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Abstract

We study one word-decreasing self-reducible

sets, which are introduced by Lozano and Tor\’an

[21]. These are usual self-reducible sets with

the peculiarity that the self-reducibility machine

makes at most one query to a word lexicographi-

cally smaller than the input. We can prove that for

any class $K$ chosen from {NP, PP, $C_{=}P,$ $MOD_{2}P$ ,

$MOD_{3}P,$ $\cdots$ } it holds that (1) if there is a sparse

$\leq_{btt}^{P}$-hard set for $K$ then $K$ is in $P$ , and (2) if

there is a sparse $\leq_{btt}^{SN}$-hard set for $K$ then $K$ is in

$NP\cap crNP$ . The main result also shows that if

there is a sparse $\leq_{btt}^{SN}$-hard set for PSPACE then

PSPACE $=$ NP. This generalizes the result from

Ogiwara and Watanabe [24] to the mentioned com-

plexity classes.

1 Introduction

One of the central roles in the study of structural

complexity theory resides in finding structural dif-

ferences or similarities among complexity classes.

Since almost every complexity class is defined

by using some resource bounded computational

model, finding relationships among such classes

sometimes requires us to specify different compu-
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tational models, and therefore, it seems tremen-

dously hard to find such relationships. Above all,

as subclasses of PSPACE, there have been intro-

duced many complexity classes [4,9,12,25,28,35].

For example, Gill, and independently Simon de-

fined PP as the class of sets having probabilistic

polynomial time acceptors with error probability

$<1/2$ $[12,28]$ . Papadimitriou and Zachos defined

$\oplus P$ as the class of sets for which there is a poly-

nomial time nondeterministic Turing machine such

that a string is in the set if and only if the machine

has an odd number of accepting computation paths

for the string [25]. Based on this definition, Beigel,

Gill, and Hertrampf, and independently, Cai and

IIemachandra defined $MOD_{k}P$ as the class of sets

for which there exists a polynomial time nondeter-

ministic Turing machine such that for every $x,$ $x$

is in the set if and only if the number of accept-

ing computation paths of the machine on input $x$

is not a multiple of $k$ , where $k\geq 2[4,9]$ . Wagner

introduced $C_{=}P$ (respectively, CP) as the class of

sets for which there exist a polynomial time com-

putable function and, a polynomial time nondeter-

ministic Turing machine such that a string $x$ is in

the set if and only if the number of accepting com-

putation paths of the machine on the input $x$ is

equal to (respectively, larger than or equal to) the

value of the function for $x[35]$ . Also, he showed

that CP is equal to PP. So, concerning the classes

that are located between NP and PSPACE, the
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most important unsolved questions are the follow-

ing:

“Does the polynomial time hierarchy

have infinite levels ? and

“Is any class defined above included in

the polynomial time hierarchy ¿‘

Some results that settle these questions partially

have been obtained in [5,6,18,29,31,32,33]. Never-

theless, until now, neither of the above questions

is solved.

On the other hand, it is widely known that

we can classify sets into some categories by us-
ing different reducibilities to sets of small density

[8,16,17]. Especially, a set having a census func-

tion bounded above by some polynomial is called

sparse. Relative to this notion, the following ques-

tions have been considered by many researchers [7,

11,14,15,22,24,34,36,38,39].

“For a class $K$ and for a reducibility
$\leq_{r}$ , is there any sparse set to which

every set in $K$ is $\leq_{r}-reducible?$ , or

“Suppose that every set in $K$ is $\leq_{r^{-}}$

reducible to some sparse set. Will

then any unexpected inclusions follow
?

As a matter of fact, after Berman and Hartmanis

conjectured that all $\leq_{m}^{P}$-complete sets for NP are

P-isomorphic, and thereby conjectured that there

are neither sparse nor co-sparse $\leq_{m}^{P}$-hard sets for

NP[7], reducibilities of NP sets to sparse sets have

been considered for along time [11,22,23,34,36,39].

And the question whether NP having sparse $\leq_{btt^{-}}^{P}$

hard sets implies $P=NP$ or not had been left open

for a long time until Ogiwara and Watanabe solved

the question affirmatively [24].

In order to settle this question, they introduced

the notion of ‘left-sets’, which is a certain type

of self-reducible structure, and showed that every

‘lef-set’ in NP which is $\leq_{btt}^{P}$-reducible to sparse

sets is already in P. The proof technique takes

advantage of the structure of left-sets and of the

structure resulting from the reduction to a sparse

set, to show that any set with these two charac-

teristics can be decided deterministically in poly-

nomial time. Furthermore, Ogiwara extended the

notion of left-sets and showed that the existence of
$\leq_{btt}^{P}$ (respectively, $\leq_{btt}^{SN}$ ) hard sets for PP implies

PP $=P$ (respectively, PP $=NP$) $[23]$ . So, in order

to extend the result to more classes, it can seem

useful to consider sets with a more rich internal

structure than that of left-sets. We consider, for

this goal, one word-decreasing self-reducible sets,

which have the desired properties: its time com-

plexity decreases if they are reducible to sparse

sets, and we can find self-reducible sets of this

type which are complete for the classes NP, PP,

$MOD_{k}P,$ $C_{=}P$ , and PSPACE.
As the self-reducible structure, we will use one

word-decreasing self-reducible sets introduced by

Lozano and Tor\’an [21]. The notion of one word-

decreasing self-reducible sets is a variation of

Balc\’azar’s wdq self-reducible sets [2] and a gener-

alization of left-sets $[23,24]$ . A set $A$ is one word-

decreasing self-reducible if there exists a poly-

nomial time deterministic oracle Turing machine

which acceptsA with oracleA itself in sucha way

that for every input $x$ , the machine queries at most

one string to its oracle and the query string is lexi-

cographically smaller than $x$ . We define strict one

word-decreasing self-reducible sets as a restriction

of the last ones. We show that

1. PP and $C_{=}P$ have $a\leq_{m}^{P}$-complete set which is

one word-decreasing self-reducible, and

2. NP, $MOD_{2}P$ , $MOD_{3}P,$ $\cdots$ , have a $\leq_{m^{-}}^{P}$

complete set which is strictly one word-

decreasing self-reducible.

