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Abstract. In the present paper we investigate the spectrum of operator corresponding to eigenvalue
problem with parameter dependent boundary condition. Trace formula for that operator is also established.

1. Introduction

In this paper we consider the boundary value problem with boundary condition depending on the first
degree polynomial of spectral parameter. Namely, we consider Sturm-Liouville equation with unbounded
coefficient. Note that in boundary condition some first degree polynomials appear before unknown func-
tion, as well as its derivative. Earlier studied problems for Sturm-Liouville operator equation where spectral
parameter appears only before function or only before its derivative. For example, in [1, 2, 3] the asymp-
totics of eigenvalues and self-adjoint extensions of minimal symmetric operators were studied. In [4-10],
we have studied asymptotics of spectrum and established trace formulas for operators generated by regular
and singular differential operator expressions and spectral parameter dependent boundary conditions.

Here we consider in space L2 (H, (0, 1)) (where H is separable Hilbert space) the following problem

Ly := −y′′ (t) + Ay (t) + q (t) y (t) = λy (t) (1)

y (0) = 0 (2)

y (1) (1 + λ) = y′ (1) (h + 1 + λ) (3)

where h is real number, A = A∗, A > E (E is an identity operator in H) and has compact invers A−1
∈ σ∞.

Clear that under stated conditions A is discrete operator. Denote the eigenvectors of A by ϕ1, ϕ2, .... Let
γ1 ≤ γ2 ≤ ... be eigenvalues of operator A. Suppose that operator-valued function q(t) is weakly measurable
and for each t is defined in H.

Fulton [11] has considered the scalar Sturm-Liouville problem

−y′′ (t) + q (t) y (t) = λy (t)
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cosαu (a) + sinαu′ (a) = 0, α ∈ [0, π)

−β1u (b) − λβ′1u (b) = −β2u′ (b) − λβ′2u′ (b)

and given an operator-theoretic formulation of that problem, showing that one can associate a self-adjoint
operator with it whenever the relation

β =

∣∣∣∣∣ β′1 β1
β′2 β2

∣∣∣∣∣ > 0

holds. He obtained the expansion theorem and asymptotic formulas for eigenvalues and eigenfunctions.
In our case, obviously

β =

∣∣∣∣∣ 1 1
1 h + 1

∣∣∣∣∣ = h

and we take h > 0.
Introduce the space L2 = L2(H, (0, 1)) ⊕ H. Define in it scalar product of elements

Y =
(
y(t), y1

)
, Z = (z(t), z1) ∈ L2, (y(t), z(t) ∈ L2(H, (0, 1), y1, z1 ∈ H) by

(Y,Z) =

1∫
0

(
y (t) , z (t)

)
dt +

1
h
(
y (1) , z (1)

)
where (·, ·) is scalar product in H.

About q (t) we assume the next:
1) it is a bounded operator valued function ‖q(t)‖ ≤ const, t ∈ [0, 1], q∗(t) = q(t);

2)
∞∑

k=1

∣∣∣(q (t)ϕk, ϕk
)∣∣∣ < const, ∀t ∈ [0, 1];

3)
1∫

0

(
q (t) f , f

)
dt = 0, for f = ϕk, k = 1,∞.

Formulate (1)-(3) in case q(t) ≡ 0 in operator form. Thus define in L2 operator L0 as

D (L0) =
{
Y =

(
y (t) , y (1) − y′(1)

)
∈ L2/y (0) = 0, y1 = y(1) − y′(1), ly ∈ L2(H, (0, 1))

}
.

L0Y =
(
−y′′ (t) + Ay (t) , −

(
y (1) − (h + 1) y′(1)

))
.

Denote by L operator defined in L2 by L = L0 + Q, where Q Y = (q(t)y(t), 0).
Our aim is to obtain asymptotic formulae for eigenvalue distribution and establish trace formula for

operator L.

2. Asymptotic formulae for eigenvalues

It can be easily verified that L0 is self adjoint positive-definite operator.
Since A is self adjoint operator in virtue of spectral expansion of A we get the next eigenvalue problem

for scalar function yk (t) =
(
y (t) , ϕk

) (
y (t) ∈ L2 (H, (0, 1))

)
−y′′k (t) + γkyk (t) = λyk (t) (4)

yk (0) = 0 (5)

−

(
yk (1) − (h + 1) y′k (1)

)
= λ

(
yk (1) − y′k(1)

)
(6)

Solution of problem (4), (5) is yk (t) = sin
√
λ − γkt.Obviously, the eigenvalues of L0 and the problem (1)-(3)

are the same. They are obtained from equation

−

(
sin

√
λ − γk − (h + 1)

