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1. Introduction

Operator theory has been a fascinating field of research during the last two decades
due to the advent of the computer. It plays an important role in applied and pure math-
ematics viz. fixed point theory [1], numerical analysis [2], image processing [3], neural
networks, machine learning [4], finding solutions for ordinary and partial differential equa-
tions [5], bio-inspired soft computing [6], and robotics [7]. In the computational aspects of
mathematics and the shape of geometric objects, CAGD (computer-aided geometric design)
plays an interesting role in the mathematical description. It focuses on mathematics, which
is compatible with computers in shape designing. To investigate the behavior of parametric
surfaces and curves, control nets and control points have significant roles, respectively.
CAGD is widely used as an application in applied mathematics and industries. It has
several applications in other branches of sciences, e.g., approximation theory, computer
graphics, data structures, numerical analysis, and computer algebra. In 1912, Bernstein [8]
was the first who introduced a sequence of polynomials to present the simplest and short-
est proof of the celebrated Weierstrass approximation theorem with the aid of binomial
distribution as follows:

1

Bi(gy) = Zg(ll/)( f/ )y”(l -y, yelo] 1)

v=0
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where ¢ is a bounded function defined on [0, 1]. The basis ( ]l/) ¥/ (1 —y)!=" of the Bernstein
polynomials (1) has significant role in preserving the shape of the surfaces or curves
(see [9-11]). Graphic design programs viz. Photoshop Inkspaces and Adobe’s Illustrator
deal with Bernstein polynomials in the form of Bezier curves. To preserve the shape of
the parametric surface or curve, it depends on the basis ( ]l/) y’(1 —y)!=", which is used to
design the curves.

In 1962, Schurer [12] presented the following modification of the Bernstein operators (1)
denoted as B,,; : C[0,1+ 1] — C[0,1] and given by:

By, (h; y) nflh< >( m;rl )yf(l—y)”’“f,ye [0,1]. @)

for! € NU{0} and i € C[0,1 + I]. Note that the operators (2) are an improved version of
the operators (1) as the domain of the function is extended from C[0,1] to C[0,1 + [].

In the recent past, Chen et al. [13] introduced a family of generalized Bernstein opera-
tors that is termed as a a-Bernstein operator based on « € [—1, 1] as:

Puma(ly) = 2h< > (y), 3)

where the a-Bernstein polynomial QE:? (y) of degree m is given by Q%‘,"O) (y) =1-y,
Q('X)( ) =y and:

mw = ("7 )awyr (2] )a-wa-y)
+ ( T )vcy(l—y)] xy (1 -y,

with m > 2, y € [0,1]. Furthermore, Cai et al. [14] found that the a-Bernstein operators
are positive linear operators for 0 < a < 1. In [13], the authors investigated various point-
wise and uniform approximation results. Furthermore, many researchers, e.g., Kilicman
etal. [15], Acar et al. [16], Aral et al. [17], Cai et al. [18,19], Cetin et al. [20,21], Mohiuddine
et al. [22], Aslan et al. [23,24], Acu et al. [25], Agrawal [26], Nasiruzzaman et al. [27],
and Ayman-Mursaleen et al. [28,29], have intensively studied a-Bernstein operators and
their modifications for better approximation results. In [30-32] some interesting studies
have been carried out. Recently, Cetin [33] introduced a modification of Bernstein—Schurer
operators introduced in (3) as:

m+l ;
Emlehy Zh( ) ) 4)

where the a-BernsteinSchurer polynomial Cr(:]) (v) of degree m is introduced by Cl(i)) (y) =

1—y, Cl(ixl) (y) = y and:

cow = {(" T (") awa-n @

+ <m1+ l) ay(1 = y)}y7_1(1 —y)" ©
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where m+1 > 2,y € [0, 1]. Furthermore, Rao et al. [34] constructed a—Stancu—-Schurer
operators to approximate a class of continuous functions as:

m+1 ,
DY (y) =Y Co) (y)h(w), @)

