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ON ONE SIDED IDEALS OF A PRIME TYPE

KWANGIL KOH

ABsTRACT. The notion of prime type for right ideals is analogous
to that of prime ideal in a commutative ring, and the right dimen-
sion of the ring R is defined using chains of right ideals of prime
type. The meaning of zero right dimension, finite dimension for
right primitive rings, and related topics are studied.

1. Introduction. N. H. McCoy has defined that a two sided ideal
Sin a ring R is a prime ideal provided that if ABC.S, 4, B are right
ideals, then either A C.S or BCS (see [5]). Let us define that a right
(left) ideal I in a ring R is of a prime type if and only if IR and
ABCI, A, B are right (left) ideals, implies that either ACTI or BC 1.
It is easy to see that if R is a commutative ring then an ideal of a
prime type is just a prime ideal. By a chain of right ideals of prime
type in a ring R we mean a finite strictly increasing sequence PoC P
C - - - CPa,; the length of the chain is n. We define the right dimen-
sion of a ring R, which is denoted by dim, R, to be the supremum of
the lengths of all chains of right ideals of a prime type in R:itis an
integer 20, or . The left dimension of R, which is denoted by dim; R,
is similarly defined. The main results in this paper are:

(a) dim, R=0 if and only if R modulo the prime radical is a
strongly regular ring.

(b) dim, R=0 and R is a right noetherian ring if and only if R is
a right artinian ring and every right ideal of a prime type is a left
ideal.

(c) If Ris a (right) primitive ring then dim, R=# if and only if R |
is isomorphic to the #+41Xn-+1 matrix ring over a division ring.

(d) Every right ideal of a prime type in a ring R is a left ideal if
and only if every right ideal of a prime type is almost maximal (refer
[3] for definition).

In the sequel, unless otherwise stated, R will always denote a ring
with 1 and if T is a nonempty subset of a (right) R-module M then

TL = {r ER|tr =0forallt € T}.

2. If R is a ring let p(R) be the set of right ideals of a prime type
and m(R) be the set of maximal right ideals. Then m(R) Cp(R). For
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if IEm(R) and ABC for some right ideals 4 and B such that AT
then A +I=R and RB=(A+I1)BCI and BC1.

2.1. ProprosITION. If IEp(R) then the largest two sided ideal of R,
s(I), which is contained in I is a member of p(R).

PROOF. 5(I) = {#ER|RrCI} and it is the largest two sided ideal
of R which is contained in I. Let ABCs(J) for some right ideals 4
and B. Then RABC Rs(I)Cs(I)ZI and either RACI or RBCI. In
any case, either 4 Cs(I) or B&Cs(I). Thus s(I) Ep(R).

2.2. COROLLARY. The prime radical of R, rad R, is equal to N r.co) La
PRrOOF. Nz,epr) IaSrad RCEN; epmy s(La) SN epcry Lo

2.3. LEMMA. If p(R)CSm(R) then every maximal right ideal of R is
also a left ideal.

Proor. If IEm(R) then IEp(R). Hence by 2.1, s(I)Ep(R) and
s(I) Em(R) by hypothesis. Since s(I) 1, s(I) = 1.

2.4. LEMMA. If p(R)Cm(R) then every nilpotent element of R 1is
contained in rad R.

ProOF. Let xER such that x*=0 for some positive integer . If
x&rad R then there exists IEp(R) such that x€E 1. Since I is also a
left ideal by 2.3, R/I is a division ring. Hence x 1 is not a nilpotent
element. This is impossible.

2.5. LEMMA. Let R’=R/rad R. If p(R) Sm(R) then for any bER’,
br =0 if and only if rb =0 for any rER’ and (b)* is a two sided ideal.

Proor. We first note that if p(R) &Sm(R), by 2.4, there is no non-
zero nilpotent element in R’. Let b&ER’. If br =0 for some rER’ then
(rb)(rb) =0. Hence rb=0. Similarly if 76=0 for some r&ER’ then
(br) (br) =0 and br =0. Therefore (b)* is a two sided ideal.

