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ABSTRACT In this paper, a Generative Adversarial Networks-based framework has been proposed for 
identity-specific face transformation with high fidelity in open domains. Specifically, for any face, the pro-
posed framework can transform its identity to the target identity, while preserving attributes and details 
(e.g., pose, gender, age, facial expression, skin tone, illumination and background). To this end, an auto-
encoder network is adopted to learn the transformation mapping, which encodes the source image into the 
latent representation, and reconstruct it with the target identity. In addition, the face parsing pyramid is in-
troduced to help the decoder restore the attributes. Moreover, a novel perceptual constraint is applied to the 
transformed images to guarantee the correct change of the desired identity and to help retrieve the lost de-
tails during face identity transformation. Extensive experiments and comparisons to several open-source 
approaches demonstrate the efficacy of the proposed framework: it can achieve more realistic identity trans-
formation while better preserving attributes and details. 

INDEX TERMS Auto-encoder, Face transformation, Generative Adversarial Networks, Perceptual con-
straint  

I. INTRODUCTION  

Target Identity
Open-Set Faces Identity Transformation

 
FIGURE 1.  Target-Specific Face Identity Transformation. 
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In recent years, with the emergence of deep generative 
models, such as the Generative Adversarial Networks 
(GAN) [1] and the Variational Auto-encoder (VAE) [2, 3], 
researchers have made tremendous progress in building 
deep networks for image generation [38]. Among them, 
face transformation is a critical task, owing to its wide real-
world applications. It can be divided into two branches: 
face attribute transformation and face identity transfor-
mation. 

Many approaches have obtained significant advances in 
face attribute transformation. For example, TP-GAN [4] and 
FF-GAN [5] aim to synthesize the frontal view of a face from 
a single face image. DR-GAN [6] can take one or multiple 
face images as the input and jointly learn a pose-invariant 
representation and perform face frontalization. These 
methods successfully transform the pose of the face while 
preserving its identity. Other methods are designed to edit the 
face attributes like age, gender, hair color, expression and so 
forth. Star-GAN [7] trains a conditional attribute 
transformation network via attribute classification loss and 
cycle consistency loss for multiple face attribute editing. Att-
GAN [8] shares some similar ideas with Star-GAN but does 
not include a cyclic process or cycle consistency loss. It 
focuses on the disadvantages of existing methods [9, 10] on 
modeling the relationship between the latent representation 
and the attributes. 

Instead of manipulating face attributes, face identity 
transformation changes the face of a person with the face of 
another person. As one of the most well-known open-source 
face identity transformation methods, DeepFakes [11] is 
based on two auto-encoders with a shared encoder that is 
trained to reconstruct training images of the source and the 
target face, respectively. To change the identity of the source 
image, DeepFakes first detects and crops the face region. 
Then, the trained encoder and decoder of the target identity 
are applied to it. Finally, the output is blended with the rest of 
the source image using Poisson image editing [12] to 
preserve the details. However, DeepFakes has some 

limitations: 1) each training model can only achieve the 
transformation between two fixed identities, but cannot be 
used for open set; 2) fail to well preserve face attributes such 
as skin color, age, gender, etc., especially when they differ 
too much between the source and the target. There are some 
other face identity transformation methods based on the 
GAN and the VAE, like CVAE-GAN [13], which proposes a 
general learning framework that combines a variational auto-
encoder with a generative adversarial network under a 
conditioned generative process. Mutual transformation of 
multiple identities can be achieved through CVAE-GAN, 
since it establishes an identity-independent latent 
representation for further identity editing. However, the 
encoder of CVAE-GAN only outputs the mean vector and 
the covariance vector, and the latent vector used for 
reconstruction is sampled from a random normal distribution. 
Such an approach leads to the information loss, causes it to 
fail to preserve attributes and details of the source face. 

In this paper, a GAN-based framework is proposed 
towards open-set and high-fidelity face identity 
transformation. In particular, for any face from the open set, 
our framework can transform it into a face with a specific 
identity. High-fidelity implies that the transformed face 
retains other attributes and details of the source face as much 
as possible, except for the identity change. To this end, an 
encoder-decoder network is trained to learn the 
transformation mapping between the source face and the 
reconstructed face with the target identity. For better 
preservation of attributes, the face parsing pyramid is applied 
to different levels of the decoder as the prior. Besides, a 
novel perceptual constraint is proposed to guarantee the 
correct transformation of the desired identity and to help 
retrieve lost image details during image reconstruction. 

