in 

[16], the load power consumption is discretized into M 

discrete time slot (indexed 1,2,…M), each of length   . The 

power consumption of the office building is modeled by a 

balanced three phase load connected to the Low-Voltage (LV) 

bus and is given by      at time slot k. In the following 

context,       is defined as the charge rate for each connected 

EV at time k. Let          refer to the total power losses in 
the distribution network at time k. N denotes the total number 

of EV charge points installed in the network, while N(k) 

refers to the active charge points at time k, i.e. where an EV is 

connected. Therefore the total power flow measured at the 

transformer side at time k can be defined as:  

 

                   
    
                          (1) 

 

The connection and disconnection time for the i-th EV are 

specified as    and    respectively. This means that the i-th 

EV is active during the interval [  ,   ].    denotes the battery 

size of the i-th EV and         its State-of-Charge (SOC) at 

time k. Furthermore, to simplify our problem description, the 

index set of all EVs connected to each phase (i.e. PhaseA, 

PhaseB and PhaseC) is defined by   
 ,   

  and   
  

respectively, where E  represents the EV area. 

 
Fig.1: Schematic diagram of the distribution network 

 

 Objective Function 

Our overall objective in this work is to maximize the total 

power delivered to all charging EVs at each given time k, 

while honoring the available power (at the transformer) and 

local power grid constraints. Thus, the objective function we 

wish to maximize can be expressed as: 

 

               
 
                               (2) 

 

 Plug-in constraints 

With plug-in constraints we model the facts that an EV 

charger can only operate when an EV is plugged and can 

either be switched on at maximum power     
 , or switched 

off, and hence consuming no power. Therefore the plug-in 

constraint can be defined as follows: 

 

If:          

        or           
                     (3) 

If:       or      or              

                                                                                      (4) 

 

 Power system constraints 

There are many power system concerns with regard to 

large numbers of EVs charging simultaneously. These 

include significant voltage drops, exceeding phase current, 

transformer overloading, voltage unbalance and power factor 
dropping below acceptable limits [18]. In the context of our 

work, only the following constraints are considered, namely 

significant voltage drops, transformer overloading and single 

phase overloading. Hence, the associated power system 

constraints are given by:  

 
          

       
     {1,2,3}                (5) 

 

                                                                   (6) 

 

                                  ,    {1,2,3…N}                   (7) 



where       denotes the total available power that can be 

provided to the LV transformer at given time k. Let       
represent the maximum power flow that can be tolerated on 

the transformer for normal operation, i.e., the rating of the 

transformer. The maximum loading level for each single 

phase is given by      
 , (e.g.     for PhaseA).       

denotes the voltage measured at the i-th charging point at 

time k in the parking lot. The minimum voltage limit on the 

network is defined as     .  

 

III. CHARGING STRATEGIES 

A. Uncontrolled charging  

With uncontrolled charging, we assume the case where 

each EV starts charging as soon as it is connected to a charger 

and continues to consume     
  power from the time it 

connects until it is fully charged or it is disconnected. This is 
in accordance with the literature; see for example [7], [19], 

[20]. The impact of such a scenario has been investigated 

from the perspective of the grid in various studies [20], [21], 

[22]. In this context, uncontrolled charging can be described 

as follows: 

 

If:          and              

          
                                     (8) 

Else: 

                                                (9) 

 

B. Distributed charging algorithm

 

Fig. 2: Flow chart of the distributed charging algorithm 

 

A learning automaton method is proposed in [12] to control 
the operation of a fleet of on-off type EV charger that seeks 

to maximize the utilization of the available power. An 

ergodic Markov Chain based distributed control system is 

formulated to analyze the charging dynamics of each EV. 

Depending on whether a congestion signal is received or not, 

each EV can automatically turn on or turn off its charging 
according to the determined probability at each time step. 

This algorithm has been demonstrated to be capable of 

converging to the desired steady state due to the ergodic 

property of the overall system. The flow chart of this 

distributed charging algorithm is depicted in Fig.2. In this 

algorithm,   ,   
  and    are the parameters for the turn-off 

phase and   ,  
  and    are for the turn-on phase. For a more 

detailed description of the algorithm, please refer to [12].  
 

C. Enhanced distributed charging algorithm 

The distributed algorithm developed in [12], and outlined 

above, does not take into account power line constraints or 

minimal voltage requirements. However, maintaining these 

constraints is critical to meeting consumer power quality 

guarantees and ensuring the safe and reliable operation of the 

power grid. Therefore, we adapt the distributed algorithm to 

react to violations of these constraints. The enhancements are 

consistent with our previous framework in [21].  

Considering the radial topology of the tested network, the 
minimum voltages in the network usually occur at the farthest 

point on each phase line [29]. To keep the voltage at all nodes 

within the limit, three voltage measurement devices are 

installed at the farthest point of each phase line. If one of the 

measurement devices detects that the voltage bound is 

violated it broadcasts a capacity event signal to the EVs 

connected on the same phase. 