2.6. LEMMA. Let R'=R/rad R. For each IEp(R’), define Or
= {aER’|ax=0for some x¢EI}. If p(R) Sm(R) then Or=1.

Proor. If p(R)Cm(R) then clearly p(R’) =m(R’) and [ is a two
sided ideal by 2.3. Hence if x& I and y& I then x-y& 1, since R'/I
is a division ring. Hence OrE1I. Suppose there is a& I such that
a€Or. LetT'={xER'|x&I}. Then T is closed under multiplication.
Let T'y be the multiplicative system which is generated by

I‘U{a, a? ad, - - - } If tET then t=a%xaix1a%xs - - - a'nxya*+ for
some positive integer » where x;ET’, 7=0, 1, 2, - - -, n, 4; are non-
negative integers, k=0, 1, - - -, 41, and a®=1. First we show that

for any x€T, a’x>0 for any positive integer 7. Suppose a*x =0 for
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some positive integer. Let ¢ be the least such integer. Then aa*~'x =0
for some positive integer. Let 7 be the least such integer. Then
aa™x =0 and a*'x 0 and ¢**xa =0 by 2.5. Thus a*~'xa*~'x =0 and
a*'x =0 by 2.4. This is impossible. Now we will show that ¢%0. Sup-
pose 0=t=a%x@a1x1a%x, - + - a'nxa'ni. Let t=4o+u1+ « -+ +Coyr.
Since aix1a%x; - - - a'x,anE (a%xe)l and (a'xo)t is a left ideal by
2.5, (a%oxo) (X1x2 - - - Xn)a 1a%1%1a%%, - - - a'xatn = 0, Since
(axox1xe - - - x,0%)L is a left ideal, a%xexixs - + - X.a'xex@™x2 - - -
a'»x,a'»t1=0. Repeating this process we will have a‘wxepcixe © - -
Xn@*XgX1X2 - - - Xn@® ¢ ¢ - @XgX1Xe - - - X,a™11 =0. Thus we will have

(a%xo%; - - - %) (@*woxy » - - %) - - - (afwexy - - - x,) = 0.
(n + 1 times)

This means that a®y =0 for some y =x¢x; - + + %, &I' and we arrive at
a contradiction. Now let .S be a two sided ideal of R’ which is maximal
with respect to a property that SNI'y= . Then S is a prime ideal of
R’, which is properly contained in I. This is a contradiction. Thus
Or=1.

2.7. LEMMA. Assume p(R)Cm(R). For any IEPp(R'), (R'/])"
=R'/I

PRroOF. Let 0#x& (R'/I)". If xI #0 then xIDR’/I since R'/I is
simple. Hence 147 =xa for some a&I. By Lemma 2.6, ay=0 for
some y& 1. Therefore, 0= (1+I)y=xay=0, a contradiction. Thus
xt=Tand xR'"=R’'/xtis simple. Thus (R’/I)" =R'/I.

2.8. THEOREM (VILLAMAYOR). Every simple R-module is injective if
and only if every right ideal of R 1is the intersection of maximal right
ideals.

PRrOOF. Let I be a right ideal of R and let {I.|aE€A} be the family
of maximal right ideals of R which contain I. Then ICMNaex Lo Sup-
pose ENuea I but x& 1. Then define Z,= {J|J is a right ideal,
ICJ#R and x&J } By Zorn’s lemma, 2, has a maximal member,
say J*. It is clear that xR+J*/J* is a simple R-module. Since
xR+ J*/J* is a submodule of R/J* and every simple module is injec-
tive, R/J*=xR+J*/J*®K/J* for some right ideal K. If K =J*
then x would be an element of K. Hence K =J* and xR+J*=R.
Now let J;: be a maximal right ideal of R such that J*CJ;. Then
Ji=1, for some aEA since ICJ*CJ, and x& J;. This means that
Ji=R. This is a contradiction. To prove the converse, assume that
every right ideal of I is the intersection of maximal right ideals. Let
M be a simple R-module. Let 0%x& M. Then (x)t =N,cx I, where
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{I.|a€EA} is a set of maximal right ideals. Let Mo=R/I,. Then M,
is a simple R-module and xR is a subdirect sum of {M,.}.ca Let
«R5 [IM o3 M, where p is an injection and p, is a projection for
each aEA. p, o u is an epimorphism for each aEA. If there is aEA
such that p, o p is a monomorphism then xR= M, and xR would be
simple. Hence xR=M and M = M. So suppose p, o p is not a mono-
morphism for all «©A. Then the kernel of p, o u must contain M
since xR is a large submodule of M. Thus Naey ker(pea o n). Of course,
this is impossible.