As shown in Fig. 2, our approach consists of three parts: 1) 
a generator network G, which encodes the source image to 
the latent representation and reconstructs it with the target 
identity; 2) a discriminator network D, which distinguishes 
real or fake images; 3) a perceptual network P, whose 
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FIGURE 2.  The pipeline of FIT-GAN. It contains three parts: the generator network G, the discriminative network D and the perceptual network P. G 
takes the source face I and face parsing masks as input and output the transformed face T. Subscript o indicates the face is from an open set, and 
subscript t means the face has the target identity. To and a batch of It are sent to P to calculate the perceptual identity loss LPI, while To and Io are sent 
to P to calculate the perceptual detail loss LPD. D is used to calculate the GAN loss, whose input is the concatenation of transformed face T and the 
face parsing mask 
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parameters are frozen, to constrain the identity of the 
reconstructed face and to retain details of the source image. 

Extensive experiments and comparisons to several open-
source methods demonstrate the efficacy of the proposed 
framework. It is trained on CelebA [14] and tested on 
CelebA and Face Scrub [15]. Results show that whether the 
source face and its identity are included in the training 
dataset or not, our approach can achieve realistic identity 
transformation while preserving attributes and details. 

II. RELATED WORK 
Auto-encoder (AE) is widely used in semi-supervised 
learning and unsupervised learning, which compressing the 
input into a latent representation, and then reconstructing 
this representation into an output. It was first proposed to 
solve the "encoder problem" in representation learning in 
1985 [16], and is now widely used in image generation [37]. 
Variational Auto-encoder (VAE) [17, 18] is a classic model 
of AE, it adds the constraints to the encoder, forcing it to 
generate the latent representation that obeys the Gaussian 
unit distribution. The disadvantage of using VAE in face 
transformation task is that, because the encoder only out-
puts the mean vector and the covariance vector, and the 
latent vector used for reconstruction is sampled from a ran-
dom normal distribution, there is a lot of face attributes and 
image details lost. Therefore, traditional AE architecture is 
adopted instead of VAE in this paper. 

Generative Adversarial Networks (GAN) can learn to 
generate realistic images. It simultaneously trains two 
networks: a generator network to generate samples, and a 
discriminator network to differentiate between natural and 
generated samples. It effectively solves the problem that the 
generated images of AE are often blurry. However, the GAN 
is hard to converge in the training stage and the samples 
generated from GAN are often far from natural. Recently, 
many works have been proposed to improve the quality of 
the generated samples and make training stable. For example, 
the Wasserstein GAN (W-GAN) [19] uses Earth Mover 
Distance as an objective for training GAN. It improves the 
stability of learning and gets rid of problems like mode 
collapse. The Least Squares GAN (LS-GAN) [20] changes 
the sigmoid cross-entropy loss function commonly used in 
the regular GAN which might lead to the vanishing gradient 
problem during the learning process to the least-squares loss 
function, significantly improving the quality of generated 
images and the stability of training. This paper adopts the 
loss function used in [20]. 

Face transformation is an image generation task that 
allows us to edit the face identity or face attributes in the 
source image. [39] proposes a novel attributes encoder for 
extracting multi-level target face attributes, and a new 
generator with carefully designed Adaptive Attentional 
Denormalization (AAD) layers to change the identity to the 
target while preserving attributes. Unlike two-player GANs, 
[40] generates identity-preserving faces by proposing 

FaceID-GAN, which treats a classifier of face identity as the 
third player, competing with the generator by distinguishing 
the identities of the real and synthesized faces. It generates 
faces of arbitrary viewpoint while preserving identity. 

Perceptual constraint appears in several recent papers, 
depending on high-level features extracted from a 
convolutional network. Images can be generated to maximize 
class prediction scores [21] or individual features [22] in 
order to understand the functions encoded in trained 
networks. [23] optimizes the perceptual loss function to train 
a feed-forward network for image style transfer. Experiments 
prove that it can also be used for face transformation. In this 
paper, a novel perceptual constraint is proposed to guarantee 
the correct transformation of the desired identity and to help 
retrieve lost image details during image reconstruction. 