√
λ − γk cos

√
λ − γk

)
= λ

(
sin

√
λ − γk −

√
λ − γk cos

√
λ − γk

)
(7)
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By taking√
λ − γk = z

we can put (7) in form

sin z − (h + 1) z cos z =
(
z2 + γk

)
(z cos z − sin z) (8)

Eigenvectors of operator L0 are

Ψn = Cn
{
sin

(
αkn,mn t

)
ϕkn ,

(
− sinαkn,mn + αkn,mn cosαkn,mn

)
ϕkn

)
(9)

where αkn,mn are roots of (8). Note that αkn,0 are imaginary numbers. Cn are coefficients. Normalizing that
vectors we get the next orthonormal eigen-vectors:

Ψn =

√
4αkn,mn

Kkn,mn

{
sin(αkn,mn )ϕkn ,

(
− sinαkn,mn + αkn,mn cosαkn,mn

)}
ϕkn

where Kkn,mn = 2αkn,mn−h sin 2αkn,mn +2αkn,mn−2αkn,mn cos 2αkn,mn−4α2
kn,mn

sin 2αkn,mn +2α3
kn,mn

+2α3
kn,mn

cos 2αkn,mn .
Now find the roots of equation (8). Firstly we will investigate is there any imaginary root of that

equation. For this reason taking in (8) z = iy, y > 0, we have

−sh y
i
− (h + 1) iy chy =

(
γk − y2

) (
iy ch y +

sh y
i

)
or expanding into series

−

∞∑
n=0

y2n+1

(2n + 1)!
+ (h + 1) y

∞∑
n=0

y2n

(2n)!
=

(
γk − y2

)  ∞∑
n=0

y2n+1

(2n + 1)!
− y

∞∑
n=0

y2n

(2n)!

 .
Simplifying we have

∞∑
n=0

(h + 1) (2n + 1) − 1 − γk + γk (2n + 1)
(2n + 1)!

y2n+1 =

∞∑
n=0

y2n+3

(2n)!
−

∞∑
n=0

y2n+3

(2n + 1)!

yh +

∞∑
n=0

y2n+3 (
h (2n + 3) +

(
γk + 1

)
(2n + 2)

)
(2n + 3)!

−

∞∑
n=0

(2n − 1) y2n+3

(2n + 1)!
= 0.

From the last

yh +

∞∑
n=0

y2n+3 (
2nh + 3h + 2nγk + 2γk + 2n + 2 − (2n + 3) (2n + 2) (2n − 1)

)
(2n + 3)!

= 0. (10)

Consider the function

f (z) = 2zh + 3h + 2zγk + 2γk + 2z + 2 − 8z3
− 16z2

− 2z + 6.

Since f (0) = 3h + 2γk + 8 > 0, f (z)→ −∞ as z→ +∞, and f (z) is continuous on (0,+∞) , then it has roots
on positive semiaxis. There is only one sign change of terms of

f (z) = −8z3
− 16z2 + 2zh + 2zγk + 8 + 3h + 2γk.
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Thus, function f (z) has only one positive root by Descartes principe. Denote it by z = M.Note that f (z) > 0
when z < M and f (z) < 0 when z > M. Therefore, coefficients of series (10) are positive when n < [M] and
negative when n > [M] . Thus there is only one change of sign of coefficients (10). But obviously equation

−sh y + (h + 1) y ch y =
(
γk − y2

) (
sh y − y ch y

)
or

cth y =
γk − y2 + 1

(h + 1) y + y
(
γk − y2) (11)

has no any root for great y values.Left hand side of (11) goes to 1, while write hand side goes to 0 when
y→∞. Consequently we get that eigenvalues corresponding to that roots are

λk = γk + α2
k,0, (12)

where αk,0 = iy and form some bounded set.
Now we shall look for real roots of equation (8). Rewrite it in the form

ct1z =
z2 + γk + 1

z3 + γkz + (h + 1) z
. (13)

From (13) denoting real roots by αm we get

αm =
π
2

+ πm + O
( 1

m

)
(14)

for large m values. Eigenvalues of L0 corresponding to that roots are

λk,m = γk +
[
πm +

π
2

+ O
( 1

m

)]2

. (15)

Thus we have proved the next theorem.
Theorem 1. Eigenvalues of operator L0 form the next two sequence

λk = γk + α2
k,0, (|αk,0| < M, where M is some constant) λk,m = γk +

[
πm +

π
2

+ O
( 1

m

)]2

,

when m→∞.
Lemma 1. If eigenvalues of A γk ∼ a ·kα (α > 0, a > 0), then eigenvalues of operator L0 have the next asymptotics

at large n

λn ∼ Cn
2α

2+α

where C is some constant.
Proof. Firstly find asymptotics of distribution function N (λ) of operator L0. We have

N (λ) ≡
∑
λk<λ

1 +
∑
γk,m<λ

1 ≡ N1 (λ) + N2 (λ)