2.9. THEOREM. The following statements are equivalent:

(a) dim, R=0.

(b) dim; R=0.

(c) R/rad r is a strongly regular ring (i.e. for any a there is x such
that a =axa =a%*).

Proor. First we note that if R/rad R is a strongly regular ring then
every principal right ideal of R/rad R is generated by a central idem-
potent and every principal left ideal of R/rad R is also generated by
a central idempotent. Hence every right ideal of R/rad R is a left
ideal and every left ideal of R/rad R is a right ideal. Let P be a right
ideal of R which is of prime type. Then P/rad R is a right ideal. Let
P be a right ideal of R which is of a prime type. Then P/rad R is a
right ideal of R/rad R which is of a prime type, hence it is a two sided
ideal. Now (R/rad R)/(P/rad R) is a prime ring which is strongly reg-
ular. Since a strongly regular ring contains no nonzero nilpotent ele-
ment, R/P must be an integral domain which is a regular ring. Hence
R/P must be a division ring. Thus P is a maximal right ideal of R.
Similarly if P is a left ideal of R which is of a prime type then P is a
maximal left ideal. Hence the right dim R =0 =the left dim R. Now
assume (a). Let R’ =R/rad R. Then by 2.7, every simple R’-module is
injective. Hence by 2.8, every right ideal of R’ is the intersection of
maximal right ideals. In particular, if ¢ is a nonzero element of R’,
then a?R’=N,cy I, where I, aEA, is a maximal right ideal which
contains a?R’. If a€a?R’ then a1, for some o EA and a2E1,. This
is impossible since I, is also a left ideal by 2.3 and R'/I, is a division
ring. This proves that ¢ =a2x for some x & R. Since (axa —a)?=0, and
R’ has no nilpotent element except 0, a =axa =a’x.

2.10. LEmMA. If IEp(R) then (I:x) = {rER|xrEI} Ep(R) for any
xER.

ProoF. Let ABC (I:x) where A, B are right ideals. Then x4 BC 1.
Since x4 is also a right ideal and 7€ p(R), this means that either
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xACTI or RBCI. In any case, either A C (I:x) or BC(/:x).

2.11. LEMMA. If R, and R, are two rings and f is a ring homomor-
phism of Ry onto Ry, then f~(I) Ep(R,) for any IE p(Ry).

ProoF. Straightforward.

2.12. THEOREM. dim, R=0 and R is a right noetherian ring if and
only if R is a right artinian ring and every right ideal of a prime type is
a left ideal.