As for the reducibility, we will consider poly-

nomial time bounded truth-table reducibility and

strong nondeterministic polynomial time bounded
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truth-table reducibility[1,19,20]. We will show the

folloing theorems:

Theorem 3.5 If a set $A$ is l-wd self-reducible and
$\leq_{b^{N}}^{s_{u}}$ reducible $fo$ some sparse set, then $A$ is in $NP\cap$

co-NP.

Theorem 3.7 If a set $A$ is strictly l-wd self-
reducible $and\leq_{btt}^{P}$ reducible to some sparse set,

then $A$ is in P.

Then, by combining these results, we will prove

that for any class $K$ chosen from {NP, PP, $C_{=}P$ ,

$MOD_{2}P,$ $MOD_{3}P,$ $\cdots$ }, it holds that

1. if there is a sparse $\leq_{btt}^{P}$-hard set for $K$ then
$K$ is in $P$ , and

2. if there is a sparse $\leq_{btt}^{SN}$-hard set for $K$ then
$K$ is in $NP\cap coarrow NP$ .

Also, as PSPACE has l-wd self-reducible com-

plete sets, Theorem 3.5 implies that

3. if there is a sparse $\leq_{b^{N}}^{s_{u}}$ -hard set for PSPACE
then PSPACE $=NP$ .

2 Preliminaries

We fix now some of the notation that will be used

throughout this paper. We use the alphabet $\Sigma=$

$\{0,1\}$ , and define the basic notation about sets and

words as it is done in [3]. By ‘polynomials’ we

mean monotone nondecreasing polynomials. We

will denote the cardinality of a set $A$ with II $A$ . We

assume the canonical lexicographic order on $\Sigma^{*}$ . A

string $x$ is less than $y$ (write $x<y$) if either (1)

$|x|<|y|$ or (2) $|x|=|y|$ and there exist strings

$u,$ $v,$ $w\in\Sigma^{*}$ such that $x=uOv$ and $y=u1w$ .
For a string $x\in\Sigma^{*}\backslash \{\lambda\},$ $pred(x)$ denotes the

predecessor of $x$ ; that is, pred $(x)$ is $\max\{y$ : $y<$

$x\}$ . Also, for a string $x\in\Sigma^{*},$ $suc(x)$ denotes the

successor of $x$ ; that is, $suc(x)$ is $\min\{y : y>x\}$ .
For a string $x,$ $ord(x)$ denotes $||\{y$ : $|y|=|x|$

and $y<x$ }. ( $\cdot,$

$\cdot$ } denotes an easily-computable

encoding of two strings into one string. We assume
that for every $x,$ $x’,$ $y$ and $y’$ in $\Sigma^{*}$ with $|x|=|x’|$

and $|y|=|y’|,$ $(i)|(x,y$} $|=|(x’,$ $y’$} $|$ , (ii) if $y’=$

$pred(y)$ , then pred$((x, y))=(x,$ $y’$ }, and (iii) if $x’<$

$x$ , then $(x, y\}>\langle x’, y’)$ . For simplicity, for $k\geq 2$

and $k$ strings $y_{1},$ $y_{2},$ $\cdots$ , $y_{k)}(y_{1},$ $y_{2},$ $\cdots$ , $y_{k}$} denotes

$((\ldots(y_{1}, y_{2}),$ $\cdots$) $,y_{k}$ }. Furthermore, $N$ denotes the

set of natural numbers.

Our computational model is the polynomial time

Turing machine. We can assume w.l. $0.g$ . that

our nondeterministic Turing machines have poly-

nomial clocks, that they have exactly $2^{p(|x|)}$ com-

putation paths on input $x$ , and any of these paths

can be uniquely encoded by a word in $\Sigma^{=p(|x|)}$ .
For each $x\in\Sigma^{*}$

)
$acc_{N}(x)$ and $rej_{N}(x)$ denotes the

set of all strings in $\Sigma^{=p(|x|)}$ representing accepting

computation paths of $N$ on $x$ and rejecting com-

putation paths of $N$ on $x$ , respectively.

A set $S$ is sparse if there exists a polynomial $p$

such that for every natural number $n$ , II $S^{\leq n}\leq$

$p(n)$ .
For a polynomial time deterministic Turing

transducer $M$ and for a string $x\in\Sigma^{*},$ $M(x)$ de-

notes the output of $M$ on $x$ . For a polynomial time

nondeterministic Turing transducer $N$ and for a

string $x\in\Sigma^{*},$ $N(x)$ denotes the set of nonempty

strings which some computation path of $N$ outputs

on input $x$ .

