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Abstract. It is proved that an open three-manifold of Ricci curvature non-

negative and positive at one point is diffeomorphic to the three-dimensional

Euclidean space.

The Ricci curvature of a Riemannian manifold is said to be quasi-positive if

it is nonnegative everywhere and strictly positive in any direction at (at least)

one point. The purpose of this paper is to prove the following

Theorem. A complete open three-manifold of quasi-positive Ricci curvature is

diffeomorphic to R3.

We remark that the same statement as in the theorem for dimension four

and above is not true, as shown by the examples of Sha and Yang [SY].

To put the theorem in perspective, we briefly review some earlier results. The

question about the structure of quasi-positively curved manifolds was first raised

by Cheeger and Gromoll [CGI]. The original question was about sectional

curvature. Recall that Gromoll and Meyer [GM] proved that any complete

open manifold of positive sectional curvature is diffeomorphic to R" . Later,

Cheeger and Gromoll [CGI] studied the structure of complete manifolds of

nonnegative sectional curvature, obtaining the celebated Soul Theorem. In the
same paper, they made the famous conjecture that any complete open manifold

of quasi-positive sectional curvature is diffeomorphic to R". Many authors

have studied this conjecture, and, to my knowledge, it is still open in general

[Waj.
Similar problems about Ricci curvature were first studied by Schoen and Yau.

They proved [ScY] that any open three-manifold of positive Ricci curvature is

diffeomorphic to R3. In the same paper, they conjectured that an open three-

manifold of nonnegative Ricci curvature either is diffeomorphic to R3 or its

universal covering is isometric to IxJ?1 where Z is a surface of nonnegative
curvature.This conjecture was partially proved by Anderson and Rodriguez [AR]

and Shi [Sh], with an additional requirement that the absolute value of sectional
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curvature be bounded. Of course, our theorem is an immediate consequence of

the conjecture of Schoen and Yau, which remains open.

We will carry out the proof of our theorem along the similar line as in [ScY].

The main change we have to make is to incorporate at appropriate places and

in appropriate forms the following theorem of Aubin.

Theorem (Aubin). Let (Mn , g) be a Riemannian manifold of nonnegative Ricci

curvature and pn e M with Ric(Po) > 0 • F°r any curve y of finite length in

M with y(0) = Po, we can deform the metric on M so that it has nonnegative

Ricci curvature everywhere and positive Ricci curvature in a neighbourhood of y.

Furthermore, at points where Ric(g) > 0, the Ricci curvature remains positive

in the new metric.

The above form of the theorem is not explicitly stated in [Au] but follows

from the proof in [Au, pp. 398-399].

Remark. It follows from the above theorem that a compact manifold of quasi-

positive Ricci curvature admits metric of strictly positive Ricci curvature. But

the same does not follow for open manifolds.

Lemma. Let (M3, g) be an open three-manifold of quasi-positive Ricci curva-

ture. Then M is contractible.

Proof. To fix a notation, we fix a point Po e M with Ric(P0) > 0. Our

strategy is to prove that nx(M) = n2(M) = 0. Then, since M is open and of

dimension three, Hk(M, Z) = 0 for all k > 3 . By the Hurewicz Theorem, we

have nk(M) = 0 for all k > 1 . Hence, M is contractible by the Whitehead
Theorem. ___ __

Let us first prove n2(M) = 0. If n2(M) ^ 0, then n2(M) ^ 0, where M is
the universal covering space of M. The Sphere Theorem in three-dimensional

topology [He] says that there exists an embedded S2 in M which is not homo-

topically trivial. If M\S2 were connected, we could take a loop in M inter-

secting S2 at exactly one point. This loop couldjtot be null-homotopic. This

would contradict 7Ti(Af) = 0. Thus S2 divides M into two connected compo-

nents. By Van Kampen's theorem, each component is simply connected. If one

of these were compact, then since S2 is a trivial element in H2 of the com-

pact set, by the Hurewicz Theorem it is trivial in n2. This is a contradiction.

Therefore, S2 divides M into two noncompact components. This implies the

existence of a line, namely, a geodesic which is minimizing between any two of

its points. Now the Cheeger-Gromoll Splitting Theorem [CG2] implies that M

is a product of a line and a compact surface, M = Rl x X. Thus, for any point

x e M, Ric(|j) = 0 where §-t generates the Rl factor in M = Rx x I. This

contradicts the assumption that Ric(Po) > 0. Hence n2(M) = 0.