PRroor. Suppose dim, R=0 and R is a right noetherian ring. By 2.9,
R/rad R is a right noetherian ring which is regular. Hence R/rad R
is a right artinian ring (refer, for example, [4]). Since R/rad R is
semisimple, the Jacobson radical J(R)=rad R and it is nilpotent
since R is right noetherian. Hence by Theorem (Chase) of [1, p. 189],
R is a right artinian ring. If [ is a right ideal of a prime type then
IDrad R by 2.2 and I/rad R is a right ideal of R/rad R. Since every
right ideal of R/rad R is also a left ideal, I/rad R is a left ideal of
R/rad R and this means that [ is a left ideal in R. Conversely, assume
R is right artinian and every right ideal of a prime type is a left ideal.
Let I be a right ideal of a prime type. Since [ is also a left ideal, I is a
prime ideal and R/I is a right artinian simple ring. Now if xER, x I
then Ann (x+1) = {y+I| yER and xyE I} is of a prime type. Hence
by 2.11 the set {y€R|xy€I} is a right ideal of a prime type in R
and it is a two sided ideal by hypothesis. Thus Ann (x+41) is a two
sided ideal in R/I and it must be a zero ideal since R/I is a simple
ring. Hence R/I is an artinian integral domain and I is a maximal
right ideal which is also a left ideal. Thus dim, R=0. Any right
artinian ring is also a right noetherian ring and this will conclude the
proof.

3. If I is a right ideal of a ring R, the set N(I) = {x ER|xICI} is
called the “normalizer of I” in R (refer [2, p. 25]). Let N*(I)
= {xEN(I)|xy€EI if and only if yEI}. Let R\I denote the (set)
complement of I in R. In [5], we have defined that a right ideal I of
aring R is almost maximal if and only if:

(A1) for any @, bER\I, there exist r1, r2&R and cEN*(I) such
that ary=brs=c mod 1.

(A2) If aER\I then either aEN(I) or ar=a: mod I for some
r&R\I and 1€ 1.

It is also proven in [3] that a right ideal I of a ring R is almost
maximal if and only if the endomorphism ring of the quasi-injective
hull of the right R-module R/I is a division ring and every nonzero
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submodule of R/I contains an isomorphic image of R/1. In this sec-
tion, we will prove that every right ideal of a prime type is a left ideal
if and only if every right ideal of a prime type is almos't"r'n'aximal.

3.1. LEMMA. IEp(R) if and only if, for any nonzero submodule N
of R/I, Nx =01f and only if (R/I)x =0.

PRroOF. Suppose IEp(R) and let N=A4/I for some right ideal 4
such that 4#1. If Nx=0 for some x&ER then AxCI and the set
B=(I:A)={xER|AxCI} is a right ideal of R and ABCI. Since
AEI, RBCI and N+ =(R/I)L. Conversely assume that N+ = (R/I)*+.
Let ABCIforsomerightidealsAand BinR.If AQ I, let N=A+1/1.
Then N is a nonzero submodule of R/I and NL1DB. Hence
(R/T)*2B.

3.2. LEMMA. Let R be a prime ring and let T = {IEp(R) ] s(I)=0}.
If A is a nonempty subset of T then Ny en Ia is a member of T.

ProoF. Let ABgﬂquA I, for some right ideals 4 and B. If
AENg e I, then there is I,EA such that 4 E£1,. Since ABC I, and
I.,Ep(R), RBCI,. Since s(I,) =0, this means RB =0 and B=0. Thus
BCNr e I.. This proves that Nz e I.ET.

3.3. LEMMA. Suppose that if IEp(R) then I is almost maximal. Then
I=5(I) for each IEP(R).

ProorF. Let IEp(R) and M =R/I. Then M is a faithful R/s(I)-
module and R/s(I) is a prime ring since s(I) Ep(R) by 2.1. If mE M,
let Ann (m)= {r+s(I)ER/s(I)|m(r+s(I)) =0}. If m»0 then
Ann (m)Ep(R/s(I)) by 2.10 since I/s(I)Ep(R/s(I)). Consider
B=s(Ann (m)), the largest two sided ideal of R/s(I) which is con-
tained in Ann (m). If B is not zero then the set N= {mE M|mB=0}
is a nonzero submodule of M. Since N contains an isomorphic image
of M, NB=0 implies that MB =0. Since M is faithful, this means that
B is zero of R/s(I). This is a contradiction. Thus s(Ann (m)) is
zero. Now let my, ms be nonzero elements of M. Then Ann (m;)
NAnn (ms) Ep(R/s(I)) by 3.2. Let 7 be the canonical mapping of R
onto R/s(I). Then

