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ON ONE SIDED IDEALS OF A PRIME TYPE

KWANGIL KOH

Abstract. The notion of prime type for right ideals is analogous

to that of prime ideal in a commutative ring, and the right dimen-

sion of the ring R is defined using chains of right ideals of prime

type. The meaning of zero right dimension, finite dimension for

right primitive rings, and related topics are studied.

1. Introduction. N. H. McCoy has defined that a two sided ideal

5 in a ring R is a prime ideal provided that if ABQS, A, B are right

ideals, then either A Ç.S or BÇS (see [5]). Let us define that a right

(left) ideal 7 in a ring R is of a prime type if and only if I^R and

ABQI, A, B are right (left) ideals, implies that either AQI or BÇ.I.

It is easy to see that if R is a commutative ring then an ideal of a

prime type is just a prime ideal. By a chain of right ideals of prime

type in a ring R we mean a finite strictly increasing sequence PoEPi

C • ■ • EPn; the length of the chain is n. We define the right dimen-

sion of a ring R, which is denoted by dimr R, to be the supremum of

the lengths of all chains of right ideals of a prime type in R: it is an

integer ^0, or «s. The left dimension of R, which is denoted by dim¡ R,

is similarly defined. The main results in this paper are:

(a) dim, R = 0 if and only if R modulo the prime radical is a

strongly regular ring.

(b) dimr R=0 and R is a right noetherian ring if and only if R is

a right artinian ring and every right ideal of a prime type is a left

ideal.

(c) If R is a (right) primitive ring then dimr R = n if and only if R

is isomorphic to the » + 1X« + 1 matrix ring over a division ring.

(d) Every right ideal of a prime type in a ring R is a left ideal if

and only if every right ideal of a prime type is almost maximal (refer

[3] for definition).

In the sequel, unless otherwise stated, R will always denote a ring

with 1 and if F is a nonempty subset of a (right) i?-module M then

TL = {r E R I tr = 0 for all/ E T}.

2. If R is a ring let p(R) be the set of right ideals of a prime type

and m(R) be the set of maximal right ideals. Then m(R)Ç.p(R). For
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if IEm(R) and ABÇZI for some right ideals A and B such that A%I

then A +I = R and RB = (A +I)BQI and BQI.

2.1. Proposition. If IEp(R) then the largest two sided ideal of R,

s (I), which is contained in I is a member of p(R).

Proof. s(I) = {rER\RrQl} and it is the largest two sided ideal

of R which is contained in /. Let ABQs(I) for some right ideals A

and B. Then RAB^Rs(I)^s(I)çZI and either RAQI or RBÇZI- In
any case, either A Qs(I) or BQs(I). Thus s(I) Ep(R).

2.2. Corollary. The prime radical ofR, rad R, is equal to f\raeP(,B) I a-

Proof. CliaeP<.R) I«Qrad RÇ.ftiae.p<.R) s (/<*)£ fij„ej>(B) I«-

2.3. Lemma. If p(R)çZm(R) then every maximal right ideal of R is

also a left ideal.

Proof. If IEm(R) then IEp(R). Hence by 2.1, s(I)Ep(R) and
s(I) Em(R) by hypothesis. Since s(I)QI, s (I) = /.

2.4. Lemma. // p(R)Qm(R) then every nilpotent element of R is

contained in rad R.

Proof. Let xER such that xn = 0 for some positive integer n. If

xÇJErad R then there exists IEp(R) such that x$zl. Since I is also a

left ideal by 2.3, R/I is a division ring. Hence x+I is not a nilpotent

element. This is impossible.

2.5. Lemma. Let R'=R/rad R. If p(R)Qm(R) then for any bE\R',
br = 0 if and only if rb = Ofor any rER' and (b)x is a two sided ideal.

Proof. We first note that if p(R)<^m(R), by 2.4, there is no non-

zero nilpotent element in R'. Let bER'- li br = Q for some rER' then

(rb) (rb) = 0. Hence rb — Q. Similarly if rb = 0 for some rE\R' then

(br) (br) = 0 and br = 0. Therefore (è)x is a two sided ideal.