III. FACE INDENTITY TRANSFORMATION GAN 
In this section, we introduce the proposed Face Identity 
Transformation GAN (FIT-GAN). As shown in Fig. 2, our 
proposed framework contains three parts: 1) the generator 
network G; 2) the discriminative network D; and 3) the 
perceptual network P. 

G is an encoder-decoder network to learn the 
transformation mapping which is identity-specific and 
attribute-preserving. Whether target identity faces and open-
set faces share its encoder or decoder during training. For 
better preservation of the facial attributes, the face parsing 
pyramid is introduced since it contains rich identity-invariant 
facial information (e.g., the position of facial features, facial 
poses, and even facial expressions). To form the face parsing 
pyramid, the face parsing mask of I is first obtained through a 
pre-trained face parsing model, and then scaled to several 
resolutions. After that, they are applied it to different levels 
of the decoder through the SPADE Resblock proposed in 
[24]. Besides, the widely-used self-attention mechanism [25, 
35, 36] is adopted to further improve the quality of the 
generated image. The transformed face T and the face 
parsing mask M are concatenated and sent to D, which learns 
to distinguish between real and fake samples. To guarantee 
that the identity of the source face from the open-set can be 
correctly transformed into the target identity, the transformed 
face T is constrained using a perceptual network P whose 
parameters are frozen. Moreover, P can also help retrieve lost 
details during image reconstruction. 

At the heart of our proposed framework lies three loss 
functions: 1) the reconstruction loss LR, 2) the GAN loss LG 

(LD), and 3) the perceptual loss LP. In the following sections, 
we describe them at length and provide the training details. 

A.  RECONSTRUCTION LOSS 
The reconstruction loss LR is used to constrain the similarity 
between the transformed image T and the source image I. In 
this paper, the pixel-wise L2 loss is adopted as the recon-
struction loss, the same as [11] and [13]. 
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In the training phase, the generator network G is shared by 
target identity faces and open-set faces, so there are two 
situations: whether the identity of the input face is the target 
identity or not. If the identity of the input face image Io is 
from open set (not in the target identity set), G is expected to 
output a face that transforming the identity to the target 
identity while preserving other attributes and details. When 
the input It is from the target identity set, G is expected to 
restore the It, that is, the input and output are hoped to be 
exactly the same, just like the traditional AE. Therefore, 
different loss weights are employed in two situations. 
Formally, the reconstruction loss is 
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where LRS corresponds to the first situation and LRT to the 
second. λ1 is the reconstruction loss weight. 

In practice, eyeballs and mouth details are identity-
irrelevant but crucial for facial expression. Therefore, in 
order to restore the facial expression vividly when changing 
the identity, the eyeball and the inner region of the mouth are 
extracted with the help of the face parsing mask, and 
calculate the reconstruction loss separately from the face, as 
shown in Fig. 3. The location-aware reconstruction loss can 
be written as 
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(2) 

where a higher loss weight λ2 is assigned to the eyeball and 

mouth. The loss of each part is calculated in the same way 
as in (1), except that L2 distance is calculated respectively 
in the corresponding region. 

B.  GAN LOSS 
One of the defects of AE is that the generated image is blur-
ry. However, the use of the GAN loss can solve this prob-
lem, synthesizing more realistic images. For the design of 
the GAN loss, we refer to [20]. Similar to the original GAN, 
the generator network G competes in a two-player minimax 
game with the discriminator network D. D tries to distin-
guish real training images from synthesized images, while 
G tries to fool D. The difference is that it uses the least-

squares loss instead of the sigmoid cross-entropy loss. It 
significantly improves the quality of generated images and 
the stability of training. Concretely, when training D, it tries 
to minimize the loss function 

      221 1
2 2

+
r rD I P I PL D I a D G I bE E         

 (3) 

where a = 1 and b = 0. When training G, it minimizes the 
loss function 

    21
2 rG I PL D G I cE    

 (4) 

where c = 1.  