Definition 2.1 [21] A set $A$ is one word-

decreasing self-reducible (l-wd self-reducible, for

short) if there exists a polynomial time Turing

transducer $M$ such that for every $x\in\Sigma^{*}$ , the fol-

lowing conditions are satisfied.

(1) $M(x)$ is one of the following form: either true,

false, (id, $y$), or $(\neg)y)$ , where id (respectively,

$\neg)$ is the identity function (respectively, nega-

tion) of one argument and $y\in\Sigma^{*}$ and $y<x$ ,

and
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(2) if $M(x)\in$ {true, false}, then $x\in A$ iff $M(x)=$

true qnd if $M(x)=(\alpha, y)$ , then $x\in$ $A$ iff

$\alpha(\chi_{A}(y))=true$ .

We define a restriction of l-wd self-reducible

sets. Consider the self-reducibility chain from an

input $x$ , consisting of $x$ , the string printed by the

self-reducibility machine on input $x$ , and so on, un-

til we arrive to a string that the machine decides

directly (it writes true or false). In a strictly l-wd

self-reducible set, every string in a self-reducibility

chain has two components: the first one is the

predecessor (in lexicographical order) of the first

componer\’it of the previous string in the chain, and

the second one is an extra information with only a

polynomial number of values.

Definition 2.2 A

set $A$ is strictly one word-decreasing self-reducible

(strictly l-wd self-reducible, for short) if there ex-

ists a polynomial time Turing transducer $M$ and

a polynomial $p$ such that for every $x,$ $M$ witnesses

that $A$ is l-wd self-reducible and for every $x\in\Sigma^{*}$ ,

(3) if $M(x)$ is of the form $(\alpha, y)$ , then there exist

$z,$ $z’,$ $w$ , and $w’$ in $\Sigma^{*}$ such that

(i) $x=(z,$ $z’$ } and $y=(w,$ $w’\rangle$ ,

(ii) $|z|=|w|$ and $|z’|=|w’|$ , and

(iii) $w=pred(z)$ and $ord(z’),ord(w’)<$

$p(|x|)$ .

For a natural number $k>0$ , a k-truth-table

is a mapping from $\{$ true, $false\}^{k}$ to {true, false}.
For a k-truth-table $\alpha$ and $k$ strings $y_{1},$ $\cdots,y_{k}$ ,

$(\alpha,y_{1}, \cdots , y_{k})$ is called a k-tt condition. For a k-tt

condition $(\alpha, y_{1}, \cdots , y_{k})$ and a set $B,$ $(\alpha, y_{1}, \cdots , y_{k})$

is satisfied by $B$ if $\alpha(\chi_{B}(y_{1}), \cdots, \chi_{B}(y_{k}))=$ true.

For a convention, a O-truth-table is a constant

boolean function of O-argument; that is, a O-truth-

table is either true or false. Furthermore, a O-tt

condition is either (true) or (false), and a O-tt con-

dition $\sigma$ is satisfied by a set $B$ if $\sigma=(true)$ .

Definition 2.3 For a natural number $k\geq 0$ , a set
$A$ is polynomial time k-truth-table reducible to a

set $B$ (polynomial time k-tt reducible, for short

and write $A\leq_{k-tt}^{P}B$) if there exists a polynomial

time deterministic Turing transducer $M$ such that

for every $x\in\Sigma^{*}$ , the following conditions are sat-

isfied:

(1) $M(x)$ is a k-tt condition and

(2) $x\in A$ if and only if $M(x)$ is satisfied by $B$ .

Moreover, a set $A$ is polynomial time bounded

truth-table reducible to a set $B$ (polynomial time

btt reducible, for short and write $A\leq b_{tt}B$) if there

exists some $k\in N$ such that $A\leq_{k-tt}^{P}B$ .

Definition 2.4 For a natural number $k\geq 0$ , a set
$A$ is strongly nondeterministic polynomial time $k-$

truth-table reducible to a set $B$ (SN k-tt reducible,

for short and write $A\leq_{k-tt}^{SN}B$) if there exists

a polynomial time nondeterministic Turing trans-

ducer $N$ such that for every $x\in\Sigma^{*}$ , the following

conditions are satisfied:

(1) $N(x)$ is not the empty set,

(2) for every string $z\in N(x)$ ,

(a) $z$ is a k-tt condition and

(b) $x\in A$ if and only if $z$ is satisfied by $B$ .

Moreover, a set $A$ is strongly nondeterministic

polynomial time bounded truth-table reducible to

a set $B$ (SN btt reducible, for short and write
$A\leq_{b}NB)$ if there $\dot{e}$xists some $k\in N$ such that

$A\leq SkN-ttB$ .

Now we define the counting classes in a general

setting, using the notation in [13], and the main

complexity classes that we will use, in terms of the

functions $\# accN(\cdot)$ and $\# rej_{N}(\cdot)$ .
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Definition 2.5 For a polynomial time decidable

$tw\mathfrak{c}\succ place$ predicate1 $Q$ on $NxN$ , a set $L$ is in

$\{Q\}P$ if there exists a polynomial time nondeter-

ministic Turing machine $N$ such that for every
$x\in\Sigma^{*}$ ,

$x\in L\Leftrightarrow Q(\# acc_{N}(x), \# rej_{N}(x))$ .

