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Abstract: In this short paper, we study the problem of traversing a crossbar through a bent channel,
which has been formulated as a nonlinear convex optimization problem. The result is a MATLAB
code that we can use to compute the maximum length of the crossbar as a function of the width of
the channel (its two parts) and the angle between them. In case they are perpendicular to each other,
the result is expressed analytically and is closely related to the astroid curve (a hypocycloid with
four cusps).
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1. Formulation of the Problem

In this paper, we deal with the following problem:
Consider two navigable channels that make an angle β with each other having widths

d1 and d2. We are to find out what is the longest crossbar (=the line segment, after math-
ematical abstraction) that can be navigated through this channel! (see Figure 1 for the
meaning of the parameters d1, d2 and β).

d1

d2

l1(α)

l2(α)

α

β

Figure 1. Schematic diagram of the channel.

As we see in a moment, we are able to convert this problem into a convex optimization
problem, allowing us to take advantage of its rich and efficient apparatus. The main reasons
for focusing on the convex optimization problems are as follows [1]:

- They are close to being the broadest class of problems we know how to solve efficiently.
- They enjoy nice geometric properties (e.g., local minima are global).
- There are excellent softwares that readily solve a large class of convex problems.
- Numerous important problems in a variety of application domains are convex.
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A Brief History of Convex Optimization

In the 19th century, optimization models were used mostly in physics, with the concept
of energy as the objective function. No attempt, with the notable exception of Gauss’
algorithm for least squares (y1822), as a result of the most famous dispute in the history
of statistics between Gauss and Legendre [2], is made to actually solve these problems
numerically.

In the period from 1900 to 1970, an extraordinary effort was made in mathematics to
build the theory of optimization. The emphasis was on convex analysis, which allows to
describe the optimality conditions of a convex problem. As important milestones in this
effort, we can mention [3]:

• 1947: The simplex algorithm for linear programming—the computational tool still
prominent in the field today for the solution of these problems (Dantzig [4,5]).

• 1960s: Early interior-point methods (Fiacco and McCormick [6], Dikin [7,8], . . . ).
• 1970s: Ellipsoid method and other subgradient methods, which positively answered

the question whether there is another algorithm for linear programming in addition
to the simplex method, which has polynomial complexity ([9–13]).

• 1980s: Polynomial-time interior-point methods for linear programming (Karmarkar
1984 [14,15]). From a theoretical point of view, this was a polynomial-time algorithm,
in contrast to Dantzig’s simplex method, which in the worst case has exponential
complexity [16].

• Late 1980s–now: Polynomial-time interior-point methods for nonlinear convex opti-
mization (Nesterov & Nemirovski 1994 [17,18]).

The growth of convex optimization methods (theory and algorithms) and compu-
tational techniques (many algorithms are computationally time-consuming) has led to
their widespread application in many areas of science and engineering (control, signal
processing, communications, circuit design, and . . . ) and new problem classes (for example,
semidefinite and second-order cone programming, robust optimization). For more recent
achievements in optimization algorithms, see [19–23] and the references therein.

This paper does not claim to develop new scientific knowledge, but its aim is to use
well-known techniques of convex optimization to solve, in my opinion, an interesting prac-
tical problem that can also be used in the process of teaching nonlinear convex optimization
techniques, and the pedagogical value of the contributions is one of the objectives of this
special issue of the journal. The interesting thing about this problem/case study is that
there is a naturally occurring minimization problem (without multiplication by a factor of
(−1) or similar) when looking for the maximum length.

Now, we introduce the theorem, which is one of the most important theorems in
convex analysis [24].

Theorem 1. Consider an optimization problem

minimize f (x)

s.t. x ∈ Ω,

where f : Ω→ R is a convex function and Ω ⊂ Rn is a convex set. Then, any local minimum is
also a global minimum.

2. Analytical and Numerical Solution of the Convex Optimization Problem

In the spirit of the previous considerations, our problem can be formulated as follows:

minimize lβ(α) = l1(α) + l2(α) =
d1

sin(α)
+

d2

sin(α + β)
s.t. − α ≤ 0, α ≤ π − β, (1)

where β ∈ (0, π) is fixed. The angles α, β are measured in radians, and d1, d2 (both are
positive real numbers) are expressed in units of length.
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The solution of the problem (1) is hereafter referred to as lmaxLength(β).
The first two derivatives of the function lβ(α) are:

l′β(α) =
d1 cos(α)

cos2(α)− 1
+

d2 cos(α + β)

cos2(α + β)− 1

l′′β (α) =
2 d1

sin3(α)
− d1

sin(α)
+

2 d2

sin3(α + β)
− d2

sin(α + β)

=
2 d1 − d1sin2(α)

sin3(α)
+

2 d2 − d2sin2(α + β)

sin3(α + β)

≥ d1

sin3(α)
+

d2

sin3(α + β)
> 0

for all α ∈ (0, π − β), and so the function lβ(α) is continuous (together with its derivatives)
and (strictly) convex on the the convex set (0, π − β) ⊂ R, with lβ(α) → ∞ for α → 0+

and α→ (π − β)−, see also Figure 2 for a better idea of the behavior of the function lβ(α).
The limits above (both equal to ∞) guarantee the existence, and the strict convexity of the
function lβ(α) in turns the uniqueness of the local minimum of the function lβ(α) on Ω.
Theorem 1 says that this local minimum is a solution of the problem (1).
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Figure 2. The objective function lβ(α) and its second derivative for β = π
2 , d1 = 1 and d2 = 1 on the

interval [0, π − β].