C.  PERCEPTUAL LOSS 
In this paper, a novel perceptual constraint on the trans-
formed face T is proposed to guarantee the correct change 
of the desired identity and to help retrieve lost details dur-
ing image reconstruction. To this end, the perceptual net-
work P is introduced. It is pre-trained on VGGFace2 [26], 
which includes numerous identities and covers a wide range 
of postures, ages and races. It should be noted that P is fro-
zen during training, and the perceptual loss LP is used to 
update the parameters of G. LP consists of two parts: the 
perceptual identity loss LPI and the perceptual detail loss 
LPD. 

The perceptual identity loss LPI utilizes the target identity 
to constrain the identity of the transformed face. Because the 
input source image comes from the open set, its identity 
category may not exist in VGGFace2. Therefore, the 
classification results of the face recognition network P cannot 
be used to constrain the identity. However, since P is a face 
recognition network, as its layers getting deeper, the features 
become more and more identity-relevant and attribute-
irrelevant. To prove that, we select two images A1 and A2 
with the same identity and different postures, and image B 
with the same posture but different identity as A2. Then they 
are sent into P to extract features at different levels. By 
comparing their cosine distance, it can be seen that in the 
deep layer of the network, the feature distance of images with 

the same identity is far less than that of images with similar 
postures but different identities. Details are shown in Fig. 4. 
Therefore, the identity of the transformed face is constrained 
by feature distance from the faces with the target identity. 
Specifically, the transformed face To and a set of face images 
with the target identity {It

1, It
2, … It

n} are input into P and the 
high-level feature FT and {FI

1, FI
2, … FI

n} are obtained from 

Lface Leyeball Lmouth

I

T

FIGURE 3.  Location-aware reconstruction loss. I is the source image and 
T is the transformed image. We use face parsing mask to precisely 
segment the face, eyeball and mouth, and calculate the reconstruction 
loss Lface, Leyeball and Lmouth respectively. 
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FIGURE 4.  The distance of features in different levels of P. High-level 
indicates features of the last convolutional layer. 
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the last convolution layer of the last Resblock. {FI
1, FI

2, … 
FI

n} are then elementwise averaged to get FI. After that, the 
global average pooling (GAP) is applied on FT and FI to get 
the spatial-independent identity vector VT and VI. Their 
cosine distance is used as the perceptual identity loss. 
Formally, LPI is 
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  (5) 

The experiment shows that in the process of identity 
transformation, especially when applying the perceptual 
identity constraint, the transformed face loses some details of 
the source face, such as texture and illumination. To retrieve 
these lost details, the perceptual detail loss LPD is proposed, 
referring to the approaches of the image style transfer task 
[23, 27]. Concretely, the source face Io and the transformed 
face To are input into the perceptual network P, and get the 
low-level feature FI

’ and FT
’ from the last convolution layer 

of the first Resblock. For each of them, its Gram Matrix GM 
  RN×N is calculated where N is the number of channels and 
GMij is the inner product between the feature map i and j: 

 ' '1
ij ik jk

k
GM F F

CHW
   (6) 

Mid-level’s and low-level’s features are extracted from the 
shallow layers.  
Then the perceptual detail loss LPD is 

  2

,

I T
PD ij ij

i j
L GM GM   (7) 

Moreover, we also try to combine features of multiple lay-
ers, it only marginally improves the ability of retrieving the 
details. 

D.  OVERALL LOSS FUNCTION AND TRANING DETAIL 
The overall loss function is the sum of all the losses defined 
above: 
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(8) 

where we empirically set λ1=λ2=10, λ3=1, λ4=0.3 and λ5=1 
in the experiment. 