=0 m—+y

whenever the above sum converges. Here, Cr(n“]). is given by (5) and 0 < 6§ < «. The

operators (7) can approximate only the continuous functions. To approximate the wider
class of functions, i.e., the Lebesgue integrable functions, we define a new sequence of
linear positive operators as follows:

jHo+1

by m+l ) AT
D () = (m+7+1) Zcm] /W h(u)du. ®)

]= m+y+1

In the subsequent sections, we obtain moments and central moments, the order of
approximation, local and global approximation results in terms of modulus of continuity,
Peetre’s K-functional and second-order modulus of smoothness. A Voronovskaja-type ap-
proximation result is also proven. Lastly, two-dimensional a-Stancu-Schurer-Kantorovich
operators are introduced and their rate of convergence, numerical error estimates and
graphical representation are also presented.

2. Preliminary Results

Here, we consider ¢;(t) = t and i t) = (- t),j € {0,1,2} as test functions and

central moments, respectively.

Lemma 1 ([34]). Let the operators D*i{fx (45 ) be introduced by (7). Then, we have:

0,
ijx,l(eo;x) =1,

5, m—+1 o
Dinaa(€17%) = <m+7)x+ m+y’

DT (eyix) = (m+l)2xz+{[m+l+2(1—c7)](1_x)+2(5(m+l)}

el m-+y (m+7)? (m + 7)?
52
+(m+7)2’
D*—6 13+ (120 —1 12 +6(9 —10 l
Dml(%x)_{[(m+) (m+1)°+( ?m+1y(;:+) +6( o)(m +1)]

R )eolets)

Lemma 2. Let the operators D*m‘ (45 ) be introduced by (8). Then, we have:

5,
D*Ja ((eo;x) =1,

6,7 N m+1 6 1
Dmal(@l’x)_<m+7+1>x+m+7+1+2(m+7+1)’
2
%0,y B m+1 2 m+1+2(1-0)] . 26(m+1)
Dyyileaix )_<m+7+1> * +{ R S ey G

N &2 +( m+1 >x+ 5
(m+y+1)2 (m+y+1)2 (m+y+1)2
1 1
+ - :
(m+y+1)2 " 3(m+q+1)2
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Proof. We prove above equations with the aid of Lemma 1 as:

5 mtl (@) i
D7 i(e0rx) = (m+y+1) ), €, 5(x) / jis AU
j=0 m+y+1
=1.
5 @ T
D*n;?ml(el;x) =(m+y+1) 2 Cm,]-(x) / i udu
j=0 m+y+1

m—+y Sy 1 Sy
_ Do . D .
<m+7+1> maci (€1 %) + (2(m+’y+1)) ) (€03 %)

_( m+1 >x+ ) 4 1
C\m+y+1 m+y+1 2(m+vy+1)

m-1 j+o+1

D fnL,l(ez;x) =(m+y+1) Z C,Sff;(x)/ ];H u?du
j=0 m+y+1
2
_(_mty 5 (. m+y 5 (. 1 8 (.
- <m+7+1> D ile2:x) + ((m+ry+1)2)D"W(el’x)Jr Ty 1) Dt (03%)
m+1 \?, {[m+l+2(1—zx)] 26(m +1) }
= ——————— 1_ —
<m+7+1> S R e S ey
N 52 +( m—+1 )x+ 6
(m+y+1)? (m+y+1)? (m+y+1)?
1 1
+(m+’y+1)2+3(m+’)/+1)2
{[m+l+6(1—a)] 3(5[m—|—l+2(1—¢x)](1_x)+ 36%(m +1) }x
(m +y+1)° (m -+ +1)° (m -+ +1)°
5 (m+1)? > [m+1+2(1—a)]
2 1—
+(;11+7+1)3Jr ((m+7+1)3>x+{ (m+y+1)3 (1-x)
26(m+1) }x+ 52 < m+1 )x
(m+y+1)3 (m+y+1)2 (m+y+1)3
) 1 1

+ - + :
(m+y+1)3 2m+y+1)3 4(m+y+1)3

This completes the proof. [

Lemma 3. Let D*i;:fx,l( .;.) be the sequence of operators introduced in (8). Then,