2.6. Lemma. Let R'=R/rad R. For each IEp(R'), define Oi

= {aER'\ax = 0 for some x<£l}. If p(R)Qm(R) then Oi = I.

Proof. If p(R)Qm(R) then clearly p(R') =w(ic') and I is a two

sided ideal by 2.3. Hence if x(£l and y(£l then x-y^I, since R'/I

is a division ring. Hence OfÇJ. Suppose there is aE\I such that

a^Oj. LetT= {xER'\x(£l}. Then T is closed under multiplication.

Let To be the multiplicative system which is generated by

rujo, a2, a3, • ■ ■ }. If tETo then t=aiox0ai'-xxa^Xi ■ • ■ a,'»a;„aVHi for

some positive integer w where XjET, j = 0, 1, 2, • • -, n, ik are non-

negative integers, k=0, 1, • ■ • , n + 1, and a0 = 1. First we show that

for any xET, a'x^O for any positive integer i. Suppose aix = 0 for
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some positive integer. Let i be the least such integer. Then aa'~lx = 0

for some positive integer. Let i be the least such integer. Then

aai~1x=0 and a*~lx^0 and a*~lxa = 0 by 2.5. Thus ai~lxai~1X = 0 and

ai_1x = 0 by 2.4. This is impossible. Now we will show that t^O. Sup-

pose 0=t=ai°xoa'1Xia'tx2 ■ ■ • ai»xna*'»+i. Let i=io-\-ii+ ■ ■ ■ +in+u

Since a'ixia^x-i ■ ■ ■ ai^xnai^+^E(ai'¡xo)1- and (a'oxo)1- is a left ideal by

2.5, (a'oxo)(xix2 ■ ■ ■ Xn)a<^imiiXiai^x2 ■ ■ ■ a<»x„a,'»+i = 0. Since

(«'0x0X1X2 • • • Xna')1- is a left ideal, 0*0x0X1X2 • • • Xna'xaXia^Xi ■ ■ ■

a^Xna^+i = 0. Repeating this process we will have a'0x0X1X2 • • •

x„aix0xix2 • ■ • xnai ■ ■ ■ a*x0X1X2 • ■ • x„a*'»+>=0. Thus we will have

(a'x0Xi ■ ■ • xn)(a'XoXi ■ ■ ■ xn) ■ • ■ (a%o*i • • ' se«) = 0.

in + 1 times)

This means that a'y = 0 for some y =XoXi • • • xnET and we arrive at

a contradiction. Now let S be a two sided ideal of R' which is maximal

with respect to a property that Si~\To = 0. Then 5 is a prime ideal of

R', which is properly contained in /. This is a contradiction. Thus

0/ = /.

2.7. Lemma. Assume p(R)Qm(R). For any IEpiR'), iR'/I)*

= R'/I.

Proof. Let O^xEiR'/I)'■ If xiX) then xI^R'/I since R'/I is

simple. Hence 1+7 = xa for some aEI- By Lemma 2.6, ay—Q for

some y(£.I. Therefore, 07±il+T)y=xay = 0, a contradiction. Thus

x-L = J and xR'^R'/x1 is simple. Thus iR'/iy =R'/I.

2.8. Theorem (Villamayor). Every simple R-module is injective if

and only if every right ideal of R is the intersection of maximal right

ideals.

Proof. Let / be a right ideal of R and let [la\ a£A} be the family

of maximal right ideals of R which contain I. Then 7Çfl„eA la- Sup-

pose xEOcea Ia but x(£l. Then define Sj= {/|/ is a right ideal,

IÇLJt^R and x(£j}. By Zorn's lemma, Sx has a maximal member,

say J*. It is clear that xR+J*/J* is a simple i?-module. Since

xR-\-J*/J* is a submodule of R/J* and every simple module is injec-

tive, R/J*=xR+J*/J*®K/J* for some right ideal K. If K^J*

then x would be an element of K. Hence K = J* and xR + J*=R.