Let $k\geq 2$ and let $Q_{plu\epsilon},$ $Q_{maj},$ $Q_{half}$ , and $Q_{\not\equiv 0}^{(k)}$ be

two-place predicates such that for every $a,$ $b\in N$ ,

$Q_{plus}(a, b)=[a>0],$ $Q_{maj}(a,b)=[a\geq b]$ ,

$Q_{half}(a, b)=[a=b]$ , and $Q_{\not\equiv 0}^{(k)}(a, b)=[a\not\equiv 0$

$(mod k)]$ , respectively. Then, all of these pred-

icates are polynomial time decidable and NP $=$

$\{Q_{plus}\}P$ , PP $=\{Q_{maj}\}P,$ $C_{=}P=\{Q_{half}\}P$ , and
$MOD_{k}P=\{Q_{\not\in 0}^{(k)}\}P$ for every $k\geq 2$ . Especially,

$MOD_{2}P$ is denoted $by\oplus P$ .

The following relationships are well-known.

Proposition 2.6 1. $[12,35]$ NP $Uco- NP\subseteq PP$ .

2. $[26,33]$ $c\infty NP\subseteq C_{=}P\subseteq PP$ .

3. $[30,37]$ For any $k\geq 1$ , if $\Sigma_{k}^{P}=\Pi_{k)}^{P}$ then PH $=$

$\Sigma_{k}^{P}=\Pi_{k}^{P}$ .

4. [33] PP C $NP^{C_{=}P}$ .

Furthermore, each counting class has 1 word-

decreasing self-reducible $\leq_{m}^{P}$-complete sets.

Lemma 2.7 Let $Q$ be a polynomial time decid-

able two-place predicate on $Nx$ N. Then, there

exists a $\leq_{m}^{P}$-complete set for the class $\{Q\}P$ that

is l-wd self-reducible.

Lemma 2.8 For any $k\geq 2$ , there exists a $\leq_{m^{-}}^{P}$

complete set for the class $MOD_{k}P$ that is strictly

l-wd self-reducible.

Lemma 2.9 There exists a $\leq_{m}^{P}$-complete set for

the class NP that is strictly l-wd self-reducible.

1Throughout the present paper, we assume that each

two-place predicate is not trivial; that is, $Q$ is neither con-
stantly true nor constantly false.

3 The Main Technical

Theorems

In this section, we prove that every one word-

decreasing self-reducible set (respectively, strict

one word-decreasing self-reducible set) which is
$\leq_{b}N$-reducible (respectively, $\leq_{btt}^{P}$-reducible) to

some sparse set is already in $NP\cap co- NP$ (respec-

tively, P). The proof is inductive; that is, we will

show that if an l-wd self-reducible set is $\leq_{k+}^{SN_{1-tt^{-}}}$

reducible to a sparse set $S$ for some $k\in N$ , then

the set is $\leq_{k-tt}^{SN}$-reducible to $S$ . The same scheme

applies in the case of strict l-wd self-reducibility.

Then, by using the above argument repeatedly and

thereby reducing the number of queries to $0$ , we

obtain the results.

Theorem 3.1 Let $A$ be an l-wd self-reducible set.

If for some $k\in N,$ $A$ is $\leq_{k+}^{SN_{1-tt}}$-reducible to a

sparse set $S$ , then, $A$ is $\leq_{k-tt}^{SN}$-reducible to $S$ .

Proof Let $A$ be an l-wd self-reducible set and

$S$ be a sparse set to which $A$ is $\leq_{k+}^{SN_{1-tt}}$-reducible.

There exist a polynomial time deterministic Turing

transducer $M$ and a polynomial time nondetermin-

istic Turing transducer $N$ which witnesses that $A$

is l-wd self-reducible and $A$ is $\leq_{k+}^{SN_{1-tt}}$-reducible

to $S$ , respectively. We will construct a polynomial

time Turing machine $N_{0}$ which $\leq_{k-tt}^{SN}$ reduces $A$ to
$S$ . Let $x\in\Sigma^{*}$ and $\Lambda=[(y_{1)}\sigma_{1}), \cdots, (y_{m)}\sigma_{m})]$ be

a list of pairs of a string and a $k+1- tt$ condition. $\Lambda$

is called an $(M, N)$-chain $w.r.t$ . $x$ if the following

conditions are satisfied:

(c1) $x=y_{1}$ and for every $i,$ $1\leq i<m,$ $y;_{+1}<y;$ ,

(c2) for every $i,$ $1\leq i\leq m,$ $\sigma;\in N(y;)$ ,

(c3) for every $i,$ $1<i\leq m$ , either

. $M(y_{i-1})=(\alpha,y;)$ for some $\alpha\in$ {id, $\neg$}
or. $\sigma;\in\{\sigma_{1}, \cdots, \sigma_{i-1}\}$ , and
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(c4) for every $i,$ $1\leq i<m$ , if $\sigma;\in\{\sigma_{1}, \cdots , \sigma_{i-1}\}$ ,

then $\sigma_{i+1}\not\in\{\sigma_{1}, \cdots , \sigma;\}$ .

Moreover, $a$. list $\Lambda=[(y_{1}, \sigma_{1}), \cdots, (y_{m}, \sigma_{m})]$ is

called a full $(M, N)$ -chain w.r.t. $x$ if A is an

$(M, N)$-chain w.r. $t$ . $x$ and

(c5) $M(y_{m})\in$ {true, false}.

The following facts are easy to prove.