D it (xl0720) = <m+v+1>x+m+fr+1+2(m+v+1)’
; I \? [m+1+2(1—«)] 26(m +1)
DO 2 () x) = [ 2 _ )
it (9 (1):2) (m+7+1 § RS A AN TR v

N 52 +( m+1 >x+ )
(m+q+1)2 (m+q+1)2 (m+y+1)2

n 1 n 1 B ( m+1 )x2

(m+y+1)2  3(m+y+1)? m+y+1
2x0 X 5

- - —X

m+y+1 (m+y+1)
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Proof. In view of Lemma 2 and using property of linearity, we can easily calculate

DT (1(1);x) = DT (%) — XD (1;0)

:( m+1 >x—|— ) n 1 B
m+y+1 m+fy+1 2(m+vy+1)
_ m—+1 1
_<m+7+1 ) +2(m+7+1)
(l=r-1 1
_(m—l—’y—I—l) +m+’y+1+2(m+'y+1)'
Now,
D () x) = DU (85%) = 23D () + D7 (1;0).

Similarly, we can obtain the second central moment by using Lemma 2 and the proof
follows immediately. [

3. Order of Approximation
Theorem 1. Let h € C[0,1+1] for I € RT and w(h; 6y,,,) be the modulus of smoothness. Then,

D (%) = h(x)| < {1 + \/%}w(h; Oy,

where 6y, = (m+ v+ 1)*% and

m—1)2x2 4+ m+1+2(1—a)|x(1—x) +26(I —y+1)x + 6%+ (m+1Dx+6

Sy (
D' (x) = (m+y+1)

Proof. For h € C[0,1+1],y € [0,1+ ] and in view of monotonicity (let T : C[a,b] —
Cla, b] be an operator and f, g € Cla, b]; then, T(f) < T(g) or T(f) > T(g) as f(x) < g(x)
or f(x) > g(x) Vx € [a, b], respectively) and the linearity property of the operators given
by (8), we can easily find:

D () — ()| < {1+6 LD (1) )}w(h;em)
(m—=02x2+[m+14+2(1—a)]x(1—x)+26(I —y+1Dx+6>+ (m+1)x+0 .
< {1+\/ ity +1) }w(h,@m,y),

where 6, , > 0. Thus, we arrive at the required result. [J

Next, we give the order of approximation for operators defined in (8) using the
modulus of smoothness of the first derivative of the function, i.e., w(f; Omyy) = W1 (f;0m,qy)-

Theorem 2. For the operators defined in (8) and 0 < 6 < -y, we have:

DT iy~ k)| < @ (m+y+1)T )DL (R (i)

{1—1— \/(m+'y+1 \/D*mal 2(t);y)}.
Proof. Foranya < y;,y2 < b, we know that:

h(y1) =h(y2) = (y1—y2)H'(8)
= (1 —y2)W (1) + (v1 —y2) [H'(Z) = K (n1)], ©9)
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where ¢ € (y1,12). Furthermore, we have:

(1 = v2) [W() =W (y)]] < ly1 — v2l(A + Dw1(Bmy), A= AY1,92:0my).  (10)

Next, we obtain:

%0, . o = (2) ]+5
st | = | el {n(5 ) —h<y>}‘. a)

In view of (9)—(11), we obtain

DT ) — h(y)| <

j=0
# @nlou) Sy v e
< witom{ L5 e
© Bl () )
< wl(emﬂ{]imf’_yil_ 7(15(3’(]/)
i Glfi(mf'ryi—l —y>2C,:,?(y)}

S - *‘5' .
S w1 (Gm,’Y) D*mzx,l (th(t),‘y) {1 + gm,ly D m,VM (th(t)/ ]/) }
Choosing 0, = (m + v +1) 7, we obtain:
*0, 2+ %0, .
D) =h)| < wr((mra+ D)D)