In a similar fashion, the transformer needs to have sensing 

functionality to measure the current (and hence power flow) 

in each phase line in order to monitor their loading. Then, if 

the actual power flow in a phase line exceeds the rated 

loading level, the transformer broadcasts a capacity event 
signal to each EV charger connected to the overloaded phase.  

The distributed EV charging algorithm is otherwise 

unchanged, with chargers reacting in the same way to all 

types of capacity event. If multiple capacity events are 

received in the same time step, the charger reacts only to the 

first of these and ignores the others.  

 

D. Centralized charging algorithm 

The centralized charging algorithm proposed here is partly 

inspired by the optimal EV charging algorithm in [9], where a 

linear programming technique is employed to solve the 
optimization problems. In our work, a similar framework is 

applied which is adapted to deal with binary control actions. 

A technique based on mixed-integer-linear-programming 

(MILP) is employed to optimize the specific charging 

objective defined in Section II. The voltage deviations at each 

node are calculated at each time step using the voltage 

sensitivity matrix. Hence, the voltage constraint for charging 

point i at time step k in Equation (7) becomes 

 

            
 
                          

 ,     (10) 



 

Here,    represents the voltage sensitivity at node i due to an 

EV charging at node i and     is the sensitivity of node i to an 

EV charging at node j [9]. Let the N * N voltage constraint 

matrix A be a matrix containing    in the diagonals and     as 

off-diagonal elements. Then an MILP optimization problem 

incorporating the voltage constraint can be defined as: 

 

Maximize: 

     
Subject to: 

                                                

 

where      is the state of the EVs with entries either 0 or 
1 representing the off and on state, respectively, of each 

EV.       is a coefficient vector with all one entries. 

       is the voltage sensitivity matrix.      is the 

vector with the maximum voltage deviation from the current 
node voltage to the corresponding voltage limit. These 

matrices are then augmented to also include the phase load 

constraint in Equation (5) and the transformer loading 

constraint in Equation (6). 

Such problems can be solved by the MILP method. In our 

work, we apply the efficient solver lp_solve [23] to calculate 

the optimal values at each time step in a Matlab simulation.  

 

IV. SIMULATION AND RESULTS  

A. Simulation Setup   

   In order to compare the performance of the different 

charging strategies, a low-voltage distribution network with 

45 EV charge points was modeled using the OpenDSS 

software [24], as illustrated in Fig.1. All charge points were 

evenly distributed on each phase. The distance between each 

charge point was set to 10 meters. At the source end of the 

network, a 10kV/400V (400kVA) delta/wye (grounded) two 
windings step-down transformer was modeled. The percent 

resistance of each winding on the transformer was set to 0.5, 

and the percent reactance of the transformer from primary to 

secondary side was set to 2. The voltage from the external 

grid was set to 1.05pu and the minimum voltage level that 

can be tolerated on the grid was set to 0.95pu. In addition, a 

50kVA safety margin was reserved for the transformer for 

secure operation. The distance between each section of the 

three phase underground cable was set to 100meters. The 

aggregated load profile for the office building was generated 

by selecting several winter load profiles from the smart meter 
electricity trial dataset (small medium enterprise subset) 

provided by the Commission for Energy Regulation (CER) in 

Ireland [25]. For simplicity, the power factor for the official 

building load was assumed to 0.95 lagging over the course of 

the full M time slots. The time step was set to 1 sec for a 14 

hour simulation conducted from 6am to 8pm. The load profile 

for the office building applied in this time period is illustrated 

in Fig. 3. Each data point was sampled and held every half an 

hour.  

 
Fig.3: Office building power consumption from 6am to 8pm.  
 

The maximum charge rate of each EV was set to 3.7kW 

which corresponds to a nominal charging current of 16A. The 

battery capacity for each EV was assumed to be 20kWh and 

the initial energy required for each EV was normally 

distributed. The mean of the distribution was set to 10kWh 

and the standard deviation was chosen as 1.5kWh. This 

means 99.9% of the EVs require between 5kWh and 15kWh 

and 81.8% require between 8kWh and 12kWh to fully charge 

their batteries. We assume that an EV is able to drive 5.91km 

per 1kWh charge, which is consistent with the Japan 10-

15mode in [26]. Hence, the energy requirement of 81.8% of 
the EVs corresponds to a travel range of between 47.28km 

and 70.92km. As shown in [27], approximately 95% of car 

commuters in the U.S travel less than 40miles (64.4km) 

during weekdays. This supports the chosen normal 

distribution for the energy requirements.  

To be consistent with the travel pattern in [28], we assume 

that EVs connect between 7am and 10am (19% of all daily 

journeys in Irish Urban areas) with the following time 

distribution: 7am-8am (21%), 8am-9am (47%), 9am-10am 

(32%). Similarly, most of them depart again between 4pm to 

7pm (21% of all daily journeys in Irish Urban area) with the 
following time distribution: 4pm-5pm (33%), 5pm-6pm 

(38%), 6pm-7pm (29%). We assume that in total 40 EVs 

connect, which represents 89% of available charging points. 