Now let Ji be a maximal right ideal of R such that J*G±Ji. Then

Ji = Ia for some a£A since JÇ/*Ç./i and xEJi- This means that

Ji = R. This is a contradiction. To prove the converse, assume that

every right ideal of I is the intersection of maximal right ideals. Let

M be a simple i?-module. Let O^xGM. Then (x)x = ("!„£ a Ia where
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{^«|a£A} is a set of maximal right ideals. Let Ma = R/Ia. Then Ma

is a simple i?-module and xR is a subdirect sum of {M„}aeA- Let

xi?A YlMa-^Ma where ¡x is an injection and pa is a projection for

each aEA. pa o u is an epimorphism for each aEA. If there is aEA

such that pa o ß is a monomorphism then xR m Ma and xR would be

simple. Hence xR — M and M = M. So suppose pa o lí is not a mono-

morphism for all a£A. Then the kernel of paoii must contain M

since xi? is a large submodule of M. Thus ("Lea ker(/>a o ju). Of course,

this is impossible.

2.9. Theorem. The following statements are equivalent:

(a) dimri? = 0.

(b) dim¡i? = 0.

(c) i?/rad r is a strongly regular ring (i.e. for any a there is x such

that a =axa =a2x).

Proof. First we note that if i?/rad R is a strongly regular ring then

every principal right ideal of i?/rad R is generated by a central idem-

potent and every principal left ideal of i?/rad R is also generated by

a central idempotent. Hence every right ideal of R/rad R is a left

ideal and every left ideal of i?/rad R is a right ideal. Let P be a right

ideal of R which is of prime type. Then P/rad R is a right ideal. Let

P be a right ideal of R which is of a prime type. Then P/rad R is a

right ideal of i?/rad R which is of a prime type, hence it is a two sided

ideal. Now (i?/rad R)/(P/rad R) is a prime ring which is strongly reg-

ular. Since a strongly regular ring contains no nonzero nilpotent ele-

ment, R/P must be an integral domain which is a regular ring. Hence

R/P must be a division ring. Thus P is a maximal right ideal of R.

Similarly if P is a left ideal of R which is of a prime type then P is a

maximal left ideal. Hence the right dim i? = 0 = the left dim R. Now

assume (a). Let R' = R/rad R. Then by 2.7, every simple i?'-module is

injective. Hence by 2.8, every right ideal of R' is the intersection of

maximal right ideals. In particular, if a is a nonzero element of R',

then a2R' =r\a<=/i I„ where /„, aEA, is a maximal right ideal which

contains a2R'. If a(£a2R' then a(£la for some aEA and a2EIa- This

is impossible since Ia is also a left ideal by 2.3 and R'/Ia is a division

ring. This proves that a=a2x for some xER- Since (axa — a)2 = 0, and

i?'has no nilpotent element except 0, a=axa=a2x.

2.10. Lemma. If IEp(R) then (I:x)= {rER\xrEl}Ep(R) for any
xER-

Proof. Let ABQ(I:x) where A, B are right ideals. Then xABQI.

Since xA is also a right ideal and IEp(R), this means that either
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xAQI or RBQI. In any case, either AÇ.(I:x) or BQ(I:x).

2.11. Lemma. If Rx and R2 are two rings and f is a ring homomor-

phism of Rx onto R2, then f~1(I)Ep(Rx) for any IEp(R2)-

Proof. Straightforward.

2.12. Theorem. dimr R = 0 and R is a right noetherian ring if and

only if R is a right artinian ring and every right ideal of a prime type is

a left ideal.

Proof. Suppose dimr R = 0 and R is a right noetherian ring. By 2.9,

i?/rad R is a right noetherian ring which is regular. Hence R/rad R

is a right artinian ring (refer, for example, [4]). Since R/rad R is

semisimple, the Jacobson radical J(R) =rad R and it is nilpotent

since R is right noetherian. Hence by Theorem (Chase) of [l, p. 189],

R is a right artinian ring. If / is a right ideal of a prime type then

J2rad R by 2.2 and I/rad R is a right ideal of i?/rad R. Since every

right ideal of R/rad R is also a left ideal, I/rad R is a left ideal of

i?/rad R and this means that 7 is a left ideal in R. Conversely, assume

R is right artinian and every right ideal of a prime type is a left ideal.