(1 fon a0 )

which completes the proof of Theorem 2. [

~

4. Voronovskaja-Type Results
Theorem 3. Let 0 < 6 < «y. Then, for h € C? [0,1 + 1], we have:

lim m{D*7 (1y) = h(y) } = [(1 = 7)y + 3 (v) + Mh”(y).

m—o0

Proof. Fory,t € [0,1],h € C2 [0,1 + [] and using Taylor’s series expansion, one has:

_1)\2
(e) = h(y) + (=) ) + C0 ) -,

where 7(t,y) denotes the continuous function over C[0,1 + [] and lim;,, 7(t,y) = 0.
Operating C, j for both sides and summing over j, we have:

"
*0, *0, %0, %0,
DT (y) = h)D"T(0) W @)D (i) + D (1)
5,
D (b y) (=) y).

+
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From Lemma (2), we obtain:

: %4, 1-—
zim DS (y) ()} =0 -y + ety + L)
: 0,
+ limm D (ﬂ(t;y)(t - y)z;y)- (12)
Now, we calculate the last term in view of Holder’s inequality and Lemma (2) as:

mD (1) (= p)%y) <mPD T (=) DT (n(5)%y).

Let ¢(t;y) = n?(t;y). Then, lim; ., ¢(t;y) = 0. Therefore,

. %0,
lim mD*"" | (ly(t;y)(t—y)z?]/> =0.

m—o0

Using this relation in Equation (12), we arrive at the desired result. [

5. Error Analysis

In this section, we present the convergence of the operators given in (8) for the function
h(y) = y® + 10y?> — y + 1. In Table 1, the error has been computed for different values of

m = 10,20, 30 for the operator D*iﬁxl(.; .) by takinga = 09,6 = 0.2, =0.1,l = p=1,and

using the error formula E*f&rl = |D*(75r,l70¢,l(h’ y) — h(y)|. Graphical representations of the
convergence and error of the operator given by (8) are shown in the graphs given in Figures 1

and 2, respectively, by taking the values of m = 10,20,30 and (y) = y> + 10y> — y + 1.

Table 1. Error analysis for the operator D*fgx,l ()

y E*(ls(’]’,ya,l(h; y) E*gf)’,ya,l(h;y) E*gi)',yu,l(h;y)
0.1 0.3359466972 0.1634341528 0.1076829667
0.2 0.5446198858 0.2725230647 0.1815299016
0.3 0.7365273448 0.3730292257 0.2496102364
0.4 0.9097637900 0.4639282561 0.3112238357
0.5 1.06236899 0.5441657615 0.3656499644
0.6 1.192318799 0.6126519842 0.4121435043
0.7 1.2975149875 0.66825566 0.4499305863
0.8 1.3757737241 0.7097969736 0.4782035582

0.9 1.4248125475 0.7360394949 0.4961151963
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16 ; " '—_
) h(y)
_ 5Y op. ]
G Dioei(l;y)
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Figure 1. Graphical approximation representation of D*i’z}c,l (;.) with h(y).

T T T T T T

14F E

8,y 1
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-
-
o
>~ b
o g
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Figure 2. Graphical representation of error.

6. Construction of Two-Dimensional a—Stancu-Schurer—Kantorovich Operators
Let ] = {(y1,y2) : 0 <y <1+1,0 <yr <141} and C(J) be the class of all
continuous functions on ] equipped with the norm [|g||¢(j) = sup(y, y,)es18 (Y1, v2)!-
Then, for all 1 € C(]J) and my,mp € N, we construct a new sequence of bivariate
a—Stancu-Schurer—Kantorovich operators as follows:

Cou by eSS (@)
H ot By, y2) = (my + 71+ 1) (m2 + 12+ 1) jzo jZO Conjy W1)Cy 1, (42)
1= 2=
j1+61+1 jot+dp+1
m 1 m
x SIS h(ty, )dtdty ["202T h(ty, b)dhdt,,  (13)
my+y1+1 my+yp+1
where:
mi+1;—2 mi+1; — 2
e = {("T ) aww (M 0w -w
1 1

mi+li 'i_ m;+l—7.— .
< ji )"‘yi(l_yi)} X Y] 1(1—%‘) =il for i€ {1,2}.