(8) is optimized using Adam [28] with β1=0.5, β2=0.999. 
The learning rate is set to 0.00001. The size of the input face 
image for training is 128×128, which has been detected, 
cropped, and aligned using MTCNN [29]. As mentioned 
above, the face parsing mask pyramid is introduced to help 
preserve face attributes, due to its identity independence. To 
achieve this, the SPADE Resblock proposed in [24] is 
employed. In particular, the face parsing mask of the source 
input image is first obtained through a pre-trained face 
parsing model. Then it is scaled to 128×128, 64×64, 32×32, 
16×16 and 8×8, and sent to different levels of the decoder. In 
the training phase, we separate each iteration into two steps: 
at the first step, we use images with target identity to train the 
network, which means only images from the target identity 
set are sampled to form the mini-batch, whose batch size is 

set to 64 in the experiments; at the second step, we only 
sample images from the rest training set except the target 
identity set and use them to train the network. In practice, it 
is proved that this two-steps training strategy can not only 
improve the training stability and convergence speed, but 
also make the generated image more realistic. The details of 
the training strategy are described in Algorithm 1. 

Algorithm 1 The two-step training strategy. 
Require: θG, initial G network parameters. θD, 
initial D network parameters. θP, initial P net-
work parameters. λ1=λ2=10, λ3=1, λ4=0.3 and 
λ5=1. iter=1 
While θG not converged do 

if iter%2 = 1 then 
    Sample It form the target identity set 
    LR = 1/2|| It - G(It)||2 
    LD = 1/2(D(G(It)) - 1)2 
    LG = 1/2(D(It) - 1)2 + 1/2D(G(It))2 
    θG ← -

G (λ1 LR + λ3 LG) 
    θD ← -

D (λ3 LD) 
else 
    Sample Io form the rest training set except 

the target identity set 
    LR = Lface + λ2Leyeball + λ2Lmouth 
    LD = 1/2(D(G(Io)) - 1)2 
    LG = 1/2(D(Io) - 1)2 + 1/2D(G(Io))2 
    VI = P(It), VT = P(G(Io)) 
    LPI = 1- (VI VT / ‖VI‖2‖VT‖2) 
    Compute GMI and GMT 
    LPD =  ( GMI - GMT)2 

    LP = λ4LPI + λ5LPD 
    θG ← -

G ( Lface + λ2Leyeball + λ2Lmouth + 
λ3LG + λ4LPI + λ5LPD) 

    θD ← -
D (λ3 LD) 

end if 
iter ← iter + 1 

end while 

IV. EXPERIMENTS 
In this section, we use experiments to validate the effec-
tiveness of the proposed FIT-GAN. The network is trained 
on CelebA [14] and evaluated on CelebA and Face Scrub 
[15]. CelebA is a large-scale face attributes dataset. It has 
large diversities, large quantities, and rich annotations, in-
cluding: 1) 10,177 number of identities, 2) 202,599 number 
of face images and 3) 40 binary attributes annotations per 
image. However, in our experiment, the above identity an-
notations and attribute annotations are not used. Instead, the 
perceptual loss and reconstruction loss are utilized to con-
strain the network to transform identity and preserve face 
attributes. CelebA is chosen for training because images in 
this dataset cover large variations in posture, age, skin color, 
facial expression, etc., which significantly improves the 
generalization performance of the network. Face Scrub is a 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3044187, IEEE

Access

  

6 
 

dataset with over 100,000 face images of 530 people, which 
is the testing dataset in our experiments. 

The generator network G is an auto-encoder, consisting of 
a down-sampling encoder network and an up-sampling 
decoder network. In this paper, the self-attention block and 
SPADE Resblock are introduced to G to improve the quality 
of the generated image and to better retain face attributes. 
The discriminative network D is a binary classification 
network, whose input is the concatenation of the transformed 
face and the face parsing mask, referring to [24]. For the 
perceptual network P, the ResNet [30] pre-trained on 
VGGFace2 is adopted. More details of the network 
architecture can be found in appendix A. 

A.  FACE INDENTITY TRANSFORMATION of FIT-GAN  
This section presents the results of the open-set, high-
fidelity and target-specific face identity transformation us-
ing our proposed FIT-GAN. The goal of the transformation 
is to change the identity of the source face from open set to 
the specific target identity, while preserving other face at-
tributes and details. 

Fig. 5 shows the transformation result which the source 
faces are from CelebA. As can be seen from the figure, our 
proposed FIT-GAN can successfully transform the identity of 
the source face of different ages, races and genders into the 
target identity. Meanwhile, it can also effectively preserve 
the face attributes such as skin color, posture, facial 
expression and details such as illumination and background 
in the source image. 