7~ 1(Ann (m;) N Ann (my)) = (my)+ N (ma)t € p(R)

by 2.11. Hence (1)1 (m,)+ is an almost maximal right ideal. Since
every nonzero submodule of R/(m1)1tM\(m2)L is large, (my)LM\ (m2)*
=(my) or (m1)tN\(my)L=(my)L. In any case, either (my)1C (mg)t or
(mg)t S (my)L. In other words, given a1, a.&1, either (I:a1)
C(I:as) or (I:a;) C(I:a1). Now suppose al LI for some a ER (hence
a@I). Then (I:a)PI and therefore, by Lemma 2.0 (iii) of [3],
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(I:a) 1. However, by Lemma 2.0 (ii) of [3], there is 7E& R such that
(I:ar) =1, with ar& 1. This is a contradiction.

3.4. COROLLARY. If R is a (right) primitive ring and every right ideal
of a prime type is almost maximal then R is a division ring.

PRrROOF. Let I be a maximal right ideal such that s(I) =0. Since
I&p(R), by 3.3, 0=s(I) =1I. Hence R is a division ring.

3.5. LEMMA. Let R be a prime ring. If C is a complement right ideal
of Rthen CEP(R).

Proor. If Cis a complement right ideal then there exists a right
ideal J such that JNC=(0) and if I is a right ideal such that IDC
and I#C then JNI#(0). Let ABCC for some right ideals 4 and B
in R. If ACC then 44+CDOC and A+C>C. Hence (4+C)NJ#0.
Letj=a+4c#0 for some jEJ,aE A and ¢&C. Then jJRBC CNJ and
RBC (j)*. Since R is a prime ring, this means B=0CC.

3.6. THEOREM. Every right ideal of a prime type in a ring R is almost
maximal if and only if every right ideal of a prime type is a left ideal.

PRroOF. Suppose that if 7Ep(R) then I is almost maximal. Then
by 3.3, I=s(I). Thus I is also a left ideal. Conversely, assume that
every right ideal of a prime type is a left ideal. Then for each IEp(R),
R/I is a prime ring and it must be an integral domain since (I:a)
Ep(R) for each a&R\I by 2.10 and only two sided annihilator
ideals in a prime ring are entire ring and zero ideal. By 3.5, if Cis a
complement right ideal of R/I then CEp(R/I). Hence 7—!(C) Ep(R)
by 2.11 where 7 is the canonical mapping of R onto R/I and n—*(C)
is a two sided ideal. Thus C would be a two sided ideal in R/I. This
proves that R/I is a right Ore domain. Thus I is an almost maximal
right ideal.

4. If Ris a commutative ring then R is a field if and only if every
ideal which is not R is a prime ideal. In this section, we will prove that
R is a simple ring if and only if every right ideal, which is not R, is of
a prime type. We will also show that if R is a simple ring then
dim, R=n if and only if R=D,, for some division ring D.

4.1. LEMMA. If every right ideal of a ring R is either of a prime type
or R, then R is semistmple.

PRrOOF. Let J(R) be the Jacobson radical of R and assume J(R) 0.
Let x be a nonzero element of J(R). Let I(x) be a right ideal which is
maximal with respect to a property that x&I(x). Then the
right R-module (xR+I(x)/I(x)) is a simple R-module. Hence
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(xR+I(x))J(R)CI(x). Since I(x)#R, by hypothesis I(x) is of a
prime type. Thus RJ(R)C I(x) and x EJ(R) CI(x). This is impossible
since x€ I (x).

4.2. THEOREM. R is a simple ring if and only if every right ideal of R
is either of a prime type or R.

PRrOOF. Assume R is a simple ring. Let I be a right ideal of R such
that I R. If ABCI and B0 then A =AR=ARBCABCI. There-
fore, IEp(R). Assume that every proper right ideal of R is of a prime
type. Let S be a two sided ideal such that S¥R. Let I be a maximal
right ideal. If SE I then SN/ is not of a prime type. For if SN is of
a prime type then ISC SN implies that either JSSMNI or SCSNI.
In any case, this means that SCI. Since SN\I#R, a supposition that
ST I is absurd. Therefore SCJ(R). Since J(R) =0 by 4.1, this means
that S=0.