1
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Lemma 4. Let e;j(y1,y2) = vi'yal 0 <i,j < 2 suchthat 0 < i+ j < 2. Then, for the operator

given by (13), we have:
%01,02,71,72 .
H my,my,K, 11,12( OO/ylzyZ) L
x01,02, 71,72 . _ my+1 1
H my, el 1o (61 0/ Y1, }/2) = (m1+'y1+l Y1+ m1+71+1 + 2(m+y1+1)’
%01,02, 71,72 . my+1 1
H iy iy oy 1 (e0,1341,y2) (m2+72+1 Y2t mz+”¥z+1 t AT
%01,02, 71,72 _ _omy+l 1
my, a0l lp (e11;y1,y2) = m+y+1 ) Y1 + m1+’h+1 T 2(my+y1+1)
> TH2+Z + 1
my+72+1 m2+72+1 2(my+12+1)
x61,02,71,72 _ my+lp 2 [ma+h+2(1-a)] (1
H my ma, eyl (e() 2, Y1, yZ) - np+y2+1 yz + 7(??12-&-’72-&-1)2 (1 yz)
(2(52+1)(m2+12) 1
T (matmt1)? (V2 T (mz+72+1) T (ma+72+1)2
2

%01,02,71,72 _
H my,mye,l,lp (20141, y2) =

[ en A e Y

mq+1 2 my++2(1—a
(mhl’;}%l) y% + { | (1m141r71(+1)2)] (1 o yl)

201 (m1+h) ( my+h )
+<m1+71+1)2}y1+ (m1+71+1)2 ANy AL

+

41 1 1

(my+71+1)2 + (my+71+1)? t 3(my+71+1)2"

Proof. Using Equations (13), (8), Lemma 2 and the linearity property, we have:

%01,62,71,72 .
H my,mo,a,ly,lp (60'0’ Y1, ]/2)

%01,02,71,72
ol (€100 Y1,Y2) =

%01,02,71,72 .
H a1, 0,11,1 (e0,1 1, y2)

%01,02,71,72
H my,mig,0ly,lp (er1iy1,y2) =

x01,02, 71,72
H my,may el ,lp (e20i41,¥2) =

%01,02,71,72 .
H my,may el ,lp (€021 41, 2)

which proves Lemma 4. [

*01,71 D* 02,72

=D m1a11<601y ) mz,xlz( €0; Y2),

DI (o1, y1) D12 (ep; 1),

my,u,lq my,u,ly

o1, K )
= D*nilr)l;gll (eO/yl)D*WZ’:{zlz( 1/y2)/

D, (e1;91)D” ,,fjoflz(el;yz),

DM (e2iy1) D22 (e0; ),

mltxll mZﬂtlz

*01,71 %02,72

= D mllel (EOIy )D mz,a,lz (32/]/2),
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Lemma 5. Let ‘I’Iy,}’yz(t,s) = 7ii(t,s) = (t—y1)'(s —y2)/ fori,j € {0,1,2} such that 0 <
i+ j < 2is the central moments. Then, the operator given by Equation (13) satisfies the following
identities:

%01,02,71,72 _
H ml,mz,lel,lz 7700/]/1/]/2) - 1/

h—m-1 1

%01,02, 71,72
(m1+71+1>y1 + m1+’h+1 + 2(my+m1+1)7

my,ma,elylp

11,0, Y1, Y2)

h—7-1 1
matnat1 )Yzt m2+’Yz+1 + 2(my+92+1)”

%01,02,71,72
H nq,mp,x ll 12

x01,02, 71,72
my,mauly lp \T1 Y1, Y2

(
B
(o5 y1,Y2) =
( )

h—-m-1 1
((m1+71+1 y1+m1+71+1+ 2(my+y1+1)

Lh—y-1 % 1
x ((m2+72+1 Y2+ m2+72+1 + 2(my+72+1) )’