To further prove that the proposed method can achieve 
open-set face identity transformation, we choose the source 
image from Face Scrub, which does not exist in the training 
dataset CelebA, including its identity. Fig. 6 presents the 
results. 

B.  VISUALISATION COMPARISION with OTHER 
FRANWORKS 
In this section, we visually compare the proposed FIT-GAN 
with other open-source frameworks for face identity trans-
formation. They are analyzed and compared in the follow-
ing aspects: 1) whether they can achieve realistic identity 

transformation; 2) whether they can preserve face attributes 
and details; and 3) the performance on open-set faces. 
Therefore, we specially select source images with large 
poses and extreme facial expressions. Besides, open-set 
faces that do not exist in the training set are tested. 

Visualization comparison is shown in Fig. 7. As can be 
seen from the figure, whether the source faces exist in the 
training set or not, CVAE-GAN can edit the identity 
accurately. However, most of the face attributes and details 
in the source images are lost, especially when dealing with 

Source Image

Target Identity Result  
FIGURE 5.  Face identity transformation results on training set. 
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FIGURE 7.  Visualization comparison with existing open-source 
frameworks on both training set and open set. 
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FIGURE 6.  Face identity transformation results on open set. 
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large poses, such as the 1st, 3rd, 4th, and 6th column. In 
addition, CVAE-GAN cannot retain facial expressions like a 
surprise, smile and frown in the source image, such as the 5th, 
7th, 9th, and 10th column. Besides, other attributes and details 
in the source image, such as skin color, mouth opening or 
closing, eye gaze, are also not preserved. Compared with 
CVAE-GAN, DeepFakes can preserve more attributes and 
details, but it cannot achieve realistic identity transformation 
when facing the source images from the open set, which can 
be seen in the last seven columns of the figure. Furthermore, 
DeepFakes sometimes fail to generate faces when face poses 
are large, like the 3rd column. Thanks to the introduced face 
parsing mask and the perceptual constraint, FIT-GAN can 
achieve identity transformation under large poses or extreme 
facial expressions, while preserving attributes and details 
such as skin color, illumination and background. 

C.  QUANTITATIVE COMPARISION with OTHER 
FRAMEWORKS 
In this paper, several criteria are utilized for the following 
quantitative comparisons: 1) whether the transformed iden-
tity is the target identity; 2) whether face attributes and de-
tails are preserved during transformation; and 3) the photo-
realism of output images. 

In this work, we use the Top-1 accuracy to measure the 
identity transformation ability. We check whether the identity 
category of the generated image can be accurately predicted. 
To this end, an Inception-V3 [31] face recognition network is 
trained on the test set Face Scrub. Besides, the ID retrieval is 
also adopted as [39] does. We extract identity vector using a 
different face recognition network [41] and adopt the cosine 
similarity to measure the identity distance. For each 
generated face from the test set, we search the nearest face in 
Face Scrub and check whether it belongs to the correct 
person. The averaged accuracy of all such retrievals is 
reported as the ID retrieval in Table 1. Attribute and detail 
preservation is measured by a variant of perceptual distance 
[32], called the domain-invariant perceptual distance (DIPD) 
[33]. To compute the DIPD, the feature of VGG conv5 layer 
is extracted from the input source image as well as from the 
output transformed image. Then, the instance normalization 
is applied to the features, which will remove their mean and 
variance. It can filter out much identity-specific information 
in the features [34] and focus on the identity-invariant 
similarity. The DIPD is given by L2 distance between the 
instance normalized features. Moreover, we use the open-
source pose estimator [42] and 3D face model [43] to 

estimate head pose and expression preservation as [39] does. 
We report the L2 distances of pose and expression vectors 
between the generated face and the source face. To quantify 
the photorealism of output images, the structural similarity 

(SSIM) is calculated. SSIM measures the similarity between 
the transformed image and the input image in terms of 
brightness, contrast and structure. The higher the SSIM value, 
the lower the distortion of the transformed image. 

Tab. 1 shows the quantitative results of the generated 
image quality of different frameworks. As can be seen from 
the table, our FIT-GAN is superior to other approaches in 
terms of identity transformation, attribute and detail 
preservation, and the photorealism of the generated image.  