Fact 1 The sets

$C$ $=$ $\{(x, \Lambda\}$ : $\Lambda$ is an $(M, N)$-chain

w.r. $t$ . $x$ } and
$\hat{C}$

$=$ $\{(x, \Lambda\}$ : A is a full $(M, N)$-chain

w.r. $t$ . $x$ }

are in NP.

Fact 2

Let $x\in\Sigma^{*}$ and $\Lambda=[(y_{1}, \sigma_{1}), \cdots, (y_{m}, \sigma_{m})]$ be an

$(M, N)$-chain w.r. $t$ . $x$ . Then, $|(x,$ $\Lambda$} $|$ is bounded

above by some polynomial in $|x|+m$ .

The machine $N_{0}$ performs in the following way:

{The Description of $N_{0}$ }

(1) For a given input $x\in\Sigma^{*},$ $N_{0}$ nondetermin-

istically guesses $m,$ $1\leq m\leq r(|x|)$ and a

list $\Lambda=[(y_{1}, \sigma_{1}), \cdots, (y_{m}, \sigma_{m})]$ w.r.t. $x$ , and

No nondeterministically checks that $\Lambda$ is an

$(M, N)$-chain and that

(4) if $m<r(|x|)$ , then A is full,

where $f$ is a polynomial defined later. If the

check fails, then $N_{0}$ halts immediately. Oth-

erwise, $N_{0}$ proceeds to the next step.

(2) If $\Lambda$ is full, $N_{0}$ deterministically computes

$\chi_{A}(x)$ from $\Lambda$ and outputs true if $\chi_{A}(x)=true$

and false otherwise. Otherwise, $N_{0}$ proceeds

to the next step.

(3) If A is not full (therefore, $m=r(|x|)$ )) then $N_{0}$

deterministically computes an h-tt condition $\zeta$

with $h\leq k$ such that $x\in A$ if and only if $\zeta$ is

satisfi$ed$ by $S$ , outputs $\zeta$ , and halts.

{End of the Description of $N_{0}$ }

First we show that for every $x\in\Sigma^{*}$ , there exists

at least one computation path which leads to step

(2). Let $x$ be an input to $N_{0}$ and let $T$ be the set of

all $(M, N)$-chains w.r. $t$ . $x$ . Note that there exists

$\Lambda_{0}=[(z_{1}, \tau_{1}), \cdots, (z_{m_{0}}, \tau_{m0})]$ in $T$ such that for

every $\Lambda=[(z_{1}’, \tau_{1’}), \cdots , (z_{\ell}’, \tau_{\ell’})]$ in $T$ , it holds that
$z_{m_{0}}\leq z_{\ell}’$ . We claim that $\Lambda_{0}$ is full. This is seen

as follows: Assume to the contrary that $\Lambda_{0}$ is not

full. For some $\alpha\in$ {id, $\neg$} and $w<z_{m_{0}},$ $M(z_{m_{0}})$

is $(\alpha, w)$ . Let $\xi$ be any tt-condition in $N(w)$ . Sup-

pose that $\xi\in\{\tau: : 1 \leq i\leq m_{0}\}$ and let $n_{0}$ be the

smallest $i,$ $1\leq i\leq m_{0}$ such that $\tau:=\xi$ . Obviously,

$\Lambda=[(z_{1}, \tau_{1}), \cdots, (z_{n_{0}}, \tau_{n0}), (w,\xi)]$ is an $(M,N)-$

chain w.r. $t$ . $x$ , and this yiedls a contradiction. On

the other hand, suppose that $\xi\not\in\{\tau$: : $1\leq i\leq$

$m_{0}\}$ . Clearly, A $=[(z_{1}, \tau_{1}), \cdots , (z_{m_{0}}, \tau_{m_{0}}), (w,\xi)]$

is an $(M, N)$-chain w.r. $t$ . $x$ , and this yiedls a con-

tradiction. Therefore, $\Lambda_{0}$ is full.

For a given

polynomial $r$ , define $m_{1}= \max\{m_{0}, r(|x|)\}$ and

$\Lambda_{1}=[(z_{1}, \tau_{1}), \cdots, (z_{m_{1}}, \tau_{m_{1}})]$ . Obviously, $\Lambda_{1}$ satis-

fies $(*)$ . Thus, for every polynomial $r$ , there exists

at least one computation path which leads to step

(2). Furthermore, from Fact 1 and 2, step (1) can

be executed within polynomial time in $|x|$ . There-

fore, in order to establish the theorem, we only

have to show that there exist two polynomial time

algorithms $A_{1}$ and $A_{2}$ which satisfy the following

conditions:

1. for a given $x$ and a full $(M, N)$-chain $\Lambda$ w.r.t.

$x,$ $A_{1}$ computes $\chi_{A}(x)$ , and

2. for a given $x$ and an $(M, N)$-chain A of length

$r(|x|),$ $A_{2}$ computes an h-tt condition $\zeta$ with

$-b-$



51

$h\leq k$ such that $x\in A$ if and only if $\zeta$ is

satisfied by $S$ .

For two strings $x$ and $y,$ $\oplus_{A}[x, y]$ denotes the

relationship between $\chi_{A}(x)$ and $\chi_{A}(y)$ . More pre-

cisely, for every $x$ and $y\in\Sigma^{*}$ ,

$\oplus_{A}[x, y]=\{\begin{array}{l}idif\chi_{A}(x)=\chi_{A}(y)\neg if\chi_{A}(x)NE\chi_{A}(y)\end{array}$

It is not hard to see that the following lemma

holds.