Let I be a right ideal of a prime type. Since / is also a left ideal, / is a

prime ideal and R/I is a right artinian simple ring. Now if xER, x(£l

then Ann (x+I) = {y + l\ y ER and xyEl} is of a prime type. Hence

by 2.11 the set {yER\xyEl} is a right ideal of a prime type in R

and it is a two sided ideal by hypothesis. Thus Ann (x+I) is a two

sided ideal in R/I and it must be a zero ideal since R/I is a simple

ring. Hence R/I is an artinian integral domain and / is a maximal

right ideal which is also a left ideal. Thus dimr R = 0. Any right

artinian ring is also a right noetherian ring and this will conclude the

proof.

3. If / is a right ideal of a ring R, the set N(I) = {xER\xIEl} is

called the "normalizer of I" in R (refer [2, p. 25]). Let N*(I)

= {xEN(I)\xyEI if and only if yEl}- Let R\I denote the (set)

complement of / in R. In [5], we have defined that a right ideal / of

a ring R is almost maximal if and only if:

(Al) for any a, bER\I, there exist r%, r2ER and cEN*(I) such

that arx = br2 = c mod I.

(A2) If aER\I then either aEN(I) or ar=ai mod / for some

rER\I and iEL
It is also proven in [3] that a right ideal / of a ring R is almost

maximal if and only if the endomorphism ring of the quasi-injective

hull of the right i?-module R/I is a division ring and every nonzero
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submodule of R/I contains an isomorphic image of R/I. In this sec-

tion, we will prove that every right ideal of a prime type is a left ideal

if and only if every right ideal of a prime type is almost maximal.

3.1. Lemma. IEp(R) if and only if, for any nonzero submodule N

of R/I, Nx=0if and only if (R/I)x = 0.

Proof. Suppose IEp(R) and let N = A/I for some right ideal A

such that A^I. If Ax = 0 for some xER then AxQI and the set

B = (I:A)= {xER\AxQl} is a right ideal of R and ABQI. Since
A£I,RBQIand Ax = (R/I)1-. Conversely assume that Ax = (R/I)1-.

Let A B QI for some right ideals A and BinR.U Aç£I,letN = A+I/I.
Then A is a nonzero submodule of R/I and NX^B. Hence

(R/I)^B.

3.2. Lemma. Let R be a prime ring and let T = {lEp(R)|s(I) =0}.

If A is a nonempty subset of T then Dj^eA la is a member of T.

Proof. Let ABQf)Ia^A Ia for some right ideals A and B. If

A ÇED/^a I a, then there is IaEA such that A ç£Ia. Since ABQIa and

IaEp(R), RBÇZIa. Since s(Ia) =0, this means RB =0 and B =0. Thus

5cn7oeA /«• This proves that H^ea I«Gr.

3.3. Lemma. Suppose that if IEp(R) then I is almost maximal. Then

I = s(I)for each IEp(R).

Proof. Let IEp(R) and M = R/I. Then M is a faithful R/s(I)-
module and R/s(I) is a prime ring since s(I)Ep(R) by 2.1. If mEM,

let Ann (w) = {r+j(/)ei?A(/)|m(r-(-5(7)) =0|. If w^0 then

Ann (m)Ep(R/s(I)) by 2.10 since I/s(I)Ep(R/s(I)). Consider

_B=s(Ann (m)), the largest two sided ideal of R/s(I) which is con-

tained in Ann (m). If B is not zero then the set Ar= {wGM| mB =0}

is a nonzero submodule of M. Since N contains an isomorphic image

of M, NB =0 implies that MB =0. Since Mis faithful, this means that

B is zero of R/s(I). This is a contradiction. Thus s(Ann (m)) is

zero. Now let mu m2 be nonzero elements of M. Then Ann (mi)