D.  ABLATION STUDY 
As described above, at the heart of our proposed framework 
lies the composite loss function L, which can be written as 
(8). To understand the effects of each loss component, we 
repeat the training of FIT-GAN with the same settings but 
using a different combination of losses and compare the 
quality of the transformed images. Specifically, we inde-
pendently remove the perceptual identity loss LPI, the per-
ceptual detail loss LPD, the GAN loss LG, and change the 
location-aware reconstruction loss LR to the non-location-
aware one. The results are shown in Fig. 8. From which we 
can see that removing LPI will cause the framework unable 
to transform the identity accurately. Removing LPD will lose 
some face attributes and details of source images like skin 
tone, texture and illumination during face transformation. 
Not using the weighted location-aware LR will cause the 
framework unable to preserve facial expressions due to the 
loss of eyeballs, mouth and other details. Lastly, if LG is 
removed, the generated images will be blurry.  

TABLE I 
QUANTITATIVE COMPARISON WITH OTHER OPEN-SOURCE FRAMEWORKS 

  Top-1 acc↑  ID retrieval↑  DIPD↓  Head pose↓  Expression↓  SSIM↑ 
CVAE-GAN [13] 0.86 0.46 1.45 5.08 3.13 0.47 
DeepFakes [11]  0.53 0.77 0.61 3.79 2.70 0.59 

Ours 0.83 0.89 0.34 2.20 2.11 0.68 
↑ means larger numbers are better, ↓ means smaller numbers are better. 

(a) LPI 

source 

w/o

our best

 (b) LPD

 (c) location-aware LR    (d) LG 

source

w/o

our best

Target Identity

 
FIGURE 8.  Face identity transformation results with or without the 
specific loss. 
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In this work, we propose a many-to-one face identity 
transformation framework, which means all source identities 
share the same encoder but each target identity corresponds 
to a decoder. Although it is not necessary to train a pair of 
encoders and decoders independently for each pair of source 
and target identities, as in a one-to-one framework like 
DeepFakes, it is still less practical when facing the multiple 
target identities. Therefore, we propose the following 
strategies that can speed up and simplify training for multi-
target task. The quantitative results can be seen in Tab. 2. 

Train one, fine-tune the others. First, we select a target 
identity to train the framework for 100 epochs. Then, for 
other target identities, we only need to fine-tune the decoder 
on each corresponding training set for a couple of epochs 
with the parameters of encoder and discriminator frozen. 
This training strategy can significantly improve the training 
speed but the quantitative result is slightly lower than our 
baseline. 

Single-encoder, multi-decoder training. We change our 
framework from many-to-one to many-to-k. Specifically, we 
train k decoders at once, as mentioned in [44]. The 
architecture is shown in Fig. 9. In our experiments, we set k 
to 4 and reduce the batch size and network complexity 

accordingly. Experiment results reveal that it not only speeds 
up the training, but also boosts the network performance 
from all aspects. 

Moreover, we also try to unfreeze the perceptual network 
P and update its parameters during training. Through 
experiments we find that when its learning rate is set very 
low, the result will be slightly lower than baseline, which is 
shown in Tab. 2. As the learning rate increases, performance 
continues to deteriorate. 

V. CONCLUSION 
In this paper, a novel framework called FIT-GAN is pro-
posed for open-set, high-fidelity and target-specific face 

identity transformation. In particular, an encoder-decoder 
network is trained to learn the transformation mapping be-
tween the source face and the transformed face with the 
target identity. For better preservation of attributes, the face 
parsing pyramid is applied to different levels of the decoder 
as the prior. Besides, a novel perceptual constraint is pro-
posed to guarantee the correct transformation of the desired 
identity and to help retrieve lost image details during image 
reconstruction. Extensive experiments and comparisons to 
several existing methods demonstrate the efficacy of FIT-
GAN: it can achieve more realistic identity transformation 
while better preserving attributes and details. However, 
there is still a flaw in our work, that is, although the identity 
in the source image can come from the open domain, the 
model can only transform it to the specific target rather than 
an arbitrary identity. Our future work will explore how to 
transform the source identity to the target identity which is 
also in the open domain. 