By using formulas (12) and (15) we get

N1 (λ) ∼ C1λ
1
α

and

N2 (λ) ∼ C2λ
2+α
2α .
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But if α > 0 then 1
α <

2+α
2α , thus N (λ) ∼ N2 (λ) . From which by using similar arguments as in [11] we get the

statement of Lemma 1.
Now we will calculate the first regularized trace of operator L.
Since Q is bounded operator in L2(H, (0, 1) ⊕ H, operator L is discrete (spectrum is discrete). So, its

eigenvalues can be arranged in ascending order. Denote them by µn, (n = 1,∞), µ1≤µ2≤.... From boundednes
of Q it follows that

µn ∼ Cn
2α

2+α ,n→∞. (16)

In virtue of asymptotics (16) in similar way as in [13] we get

lim
m→∞

nm∑
n=1

[
µn − λn − (QΨn,Ψn)

]
= 0, (17)

where nm is some subsequnce of natural numbers.
Lemma 2. Series

∞∑
k=1

∞∑
m=0

4αk,mh
1∫
0

sin2 αk,mtqk (t) dt

Kk,m

where Kk,m = 2αk,mh− h sin 2αk,m + 2αk,m − 2αk,m cos 2αk,m − 4αk2,m sin 2αk,m + 2α3
k,m + 2α3

k,m cos 2αk,m, and qk (t) =

(q(t)ϕk, ϕk), is absolutely convergent.
Proof. In virtue of formulas (14) and (12) the summund for big m values is equivalent to

O
( 1

m2

) ∫ 1

0
|qk (t) |dt

Now validity of statement follows from assumptions 1) and (2).
In virtue of Lemma 2 and expression (9)

lim
m→∞

nm∑
n=1

(QΨn,Ψn) =

∞∑
k=1

∞∑
m=0

2αk,mh
∫ 1

0 cos
(
2αk,mt

)
qk (t) dt

Kk,m

Consider the finite sum

SN =

N∑
m=0

2αk,mh cos
(
2αk,mt

)
(18)

For evaluating lim
N→∞

SN choose a function of complex variable whose poles are roots of equation (8), and

residues of that function at poles are terms of sum (18). Taking the function

1 (z) =
2zh cos 2zt(

sin z−(h+1)2 cos z
z cos z−sin z − z2 − γk

)
(z cos z − sin z)2

we can see that it has such properties. Hence its poles are αk,m.
Evaluate residues of 1 (z) at poles. Thus

res1 (z)
z=αk,m

=

[
(cos z − (h + 1) cos z + (h + 1) z sin z) (z cos z − sin z)

(z cos z − sin z)2 −
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−
(cos z − z sin z − cos z) (sin z − (h + 1) z cos z)

(z cos z − sin z)2 − 2z
]∣∣∣∣∣∣

z=αk,n

(
αk,n cosαk,n − sinαk,m

)2

=
2αk,mh cos 2αk,mt

Ak,m

=
2αk,nh cos

(
2αk,nt

)
−hαk,n + h cosαk,n sinαk,n − 2αk3,n cos2 αk,n + 4αk2,n sinαk,n cosαk,n − 2αk,n sin2 αk,n

=
4αk,nh cos

(
2αk,nt

)
−2hαk,n + h sin 2αk,n − 2αk3,n − 2αk3,n cos2 αk,n + 4αk2,n sin 2αk,n + 2αk,n cos 2αk,n

(19)

where Ak,m =
(
−h cosαk,m + hαk,m sinαk,m + αk,m sinαk,m

) (
αk,m cosαk,m − sinαk,m

)
−α2

k,m (h + 1) cosαk,m sinαk,m−

2α3
k,m cos2 αk,m + 4α2

k,m sinαk,m cosαk,m − 2αk,m sin2 αk,m. As it is seen from (19) residues of 1 (z) at poles are
terms of sum in (18).

But roots of equation z cos z − sin z = 0 are also poles of 1 (z) .
Denote them by βn. They have the asymptotics βn ∼

π
2 + πn for large n.Thus

res 1 (z)
z=βn

=
2βnh cos

(
2βnt

)
−

(
sin βn − βn (h + 1) cos βn − (β2

n + γk

) (
βn cos βn − sin βn

)
)βn sin βn

in virtue of relation

βn cos βn − sin βn = 0,

it follows that

res 1(x)
z=βn

=
2βnh cos

(
2βnt

)(
sin βn − βn (h + 1) cos βn

) (
−βn sin βn

) =
2βnh cos

(
2βnt

)
−βnh cos βn

(
−βn sin βn

) =
4 cos

(
2βnt

)
βn sin 2βn

.