Without loss of generality, in our simulation three EVs were 

assumed to randomly connect to the parking lot at the 

beginning of the simulation time (6am). 

 

B. Results   

The simulation results for the charging strategies 

considered in this paper are compared from the perspective of 

both the grid operators and customers.  

Power grid utilities wish to reduce power losses, voltage 
sag and maximize the energy that can be delivered to 

customers at all times. Hence, in this paper, the power 

utilization, the power losses in the cables and the voltage sag 

are investigated, see Fig. 4 to Fig. 6.  
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The results show that uncontrolled charging has a severe 

impact on the grid and could not be tolerated. The basic 

distributed charging strategy improves the power network 

performance with regard to power losses and power 
utilization. However, the voltage drop is still significant, as 

shown in Fig. 6. By using the enhanced distributed algorithm 

the minimum voltage is substantially improved. It is also 

noteworthy that the enhanced distributed strategy achieves 

comparable performance to the centralized solution 

throughout the simulation in terms of grid operation.  

From the customer side performance is measured in terms 

of the quality of service that is delivered. This is basically the 

amount of energy they receive or whether their EV is fully 

charged before their departure. The best result in this regard 

is achieved by uncontrolled charging, where all the EVs can 
finish charging within four hours. When using the enhanced 

or distributed algorithms all EVs were able to finish charging 

before departure. In terms of customer wishes, the centralized 

approach behaved worst with multiple EVs not fully charged 

at their departure. As expected, the enhanced method is able 

to provide some fairness to the EVs. In other words, the 

centralized method provides the best solution from the grid 

perspective, but ignores fairness from the perspective of the 

customers. A detailed comparison of the charging time for the 

EVs can be found in Table 1, including the average charging 

time and the extreme values.  

Therefore, the proposed enhanced distributed strategy can 
provide enormous benefits to both utilities and customers. At 

the same time the required enhancements to the existing 

charging infrastructure are small, as it requires only broadcast 

communication and measurement points at critical locations 

in the grid. Note that the results presented here depend on the 

investigated power grid. The actual improvements possible 

can vary when using other grid structures and need to be 

investigated in detail. 

 
Fig. 4: Comparison of the power utilization  

Note: In this graph, the available power means the total available 

power that can be used for EV charging.   

 
Fig.5: Comparison of the total power losses 

 
Fig.6: Comparison of the minimum voltage profile  

 

TABLE I.  COMPARISON TABLE OF THE GRID PERFORMANCE 

EV Charging 

Strategies 

Unctrl Distributed Enhanced Centralized 

Ave Time(h) 

Std Time(h) 

Min Time(h) 

Max Time(h) 

No. not finished 

Missed(kWh) 

Earliest EV(h:m) 

Last EV(h:m) 

2.81 

0.40 

1.92 

3.59 

0 

0 

08:26 

13:15 

3.74 

0.76 

2.16 

4.90 

0 

0 

08:28 

14:33 

4.60 

1.51 

2.06 

7.43 

0 

0 

08:30 

17:42 

4.14 

1.61 

1.92 

7.79 

2 

5.65 

08:26 

N/A 

 

Unctrl: Uncontrolled charging; Distributed: Distributed charging; 

Enhanced: Enhanced distributed charging Centralized: Centralized 

charging solution. Ave Time: Average charging time; Std Time: Standard 

derivation of charging time; Min Time: Minimum charging time; Max Time: 

Maximum charging time; No. not finished: Number of EVs not fully charged 

at plug-out; Missed: Total energy required to finish charging EVs not fully 

charged at plug-out; Earliest EV: The earliest time that an EV finishes 

charging; Last EV: The latest time that an EV finishes charging;  
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V. CONCLUSIONS  

In this paper, the distributed algorithm, suggested by the 

authors in [12], is investigated in a realistic power grid 

simulation. The algorithm, which is designed to control the 

scheduling of binary loads has very small communications 

needs and requires only one power measurement. The 

performance of the algorithm is compared with an 

uncontrolled charging scenario and a centralized control 

algorithm in respect to power utilization, power losses, 

minimal voltage at the nodes, and quality of service for 

customers. 
Some modifications to the original algorithm in [12] are 

proposed to enable it to address local power system 

constraints violations, with a minimal increase in 

communication and measurement requirements.  

Both the basic and enhanced distributed algorithms are 

able to lessen the impact on the grid of EV charging loads. 

While the basic distributed algorithm does not consider 

voltage constraints, the enhanced algorithm manages to keep 

the voltage above a minimal level. 

Future work will look at adapting the algorithm to 

incorporate further grid constraints, in particular phase 

imbalance and frequency deviations. Additionally, the 
algorithm will be tested in a variety scenarios including 

domestic charging and larger networks.   
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