Lemma 3.2 There exists a deterministic polyno-

mial time algorithm $A_{1}$ which, for a given $x$ and a

full $(M, N)$-chain $\Lambda$ , computes $\chi_{A}(x)$ .

Next we define the polynomial $r$ . Since $N$ runs

in polynomial time and $S$ is sparse, there exists

a polynomial $q$ such that for every $x\in\Sigma^{*}$ and

for every $(M, N)$-chain $\Lambda=[(y_{1)}\sigma_{1}), \cdots, (y_{m}, \sigma_{m})]$

w.r.t. $x$ ,

$||\{w\in S:w$ appears as an argument in $\sigma$;

for some $i,$ $1\leq i\leq m$ }
$\leq$ $q(|x|)$ .

Now define $r(n)=4\cdot 2^{2^{k+1}}\cdot q(n)^{k+1}+1$ .
Now our goal is to prove the following lemma.

Lemma 3.3 There exists a deterministic polyno-

mial time algorithm $A_{2}$ which, given $x\in\Sigma^{*}$ and

an $(M, N)$-chain $\Lambda=[(y_{1}, \sigma_{1}), \cdots, (y_{m}, \sigma_{m})]$ w.r.t.

$x$ with $m=r(|x|)$ , computes an h-tt condition $\zeta$

with $h\leq k$ such that $x\in A$ if and only if $\zeta$ is

satisfied by $S$ .

Proof of Lemma 3.3 Let $K$ denote the set of

indices $\{1, \cdots , k+1\}$ . For a $k+1- tt$ condition $\sigma=$

$(\beta, w_{1}, \cdots, w_{k+1})$ , let $\beta(\sigma)$ denote $\beta$ , for $\ell\in K$ ,

let $\sigma[\eta$ denote $w\ell$ , and for a set $Q\subseteq K$ , let $\sigma[Q]$

denote $\{\sigma[\eta : \ell\in Q\}$ . $A_{2}$ performs in the following

way:

{The Description of $A_{2}$ }

For a given $x\in\Sigma^{*}$ and a given $(M, N)$-chain

A $=[(y_{1}, \sigma_{1}), \cdots, (y_{m}, \sigma_{m})]$ w.r.t. $x$ with $m=$

$r(|x|)$ , do the following:

(1) Find $I\subseteq\{1, \cdots, m\}$ with II $I\geq q(|x|)+1$ ,

$h\in\{0, \cdots, k\},$ $Q\subset K$ with II $Q=h,$ $\alpha_{0}\in$

{id, $\neg$}, and a $k+1$-truth-table $\beta_{0}$ such that

(a) for every $i\in I,$ $\oplus_{A}[x, y;]=\alpha_{0)}$

(b) for every $i\in I,$ $\beta(\sigma;)=\beta_{0}$ ,

(c) for every $i$ and $j\in I$ and for every $p\in Q$ ,

$\sigma;[\eta=\sigma_{j}[\eta$ , and

(d) for every distinct $i$ and $j\in I,$ $\sigma:[K\backslash Q]\cap$

$\sigma_{j}[K\backslash Q]=\emptyset$ .

(2) Compute an h-truth-table $\hat{\beta}$ from $\beta_{0}$ by sub-

stituting every argument at the position $\ell\in$

$K\backslash Q$ with false at the same time.

(3) Compute an h-truth-table $\tilde{\beta}$ such that for ev-

ery $b_{1},$ $\cdots$ , $b_{h}\in$ {true, false} it holds that

$\tilde{\beta}(b_{1}, \cdots,b_{h})=\alpha_{0}(\hat{\beta}(b_{1}, \cdots, b_{h}))$ .

Set $\zeta$ to $(\tilde{\beta}, w_{\ell_{1}}, \cdots , w\ell_{h})$ , where $t_{1},$ $\cdots$ , $t_{h}$ is

an enumeration of all indices in $Q$ in increas-

ing order and for every $t,$ $1\leq t\leq h,$ $w\ell_{\iota}=$

$\sigma;[\ell_{t}]$ for every $i\in I$ .

{End of the Description of $A_{2}$ }

Notice that in order to execute step (1), we have

only to do a brute-force search method over $Q$ and

$i_{0}= \min\{i\in I\}$ . That is, we only have to move $Q$

over elements in $2^{K_{\neg}}\{K\}$ and $i_{0}$ from 1 to $m$ and

enumerate all indices $i\neq i_{0}$ satisfying

(a) $\oplus_{A}[x,y;]=\oplus_{A}[x, y_{1}\cdot 0]$ ,

$(b’)\beta(\sigma;)=\beta(\sigma:_{0})$ ,

$(c’)$ for every $t\in Q,$ $\sigma;[\eta=\sigma_{i_{0}}[l]$ , and

$(d))\sigma;[K\backslash Q]\cap\sigma_{i_{0}}[K\backslash Q]=\emptyset$ ,
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and test whether the number of such indices is

$\geq q(|x|)$ or not. Obviously, this search can be ex-

ecuted within polynomial time in $|x|$ . Since step

(2) and (3) can be done within polynomial time in
$|x|,$ $A_{2}$ runs in polynomial time in $|x|$ .

It remains to show that $A_{2}$ works correctly. This

is seen as follows. Define $I_{init}$ to be the set of all

$i\in\{1, \cdots , m\}$ such that $\sigma;\not\in\{\sigma_{1}, \cdots, \sigma_{i-1}\}$. It is

not hard to see that

. $||I_{init}\geq 2\cdot 2^{2^{k+1}}\cdot q(|x|)^{k+1}+1$, and

. for every distinct $i$ and $j$ in $I_{init},$ $\sigma;NE\sigma_{j}$ .