C\Ann (m2)Ep(R/s(I)) by 3.2. Let ir be the canonical mapping of R

onto i?/s(I). Then

7T-x(Ann (mi) C\ Ann (m2)) = («i)1 P\ W1 E p(R)

by 2.11. Hence (wi)x/r>\(w2)-L is an almost maximal right ideal. Since

every nonzero submodule of R/(mi)±r\(m2)-L is large, (wi)-LP\(w2)-L

= (jwi) or («zi)J-P\(m2)J- = (w2)J-. In any case, either (mi)-LÇ(?M2)J- or

(m^-t-Qimi)-1. In other words, given ai(£l, a2(£l, either (J:ai)

Ç(/:a2) or iI:a2)QiI:ai). Now suppose a/$7 for some aGi? (hence

a£7). Then  (I:a)J¿I and therefore, by Lemma 2.0  (iii) of   [3],
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(I:a)cÍI. However, by Lemma 2.0 (ii) of [3], there is rER such that

(I:ar) =1, with arÇ^I. This is a contradiction.

3.4. Corollary. If Ris a (right) primitive ring and every right ideal

of a prime type is almost maximal then R is a division ring.

Proof. Let / be a maximal right ideal such that s(I)—0. Since

IEp(R), by 3.3, 0 = s(I) =1. Hence R is a division ring.

3.5. Lemma. Let R be a prime ring. If C is a complement right ideal

ofRthenCEp(R).

Proof. If C is a complement right ideal then there exists a right

ideal / such that Jf~\C = (0) and if I is a right ideal such that TDC

and I ¿¿C then JCM^ (0). Let ABQC for some right ideals A and B

inR. If AÇ£C then A +CDC and A+C^C. Hence (A+QCM^O.
Letj = a+C5¿0 for some jEJ, aEA and cEC. Then jRBÇLCfM and
RBQij)-1. Since R is a prime ring, this means _B = 0CC

3.6. Theorem. Every right ideal of a prime type in a ring R is almost

maximal if and only if every right ideal of a prime type is a left ideal.

Proof. Suppose that if IEp(R) then I is almost maximal. Then

by 3.3, I = s(I). Thus / is also a left ideal. Conversely, assume that

every right ideal of a prime type is a left ideal. Then for each IE\p(R),

R/I is a prime ring and it must be an integral domain since (I'.a)

Ep(R) for each aER\I by 2.10 and only two sided annihilator

ideals in a prime ring are entire ring and zero ideal. By 3.5, if C is a

complement right ideal of R/I then CEp(R/I). Hence ir~l(C)Ep(R)

by 2.11 where w is the canonical mapping of R onto R/I and ?r-1(C)

is a two sided ideal. Thus C would be a two sided ideal in R/I. This

proves that R/I is a right Ore domain. Thus I is an almost maximal

right ideal.

4. If R is a commutative ring then R is a field if and only if every

ideal which is not R is a prime ideal. In this section, we will prove that

R is a simple ring if and only if every right ideal, which is not R, is of

a prime type. We will also show that if R is a simple ring then

dimr R = n if and only if R = D„+1 for some division ring D.

4.1. Lemma. If every right ideal of a ring R is either of a prime type

or R, then R is semisimple.

Proof. Let J(R) be the Jacobson radical of R and assume J(R) ¿¿0.

Let x be a nonzero element of J(R). Let I(x) be a right ideal which is

maximal with respect to a property that x€£I(x). Then the

right   J?-module   (xR + I(x)/I(x))   is   a   simple   P-module.   Hence
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(xR+I(x))J(R)CLI(x). Since I(x)^R, by hypothesis I(x) is of a

prime type. Thus RJ(R)QI(x) and xEJ(R)QI(x). This is impossible

since x£/(x).

4.2. Theorem. R is a simple ring if and only if every right ideal of R

is either of a prime type or R.

Proof. Assume R is a simple ring. Let / be a right ideal of R such

thatl^R. If ABQI and B^O then A =AR=ARBQABÇZI. There-
fore, IEpiR). Assume that every proper right ideal of R is of a prime

type. Let 5 be a two sided ideal such that S^R. Let / be a maximal

right ideal. If SQI then Sf\J is not of a prime type. For if SC\I is of

a prime type then ISQSCM implies that either I^SCM or SÇ.SCM.