We next prove that nx(M) - 0. Since dim(Af) = 3 and M is open,
Hk(M, Z) = 0 for k > 3. By the Hurewicz Theorem, all higher homotopy
groups of M vanish. Therefore, M is a K(n, 1) space, and H'(nx(M)) =

H'(M) = 0 for / > 3. Since infinitely many cohomology groups of a finite

cyclic group are nonzero, n x (M) is torsionfree.
Suppose nx(M) ^ 0. By passing to a covering space, we can assume

nx(M, Pn) = Z . Let y be a loop at Po, generating the fundamental group.

Let Mi be an exhaustion of M, i.e., M, c Mi+X , M = \J M,■, with dMj a
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disjoint union of smooth closed surfaces. Without loss of generality, we can

assume y c M, for any / > 0.

By the theorem of Aubin, we can deform the metric to g' so that g' is posi-

tively Ricci curved along y, i.e., for any x e y , v e TXM, we have Ric(v) > 0.

By the Poincare duality, for each i, we can find a compact orientable surface

X,, so that <9X, c dMt, with Xn y =£ 0 . We then perturb the metric near dMi

so that it has positive mean curvature in the new metric. Thus there exists a

minimal surface, minimizing among all surfaces in A/, which are homologous

to X; with the same boundary <9X,. We denote the minimal surface also by

X,. Note that X,- n y ^ 0.
Since X, minimizes area in homology, it follows that the area of X, inside

any compact domain Q of M has as uniform bound independent of i. The

compactness and regularity theorems for minimal surfaces then imply that a

subsequence of X, n Q converges to a properly embedded minimal surface X

(with respect to g') with Xny ^ 0. Since X, is area minimizing X is stable on

each compact subset. Now by a theorem of Fischer-Colbrie and Schoen [F-CS],

for any x e X, we have Ric(n(x)) = 0 where n(x) is the unit vector normal

to X at x . In particular, Ric(«(xo)) = 0 for xq e X n y . This contradicts the

fact that g' has positive Ricci curvature along y . Therefore, nx(M, P0) = 1.

Hence M is contractible.     Q.E.D.

Proof of the theorem. By a theorem of Stallings [St], a contractible three-

manifold is diffeomorphic to R3 if and only of it is irreducible and simply

connected at infinity.

We first show that M is simply connected at infinity. If not, we would

have a compact connected set K c M, and a sequence of Jordan curves y,-

tending uniformly to infinity such that any disc D, spanning y,- has the property

Djf)K / 0 . Without loss of generality, we can assume BPo(j) c K where BP(r)

is the metric ball of radius r around P. Since K is compact and connected,

we can apply the above-quoted theorem of Aubin finitely many times to obtain
a metric g' in M, such that Ric(g') > 0 everywhere in M and Ric(g') > 0

at every point in K . By the same procedure as in the proof of the lemma, we

get a sequence of area minimizing discs Z), with dDt = y, and D,■ n K ^ 0.

Note that, for any xt e DtC\K,

dist(.x,, 3D,) = dist(x,, y,) -> oo.

On the other hand, by a theorem of Schoen [Sc, Theorem 2],

(1) dist(x,, dDi) < exv(C/K0),

where Kq = inf^ (i/2)Ric > inf/fRic > 0 and C is a constant depending

only on the metric in BXo(l). Thus C is uniformly bounded since K is com-

pact. Hence, the right-hand side of (1) is independent of i. It follows that
dist(x,, dDi) is uniformly bounded. This is a contradiction. Thus M is sim-

ply connected at infinity.

We now prove that M is irreducible; i.e., any embedded two sphere in M

bounds a three ball. We will only briefly outline the proof. For details, we refer
to the work of Anderson and Rodriguez [AR].

If, on the contrary, M contains a fake cell, we will look for an embedded

minimal two-sphere containing the fake cell. This will lead to a contradiction
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since the existence of a minimal two-sphere splits M as S2 x Rl [MSY, Theo-

rem 6], which is obviously irreducible. For the existence, we take an exhaustion

of M = |J Mj with Mj containing the fake cell and try to obtain a minimal

two-sphere Si in M surrounding the fake cell. The desired minimal S2 will

then be the limit of Sj when i goes to infinity. For this to work, we need to

overcome two difficulties. The first is that we need A/, to be homogeneously

regular in order for Sj to exist [MSY]. This can be achieved by blowing up the

metric on Mj near the boundary d Mi (this is possible essentially because Af,
is compact). The second difficulty is to guarantee that Si does not everywhere

go to infinity when /' —> oo. For this, we use the level set of Busemann function

as a barrier, since the level set can be approximated by a surface of nonnegative

mean curvature. We will omit the details of this argument which are carried

out in [AR] and [ScY]. Thus M is irreducible. This completes the proof of the

theorem.   Q.E.D.
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