For each $\alpha\in$ {id, $\neg$}, define

$I_{\alpha}=\{i\in I_{i_{I1}it} : \oplus_{A}[x, y;]=\alpha\}$ .

Obviously, exactly one of II $H_{id}$ and Il $H_{\neg}$ is $\geq$

$2^{2^{k+1}}\cdot q(|x|)^{k+1}+1$ . Let $\alpha_{0}$ be such a truth-table.

For each $k+1$-truth-table $\beta$ , define

From the above proposition, there exist a set

$I\subseteq I(\beta_{1})$ with 1 $I\geq q(|x|)+1,$ $h\in\{0, \cdots , k\}$ and

a set $Q\subset K$ with II $Q=h$ satisfying the conditions

(c) and (d). Since $I\subseteq I(\beta_{0})$ , conditions (a) and

(b) are satisfied. Therefore, the search procedure

is always successful.

On the other hand, $\{\sigma;[K\backslash Q] : i\in I\}$ is a family

of disjoint sets in $\Sigma^{*}$ with 1 $I\geq q(|x|)+1$ . Since
$q(|x|)$ is an upper bound for the number of strings

in $S$ appearing as an argument in $\sigma;,$ $1\leq i\leq m$ ,

there exists at least one $i$ such that $\sigma;[K\backslash Q]\subseteq\overline{S}$ .

Let $\nu$ denote one of such $i$ . It holds that

$y_{\nu}\in A$

$\Leftrightarrow$ $\beta_{0}(\chi_{S}(\sigma_{\nu}[1]), \cdots, \chi_{S}(\sigma_{\nu}[k+1]))=true$

$\Leftrightarrow$ $\hat{\rho}(xs(\sigma_{\nu}[\ell_{1}]), \cdots, \chi s(\sigma_{\nu}[\ell_{h}]))=true$ .

By combining this with $\oplus_{A}[x, y_{\nu}]=\alpha_{0}$ , we have

$I(\beta)=\{i\in I_{\alpha 0} : \beta(\sigma;)=\beta\}$ .

Since there are $2^{2^{k+1}}$ possible $\beta$ , there is at least

one $\beta$ such that II $I(\beta)\geq q(|x|)^{k+1}+1$ . Let $\beta_{0}$ be

one of such $k+1$-truth-tables.

Define $G=\{\sigma; : i\in I(\beta_{0})\}$ . $G$ can be viewed as

a family of ordered sets, each one with cardinality

$k+1$ . By a simple modification of the theorem in

[10], we obtain the following proposition.

Proposition 3.4 Let $\mathcal{F}$ be a family of ordered

sets, each one with cardinality $t$ . If 11 $\mathcal{F}\geq d^{t}+1$ ,

then there exist $\mathcal{G}\subset \mathcal{F}$ with II $\mathcal{G}\geq d+1$ and a set
$Q\subseteq\{1, \cdots,t\}$ such that

(i) for every $t\in Q$ and for every $U$ and $V$ in $\mathcal{G}$ ,

$U(\ell)=V(t)$ , and

(ii) for every distinct $U$ and $V$ in $\mathcal{G},$ { $U(\ell)$ : $t\in$

$\{1, )t\}\backslash Q\}$ $\cap\{V(\ell) : t\in\{1, \cdots,t\}\backslash Q\}$

$=\emptyset$ ,

where $U(t)$ (respectively, $V(\ell)$ ) denotes the e-th

component of $U$ (respectively, $V$).

$x\in A$

$\Leftrightarrow$ $\alpha_{0}(\hat{\beta}(\chi s(\sigma_{\nu}[t_{1}]), \cdots,\chi s(\sigma_{\nu}[t_{h}])))=true$

$\Leftrightarrow$ $\tilde{\beta}(xs(\sigma_{\nu}[t_{1}]), \cdots, \chi s(\sigma_{\nu}[t_{h}]))=true$

$\Leftrightarrow$ $\zeta$ is satisfied by $S$.

Therefore, $\zeta$ is an h-tt condition such that $x\in A$ if

and only if $\zeta$ is satisfied by $S$ . Hence $A_{2}$ works cor-

rectly. This proves the lemma, and consequently,

this proves the theorem.

Proof of Lemma 3.3

Proof of Theorem 3.1

From Theorem 3.1, we obtain the following

theorem.

Theorem 3.5 If a set $A$ is l-wd self-reducible and
$\leq_{btt}^{SN}$-reducible to some sparse set, then $A$ is in $NP\cap$

co-NP.

For $\leq_{btt}^{P}$-reducibility of strict l-wd self-reducible

sets to sparse sets, we have the following theorems.
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Theorem 3.6 Let $A$ be a strict l-wd self-

reducible set. If for some $k\in N,$ $A$ is $\leq_{k}^{p_{+1-tt^{-}}}$

reducible to a sparse set $S$ , then $A$ is $\leq_{k-tt^{-}}^{P}$

reducible to $S$ .

Theorem 3.7 If a set $A$ is strictly $1-wd$ self-

reducible and $\leq b_{tt}$ reducible to some sparse set,

then $A$ is in P.