In any case, this means that SEI- Since SCM^R, a supposition that

SQI is absurd. Therefore SQJ(R). Since JiR) =0 by 4.1, this means

that 5 = 0.

4.3. Theorem. Let R be a iright) primitive ring. Then the following

statements are equivalent:

(i) dim, R = n.

(ii) R is isomorphic to the k + IXb + I matrix ring over a division

ring.

Proof. Let M be a faithful simple i?-module. If F is a nonempty

subset of M then either flmer im)±=R or PLer (m)-LEp(R) by 3.2.

Hence if dimr R = n then a length of any chain of the form (mi)1-

D(mi)-LfXw2)-10 • • • Dimi^í^im^ • • ■ r\(mt)L for mtEM, i = \,

2, ■ ■ ■ , must be less than or equal to n. This means that the vector

space dimension of M over its endomorphism ring is less than or

equal to w + 1. Thus R is a simple ring with the minimum condition

on right ideals and R is a direct sum of m minimal right ideals. Since,

by 4.2, every proper right ideal of R is of a prime type and since

dimr R = n, m^n + 1. Let (0) =PoC-PiC ■ • ■ EPn be a chain of

«-distinct right ideals of a prime type. Since every right ideal of a

simple right artinian ring is a direct summand of R, there exist a

sequence of nonzero right ideals Ko, K\, ■ ■ ■ , Kn such that

Po®K0 = Pi, Pi@Ki = P2, ■ ■ ■ , P„_,®i„_i=P„ and P„®Kn = R.

Hence R=P0®Ki®K2® ■ ■ ■ Kn = Ki®K2® ■ ■ ■ ®K„. Since the

number of direct summands in a decomposition of R as a direct sum

of minimal right ideals in R is unique, w + l^w. Thus n-\-\=m

and R is isomorphic to Dn+i for some division ring D. Conversely, if

R is isomorphic to the w + lXw + 1 matrix ring over a division ring

then R is a simple right artinian ring and R is a direct sum of w + 1

minimal right ideals, say It, I2, ■ ■ ■ , I„. The length of chain

(0) = IoEIiEh+hE • • • EI1+I2+ ■ ■ ■ +In is n and each com-
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ponent of the chain is a right ideal of a prime type by 4.2. Further-

more no chain of right ideals of prime type can exceed n by an argu-

ment given above in a proof of the necessity. Thus dimr R = n.

Example 4.4. A noncommutative regular ring can have an infinite

dimension. For example, let R be the ring of all linear transforma-

tions of infinite-dimensional vector space over a division ring D. Then

R is a regular ring which is primitive (refer [5, p. 123]). Hence by

4.3, dimr R cannot be finite.

Example 4.5. If R is a commutative ring then the concepts of al-

most maximal right ideal, a right ideal of a prime type and prime

ideal are all the same. However, in a noncommutative ring they are

quite different. In fact, in any right artinian ring the supremum of

the lengths of all chains of almost maximal right ideals is exactly zero

by 3.4 of [5]. However dimr R could be an arbitrary finite number

since any nXn matrix ring over a division ring is an artinian ring

which has the dimension » —1.

Example 4.6. Let Z be the ring of integers. Then dim Z = l. Let

R = (oz), the 2X2 upper triangular matrix ring over Z. Then

dimr R = i since rad R = (oo) and i?/rad R^ZXZ. However R can-

not be isomorphic to a 2 X2 matrix ring over any ring.

Example 4.7. If R is a commutative principal ideal domain then

dim, R = l. However, there exists a principal right and left ideal

domain whose right dimension is infinite. For example, let F(l-) be

the ring of rational functions in £ over a field F of zero characteristic

and take F[x, £] to be the ring of differential polynomials in / over

F(%). Its elements are subject to the rule at = ta+da/dl-, aEF(%).

Then F[x, £] is a simple principal right and left domain which is not a

division ring (refer [2]). Hence by 4.3, the dimension of F[x, £] can

not be finite.
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