APPENDIX 

A.  NETWORK ARCHITECTURE 
The generator network G is an auto-encoder, consisting of 
a down-sampling encoder network and an up-sampling 
decoder network. In this paper, the self-attention block and 
SPADE Resblock are introduced to G to improve the qual-
ity of the generated image and better preserve face attrib-
utes, which are shown in Fig. A.1. Details of the architec-
ture of G is shown in Fig. A.2 (a), where ↑ means 2-times 
up-sampling, ↓ means 2-times down-sampling, and IN is 
Instance Normalization. The discriminative network D is a 
binary classification network, whose input is the concate-
nation of the transformed face and the face parsing mask, 
which is shown in Fig. A.2 (b). For the perceptual network 
P, we adopt the ResNet-101 [30] pre-trained on VGG-
Face2. The architecture is illustrated via the following 
chain of operations: 
Conv-64   Max Pool   Resblock-256   Resblock-
512   Resblock-1024   Resblock-2048   Average 
Pool   FC-N   Softmax 
where N is the number of classes. 

B.  MORE FACE IDENTITY TRANSFORMATION RE-
SULTS 
The proposed FIT-GAN can achieve high-fidelity face 
identity transformation, which means face attributes can be 
well preserved while editing the identity. The visualization 
results in Fig. B reveal that our method can successfully 

TABLE II 
QUANTITATIVE COMPARISON OF DIFFERENT TRAINING STRATEGIES 

Training strategy  Top-1 acc↑  ID retrieval↑  DIPD↓  Head pose↓  Expression↓  SSIM↑ 
many-to-one 0.83 0.89 0.34 2.20 2.11 0.68 

many-to-one + fine-tune   0.82 0.89 0.36 2.27 2.29 0.61 
many-to-k 0.85 0.91 0.32 2.11 2.13 0.72 

many-to-one + unfreeze P 0.82 0.89 0.35 2.21 2.13 0.68 
 

Encoder

Decoder 1

Decoder 2

Decoder k

I

T1

T2

Tk

 
FIGURE 9.  Single-encoder, multi-decoder training. 
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achieve identity transformation in the face of different age, 
gender, skin tone and even extreme facial expressions, while 

preserving face attributes and details. 

 

 
 
 
 
 
 

1×1Conv,  ReLU 1×1Conv,  ReLU 1×1Conv,  ReLU

Transpose

Softmax
3×3C

onv,  R
eLU

3×3C
onv

3×3C
onv

SPADE

3×3Conv,  ReLU

SPADE

3×3Conv,  ReLU

SPADE

3×3Conv,  ReLU

(a) Self-Attention Block (b) SPADE ResBlock

(c) SPADE Block

 
FIGURE A.1.  Self-Attention Block and SPADE ResBlock. 

5×5Conv-64, ReLU

 3×3Conv-128, IN, ReLU

Self-Attention Blk-256

Self-Attention Blk-512

FC-1024

 3×3Conv-256, IN, ReLU

 3×3Conv-512, IN, ReLU 

3×3Conv-1024, IN, ReLU

FC-4×4×1024

Reshape-(4, 4, 1024)

3×3Conv-512, IN, ReLU

 3×3Conv Blk, IN, ReLU

SPADE ResBlk-512

 3×3Conv-512, IN, ReLU

SPADE ResBlk-512

SPADE ResBlk-256

 3×3Conv-128, IN, ReLU

SPADE ResBlk-128

Self-Attention Blk-512

Self-Attention Blk-256

 3×3Conv-256, IN, ReLU

  3×3Conv-64, IN, ReLU

SPADE ResBlk-64

5×5Conv-3, Tanh Concat

 4×4Conv-64, IN, LReLU

 4×4Conv-128, IN, LReLU

 4×4Conv-256, IN, LReLU

Self-Attention Blk-256

 4×4Conv-512, IN, LReLU

Self-Attention Blk-512
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(a) Generator Network
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FIGURE A.2.  Network Architecture. 
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(a) Diffirent Ages 

(b) Diffirent Genders 

(c) Diffirent Skin Tones 

(d) Diffirent Facial Expressions 

Target Identity

 
FIGURE B.  High-Fidelity Transformation Results. 
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