4 Sparse Bounded Truth-Table

Hard Sets for Counting

Classes

In this section, we will consider the possibility of

the existence of sparse bounded truth-table hard

sets for counting classes by using the theorems we

showed in the previous sections. It is not hard

to prove the theorems and corllaries here so omit

them. For $\leq_{btt}^{SN}$-reducibility to sparse sets, we ob-

tain the following theorem.

Theorem 4.1 Let $K=\{Q\}P$ for some polyno-

mial time decidable two-place predicate on $Nx$ N.

If there is a spars$e\leq_{btt}^{SN}$ -hard set for $K$ , then

$K\subseteq NP\cap co- NP$ .

For $\leq_{btt}^{P}$-reducibility to sparse sets, from

Theorem 3.7 and the existence of strictly l-wd self-

reducible sets that have been shown to be complete

for different classes in section 3, we obtain the fol-

lowing theorems.

Theorem 4.2 Let $K=\{Q\}P$ for some poly-

nomial time decidable two-place predicate $Q$ on

$NxN$ such that NP $\subseteq K\cup coK$ . If there is a

sparse $\leq_{btt}^{P}$-hard set for $K$ , then $K\cdot=P$ .

$T1_{1}eorem4.3$ For any $k\geq 2$ , if $MOD_{k}P$ has a

sparse $\leq_{btt}^{P}$-hard set then $MOD_{k}P=P$ .

Next we consider the consequences of

theorems 4.1, 4.2 and 4.3. From Theorem 4.1,

we obtain the following corollaries first stated in

[23].

Corollary 4.4 [23] If there is a sparse $\leq_{btt}^{SN}$-hard

set for NP, then PH $=NP$ .

Corollary 4.5 [23] If there is a sparse $\leq_{b1t}^{SN}$-hard

set for PP, then PH $=NP=PP$ .

Moreover, we have a similar result for $C_{=}$ P.

Corollary 4.6 If there is a sparse $\leq_{btt}^{SN}$-hard set

for $C_{=}P$ , then PH $=NP=PP=C_{=}P$ .

On the other hand, from Theorem 4.2, we obtain

the following corollaries.

Corollary 4.7 [24] If there is a sparse $\leq_{btt}^{P}$-hard

set for NP, then NP $=P$ .

Corollary 4.8 [23] If there is a sparse $\leq_{btt}^{P}$-hard

set for PP, then PP $=P$ .

Corollary 4.9 If there is a sparse $\leq_{btt}^{P}$-hard set

for $C_{=}P$ , then PP $=C_{=}P=P$ .

Finally, we consider $MOD_{k}P$ . For a class $K$ , a

set $L$ is in $BP\cdot K$ if there exist a set $A$ in $K$ and

a polynomial $p$ such that for every $x\in\Sigma^{*}$ ,

II $\{y\in\Sigma^{=p(|x|)} : \chi_{A}((x, y\})=\chi_{L}(x)\}\geq\frac{1}{3}\cdot 2^{p(|x|)}$.

The BP-operator is first introduced in [27]. Also,

BPP is the class of sets for which there exists a

probabilistic polynomial time acceptor with error

probability $\leq 1/3[12]$ . The following relationships

between BP-operator and the polynomial time hi-

erarchy are widely known.

Theorem 4.10 1. [27] For every $k\geq 1,$ $BP$ .
$\Sigma_{k}^{P}\subseteq\Pi_{k+1}^{P}$ .

2.
$PH\subseteq BP\cdot MOD_{k}P^{=}wherek\geq 2[32]PH\subseteq BP\cdot CP,PH\subseteq BP$

. PP, and

3. [27] BPP $=BP$ . P.
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4. $[18,29]$ $BPP\subseteq\Sigma_{2}^{P}\cap n_{2}^{P}$ .

From Proposition 2.6, Theorem 4.1 and

Theorem 4.10, we obtain th $e$ following corollaries.

Corollary 4.11 Let $K$ be any class chosen from

$\{MOD_{2}P, MOD_{3}P, \cdots\}$ . If $K$ has sparse $\leq_{btt}^{SN}$ hard

sets, then PH $\subseteq\Sigma_{2}^{P}\cap\Pi_{2}^{P}$ .

Corollary 4.12 Let $K$ be any class chosen from

$\{MOD_{2}P, MOD_{3}P, \cdots\}$ . If $K$ has sparse $\leq_{btt}^{P}$ hard

sets, then PII $=BPP$ .

[2] J. L. Balc\’azar, Self-reducibility, 4th STACS

(LNCS 247, Springer-Verlag, 1987) 136-147;

also, to appear in JCSS.

[3] J. L. Balc\’azar, J. Diaz, and J. Gabarr6, Stru $carrow$

tural Complexity $I$ (EATCS monographs on

Theoretical Computer Science 11, Springer-

Verlag, 1988).

[4] R. Beigel, J. Gill, and U. Hertrampf, Count-

ing classes: Thresholds, parity, mods, and

fewness, 7th $STACS$ (LNCS 415, Springer-

Verlag, 1990) 49-57.

Since there are complete sets for PSPACE that

are l-wd self-reducible [21], we can also derive the

following result &om Theorem 3.5.

Corollary 4.13 If there is a sparse $\leq_{btt}^{P}$-hard set

for PSPACE, then PSPACE $=NP$ .

Note that this is the biggest class to which

we can apply our technique, since all l-wd self-

reducible sets can be decided in PSPACE, and then

they cannot be complete for any class bigger than

PSPACE.
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