For β = π
2 , that is, the channel is bent to a right angle, we can compute the value

lmaxLength(
π
2 ) analytically:

Theorem 2. For β = π
2 , we have

lmaxLength

(π

2

)
=

(
d

2
3
1 + d

2
3
2

) 3
2
.

Proof. First, using the identity sin
(
α + π

2
)
= cos(α), we obtain from (1)

lβ=π/2(α) =
d1

sin(α)
+

d2

cos(α)
, α ∈ [0, π − β] =

[
0,

π

2

]
(2)

and

l′β=π/2(α) = −
d1 cos3(α)− d2 sin3(α)

cos2(α) sin2(α)

with the unique stationary point

α∗ = arctg

(
3

√
d1

d2

)
, α∗ ∈

(
0,

π

2

)
,
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which is the local minimum of the function lβ=π/2(α). According to Theorem 1, it holds that

lmaxLength

(π

2

)
= lβ=π/2(α

∗).

By substituting the value of α = α∗ into the objective function lβ=π/2(α) defined by (2) and
using the basic trigonometry formulas for x ∈

(
−π

2 , π
2
)

[25]

sin x =
tg x√

1 + tg2 x
and cos x =

1√
1 + tg2 x

we obtain

lβ=π/2(α
∗) =

d1

√
1 +

(
d1
d2

) 2
3

3
√

d1
d2

+ d2

√√√√1 +
(

d1

d2

) 2
3

=

(
d

2
3
1 + d

2
3
2

) 3
2
.

Remark 1. Note that the formula for lmaxLength
(

π
2
)

is defined by the astroid curve, its graph for
positive values of d1 and d2 is shown in Figure 3. The dependence

d
2
3
1 + d

2
3
2 = d

2
3

represents the minimum values of the widths of the two parts of the channel, d1 and d2, for a crossbar
of length d to pass through the channel.
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Figure 3. The minimum values of d1 and d2 for a 5-unit-long crossbar (d) to pass through the channel
(with β = π

2 ).

Remark 2. For the limiting values of the parameter β, we obtain, with the obvious interpretation:

β→ 0+ =⇒ lmaxLength(β)→ (d1 + d2) (= min{lβ=0(α) : α ∈ [0, π]})

and
β→ π− =⇒ lmaxLength(β)→ ∞ (= min{lβ=π(α) : α = 0}).

As an illustrative example, if

β0 = 1.999999999999 ∗ π/2, d1 = 1, d2 = 2,
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then
lmaxLength(β0) = 3710327376774.69.

Listing 1 shows the MATLAB code for calculating lmaxLength(β) and Table 1 shows
the lmaxLength(β) for the different values of the parameters d1, d2 and β, indicating the
asymptotics of the solved problem, that is, lmaxLength(β) → (d1 + d2) for β → 0+ and
lmaxLength(β) → ∞ for β → π−. The analysis of borderline cases (for us, β near 0 and
π), although not of great practical importance, is meaningful from the point of view of
mathematical analysis because it points to overall trends in the change in the observed
values (here, lmaxLength(β)).

Listing 1. MATLAB code used for calculating lmaxLength(β) for d1 = 1, d2 = 2 and β = π
2 .

syms alpha beta d1 d2
d1 = 1; % width of the first channel
d2 = 2; % width of the second channel
beta = pi/2; % an angle between the navigable channels
l = (d1/sin(alpha))+(d2/sin(alpha+beta)); % the cost function from (1)
la = diff(l,alpha);
eqn = la == 0;
num = vpasolve(eqn,alpha,[0 pi-beta]); % numerical solver
solution_max_length = simplify(subs(l,num),’Steps’,20) % output

Table 1. lmaxLength(β) for the different values of the parameters by employing the code from Listing 1.

β = π
100 β = π

6 β = π
4 β = π

2 β = 2π
3 β = 3π

4 β = 99∗π
100

d1 = 1, d2 = 1 2.00 2.07 2.16 2.82 4.00 5.22 127.32
d1 = 1, d2 = 3 4.00 4.10 4.25 5.40 7.54 9.80 237.60
d1 = 1, d2 = 5 6.00 6.12 6.29 7.77 10.69 13.84 333.35
d1 = 2, d2 = 7 9.00 9.22 9.54 12.01 16.70 21.69 524.70
d1 = 2, d2 = 9 11.00 11.23 11.58 14.38 19.84 25.71 620.27
d1 = 2, d2 = 11 13.00 13.24 13.60 16.70 22.90 29.61 712.44

3. Conclusions

The purpose of the present paper is to solve the practical problem of channel naviga-
bility and to calculate the maximum length of a crossbar (a line segment, after mathematical
abstraction) that will pass through a bent channel. As it turns out, this problem can be
formulated as a convex optimization problem. Moreover, of interest is the relationship
between the values of d1, d2 and d (the width of the channel sections and the maximum
length of the navigable crossbar, respectively), where these values for β = π/2 represent

the first-quadrant portion of the astroid curve d
2
3
1 + d

2
3
2 = d

2
3 . In the future, it would cer-

tainly be interesting to derive an analogous analytical relationship (if it exists) for other
values of the β angle (0 < β < π).

From the future development prospects, the proposed approach could be extended,
for example, for solving fuzzy linear programming, fuzzy transportation and fuzzy shortest
path problems and DEA models [26,27].
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