We must select for each k a contour which includes all αk,m

(
m = 0,N

)
values, so integration of 1 (z) along

that contour will yield the sum in (19) by Cauchy theorem.
For that purpose take a rectangular contour CN with vertices at points AN±iB, ±iB,where AN = π (N + 1) ,

and B >
∣∣∣αk,0

∣∣∣.
Let CN by pass the origin and−αk,0 along semicircle from the left, and imaginary numbers αk,0

(
n = 1,M0

)
from the right. Since 1 (z) is odd function of argument z the integral along left-hand side of contour vanishes.
Consider integral along semicircle by-pasing zero from the left:

i =

∫
z=reiϕ

−
π
2 ≤ϕ≤

π
2

1 (z) dz

=

∫
z=reiϕ

−
π
2 ≤ϕ≤

π
2

2zh cos 2zt dz
(sin z − (h + 1) z cos z) (z cos z − sin z)

(
z2 + γk

)
(z cos z − sin z)2 =

∫
z=reiϕ

−
π
2 ≤ϕ≤

π
2

2zh
[
1 − 4z2t2

2! + ...
]

F(z)
,

where F(z) =
[
z − z3

3! + ... (h + 1) z
(
1 − z2

2! + ...
)] [

z
(
1 − z2

2! + ...
)
−

(
z − z3

3! + ...
)]
−

−

(
z2 + γk

) [
z2

(
1
2 + 1

2

(
1 − 2z2 + ...

))
− z

(
2z − 8z3

3! + ...
)

+ 1
2

(
1 − 1 + 4z2

2! + ...
)]
.

When r→ 0∫
z=reiϕ

−
π
2 ≤ϕ≤

π
2

1 (z) dz ∼
∫
z=reiϕ

−
π
2 ≤ϕ≤

π
2

2zh
[
1 − 2z2t2 + ...

]
−2γkz2 dz
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so

lim
r→0

∫
z=reiϕ

−
π
2 ≤ϕ≤

π
2

1 (z) dz = lim
r→0

π
2∫
−
π
2

h ireiϕdϕ
−γkreiϕ = −

h
γk

[
π
2

+
π
2

]
= −

πhi
γk
, (20)

Since for big z values

1 (z) ∼
cos 2zt

z3 cos2 2
,

taking z = u + vi it is easily seen that 1 (z) will be of order e2|v|(t−1). That is why integral along upper and
lower parts of contour vanishes as B→∞.

On the right hand side of contour when N→∞, we have

lim
B→∞

1
2πi

AN+iB∫
AN−iB

1 (z) dz ∼ lim
B→∞

1
πi

+iB∫
−iB

cos (2π (N + 1) t + 2tiv)

(AN + iv)3 (1 + cosh 2v)
dv ∼

1
A3

Nπ

+∞∫
−∞

cosh (2tv)
(1 + cosh 2v)

dv→ 0.

Therefore,

1
2πi

lim
N→∞

1∫
0


∫
CN

1 (z) dz

 qk(t)dt = lim
N→∞

1∫
0

[
SN (t) + TN (t) −

h
γk

]
qk(t)dt = lim

N→∞

1∫
0

[SN (t) + TN (t)] qk(t)dt (21)

where

TN (t) =

N∑
n=1

4 cos
(
2βnt

)
βn sin 2βn

For evaluating lim
N→∞

TN (t) in accordance with above arguments select function of complex variable

G (z) =
cos 2zt

(z cos z − sin z) cos z

Obviously poles of that function are zeros of cos z, i.e,
π
2

+ πn = δn and βn.

res
z=βn

G (z) =
2 cos 2βnt(

cos βn − βn sin βn − cos βn
)

cos βn
= −

2 cos 2βnt
βn sin βn cos βn

=
−4 cos 2βnt
βn sin 2βn

(22)

and

res
z=δn

G (z) =
cos (2δnt)

sin2
(
π
2 + πn

) = cos (π + 2πn) t = cos (2n + 1)πt. (23)

Selecting corresponding contour in the way similar to one done above and extending it to infinity we can
show that limit of G (z) along it vanishes. Denote by MN(t) the sum

N∑
n=1

cos (2n + 1)πt.
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Thus,

lim
N→∞

1∫
0

SN(t) fk (t)dt = − lim
N→∞

1∫
0

TN (t) qk (t) dt = − lim
N→∞

∫ 1

0
MN (t) qk (t) dt =

1
4
[
qk (1) − qk (0)

]
(24)

Summing the last for k, when k = 1,∞we will have from (17)

lim
m→∞

nm∑
n=1

[
µn − λn

]
= lim

m→∞

nm∑
n=1

(QΨn,Ψn) =
1
4
[
trq (1) − trq (0)

]
Thus we have proved the next theorem.

Theorem 2. Under the conditions 1)-3) and Lemma 1, the next trace formula for operator L is true

lim
m→∞

nm∑
n=1

[
µn − λn

]
=

1
4
[
trq (1) − trq (0)

]
.
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