#01,02,71,72 my+h [m+h+2(1-a)] (1 _
H e i, 11,12(’72 0 Y1, Y2) = (mlﬂlﬂ (75172 (1—1y1)
251 m1+11 ( m1+ll )
R CTE=rE= m1+’h+1 7 T (21
1
+ (m1+71+1)2 + (m1+71+11) + 3(my+71+1)?
_ my+h 2 _2pnd Y1 2
mitntl JY1 T mrn T ) I
2
#01,02,71,72 my+lp 2 [ma+h+2(1—a)] /1
H my,mp,,ly,ly (r]OZIyl/yZ) my~+yy+1 Y2 + (my+y2+1)2 (1 yZ)
255 (mp+1p) 5:2)' ( mo—+lp )
* (ma+vy2+1)? . (my+72+1)? . (12 +172 ) Y2
[ 1 1

(my+72+1)2 + 3(my+72+1)2

_ o math ]/ 2y2by Y2 7}/2
my+72+1 JI2 T my+ya+l  (mp+yr+1) 2

Proof. The proof follows from Equation (8), (13), Lemma 3 and the linearity property of

*51152/?1/72 .
my,my el (). O

7. Convergence of the Operators (13)

01,02, 71,72
my,my,u,lq,l

To establish the convergence of H* (.;.) (13), we recall the following result

due to Volkov [35]:

Theorem 4. Let Iy and I be compact intervals of the real line. Let Ty m, : C(I1 X I) —
C(L x I), (my,my) € N x N be positive linear operators. If

JHm Tom(e) = e (i) € {(0,0),(1,0), (0,1)}, and
im Ty m,(e20 +e02) = ex0+e02,

mq,MmMy—00

uniformly on I x I, then the sequence (T, m,g) converges to g uniformly on Iy x I, for any
geh x.

Theorem 5. For the sequence of operators presented in (13), we have:

lim o2 () y1,42) = h uniformly for every h € C(I?).

11,11 —>00 my,mo,elyly

Proof. The proof follows easily from Lemma 4 and Theorem 4. [
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8. Numerical and Graphical Representation for Approximating the Operator (13)

To verify the convergence of the operator defined in (13), we take the polynomial
f(y1,v2) = y1°y2 + y1%y2® and the following values of the parameters: §; = &, = 0.2, 9] =
72 =014 =1, =1,a = 0.9. In Table 2, the error has been computed for Operator (13) for
different values of my, m; by using the formula Ej, . (.;.) = |H*f;15fnzz'lylzlz ()= flyLy)l

; #0102, 1172 (.
Table 2. Error analysis of the operator H*, “""" 1% (.;.).

y1 and y2 ETO,IO (fiy1,92) E;0,30(f S Y1, Y2)
y1=0,12=0 3.52494263 x 10° 2.04157341 x 1078

y1 =01,y =0.1 0.0006257139 0.0000873557
y1 =02,y =02 0.0044650040 0.00094126079
y1 =03,y =03 0.0157503994 0.00394907782
y1 =04,y = 04 0.0394690253 0.01089453119
y1 =05,y =05 0.0800191042 0.02362500785
y1 =06,y = 0.6 0.1364247324 0.04371864830
y1 =07,y =07 0.1802440791 0.07212098313
y1 =08,y =038 0.0748802638 0.07015913210
y1 =09,y =09 0.5863803996 0.02385931554

Graphical analysis was also carried out for the convergence and error of Operator (13)
in Figures 3 and 4, respectively. The blue color represents the graph of the function f, and
the green and red colors show errors for m; = my = 10 and m; = my = 30, respectively.

oo 0.5 10

Figure 3. Graphical representation of approximation.

Figure 4. Graphical representation of error.
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9. Conclusions

In this research work, we have constructed a-Stancu-Schurer-Kantorovich operators
in single and two variables. Furthermore, the order of approximation was obtained for
these operators. Moreover, we analyzed the error estimation and rate of approximation
numerically and graphically for both the sequences of operators presented in Equations (8)
and (13), respectively.
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