4.3. THEOREM. Let R be a (right) primaitive ring. Then the following
statements are equivalent:

(i) dim, R=n.

(ii) R s isomorphic to the n+1Xn+1 matrix ring over a division
ring.

PRrROOF. Let M be a faithful simple R-module. If I" is a nonempty
subset of M then either Nuer (m)+=R or Nner (m)LEp(R) by 3.2.
Hence if dim, R=n then a length of any chain of the form (m;)*
D(m)itN(m)LD - - - D(m)*N\(ma)t - - - N(my)t for miEM,1=1,
2, - - -, must be less than or equal to #. This means that the vector
space dimension of M over its endomorphism ring is less than or
equal to #+1. Thus R is a simple ring with the minimum condition
on right ideals and R is a direct sum of » minimal right ideals. Since,
by 4.2, every proper right ideal of R is of a prime type and since
dim, R=n, m<n+1. Let (0)=P,CP,C - -+ CP, be a chain of
n-distinct right ideals of a prime type. Since every right ideal of a
simple right artinian ring is a direct summand of R, there exist a
sequence of nonzero right ideals K, K, ---, K, such that
Py®Ky=P, P1®K,=P,, ---, P,.®K, =P, and P,®K,=R.
Hence R=Py®K:1®K:® - - - K,=K,®K,® - - - ®K,. Since the
number of direct summands in a decomposition of R as a direct sum
of minimal right ideals in R is unique, n+1=<m. Thus n+1=m
and R is isomorphic to D,y for some division ring D. Conversely, if
R is isomorphic to the n+1X#z-+1 matrix ring over a division ring
then R is a simple right artinian ring and R is a direct sum of n+1
minimal right ideals, say I, I, - - -, I.. The length of chain
0)=I,CI,ChL+I.C - - - Ch+I,+ - - +1,is n and each com-
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ponent of the chain is a right ideal of a prime type by 4.2. Further-
more no chain of right ideals of prime type can exceed z by an argu-
ment given above in a proof of the necessity. Thus dim, R=n.

ExaMPLE 4.4. A noncommutative regular ring can have an infinite
dimension. For example, let R be the ring of all linear transforma-
tions of infinite-dimensional vector space over a division ring D. Then
R is a regular ring which is primitive (refer [S, p. 123]). Hence by
4.3, dim, R cannot be finite.

ExampLE 4.5. If R is a commutative ring then the concepts of al-
most maximal right ideal, a right ideal of a prime type and prime
ideal are all the same. However, in a noncommutative ring they are
quite different. In fact, in any right artinian ring the supremum of
the lengths of all chains of almost maximal right ideals is exactly zero
by 3.4 of [5]. However dim, R could be an arbitrary finite number
since any #X#n matrix ring over a division ring is an artinian ring
which has the dimension #»—1.

ExAMPLE 4.6. Let Z be the ring of integers. Then dim Z=1. Let
R=(%%), the 2X2 upper triangular matrix ring over Z. Then
dim, R=1 since rad R= (35) and R/rad R=~ZXZ. However R can-
not be isomorphic to a 2 X2 matrix ring over any ring.

ExaMprLE 4.7. If R is a commutative principal ideal domain then
dim, R=1. However, there exists a principal right and left ideal
domain whose right dimension is infinite. For example, let F(¢) be
the ring of rational functions in £ over a field F of zero characteristic
and take F[x, £] to be the ring of differential polynomials in ¢ over
F(%). Its elements are subject to the rule af=ta+da/dt, aE F(§).
Then F|[x, £] is a simple principal right and left domain which is not a
division ring (refer [2]). Hence by 4.3, the dimension of F[x, £] can
not be finite.
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