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ON OPERATOR-VALUED FOURIER MULTIPLIER THEOREMS

ŽELJKO ŠTRKALJ AND LUTZ WEIS

Abstract. The classical Fourier multiplier theorems of Marcinkiewicz and
Mikhlin are extended to vector-valued functions and operator-valued multiplier
functions on Zd or Rd which satisfy certain R-boundedness conditions.

1. Introduction and motivation

Let X and Y be real (or complex) Banach spaces and B(X, Y ) the Banach space
of bounded linear operators T : X → Y , endowed with the usual operator norm.
By S (Rd; X) we denote the Schwartz space of rapidly decreasing functions from
Rd to X and by ∧, ∨ we denote the Fourier transform and the inverse Fourier
transform. For 1 ≤ p < ∞ let Lp(Td; X) and Lp(Rd; X) be the usual Bochner
spaces of p-integrable X-valued functions on the d-dimensional circle T

d and R
d

respectively.
In the first part of this article we are interested in obtaining Fourier multiplier

theorems on Lp(Td; X) in the following sense.
For z ∈ T

d set ex(z) = zx, x ∈ Z
d. We say that a function M : Z

d → B(X, Y ) is
a Fourier multiplier on Lp(Td; X) if the operator

(1.1) f =
∑
x∈Zd

f̂(x) ⊗ ex �−→ KMf =
∑
x∈Zd

M(x)f̂(x) ⊗ ex ,

first defined for f with a finitely valued Fourier transformation f̂ , extends uniquely
to a bounded operator from Lp(Td; X) to Lp(Td; Y ). We denote the set of such
multipliers by Mp(Zd; X, Y ).

For d = 1 the assumption of the Marcinkiewicz theorem requires that for the
dyadic decomposition In = {x ∈ Z : 2n−1 < |x| ≤ 2n} we have

(1.2) var(MIn
) ≤ C

for all n ∈ N. For multipliers M(x) = m(x)IX with a scalar function m it was shown
in [Bou2] that (1.2) implies M ∈ Mp(Z; X) if and only if X is a UMD-space. A
UMD-space can be characterized by the fact that the special multiplier m0(x) =
sign (x) belongs to Mp(Z; X) (see [Bou1], [Bu]). Indeed, Bourgain shows how “to
built up” general scalar multipliers with (1.2) from modifications of m0. It is well
known, that all subspaces and quotient spaces of Lq(Ω)-spaces with 1 < q < ∞ are
UMD-spaces.

For operator-valued multipliers M(x) ∈ B(X) the variation (1.2), taken with
respect to the operator norm, always implies that M ∈ Mp(Z; X) if and only if
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X is a Hilbert space (Schwartz showed that (1.2) is sufficient in Hilbert spaces
[BL], and Pisier observed the converse). So besides the UMD property for X and
Y one needs additional assumptions on the multiplier function M . Recently it
was shown in [We], in the context of the Mikhlin-multiplier theorem for operator-
valued multipliers, that this additional condition can be expressed in terms of R-
boundedness:

A subset T ⊂ B(X, Y ) is called R-bounded if there is a constant C such that
for all T0, T1, . . . , Tn ∈ T, x0, x1, . . . , xn ∈ X and n ∈ N

(1.3)
∫ 1

0

‖
n∑

k=0

εk(t)Tkxk‖Y dt ≤ C

∫ 1

0

‖
n∑

k=0

εk(t)xk‖X dt,

where (εk) is the sequence of Rademacher functions on [0, 1]. This concept was
already used in [Bou2] and [BG] in connection with multiplier theorems, and more
recently a detailed study was given in [CPSW]. If X = Y = Lq(Ω) for some
1 ≤ q < ∞, then (1.3) is equivalent to the square function estimate

(1.4)
∥∥∥∥
( n∑

k=0

|Tkxk|2
)1/2∥∥∥∥

Lq

≤ C̃

∥∥∥∥
( n∑

k=0

|xk|2
)1/2∥∥∥∥

Lq

known from harmonic analysis.
In this paper we use R-boundedness to give an appropriate form of the Marcinkie-

wicz condition for operator-valued multipliers. In place of (1.2) we assume that for
some absolutely convex R-bounded set T we have

(1.5)
∑
k∈In

‖M(k + 1) − M(k)‖T ≤ C

for all n ∈ N, where ‖ · ‖T denotes the Minkowski functional of T. If X and Y are
UMD-spaces, M satisfies (1.5) and

(1.6) {M(±2k−1) k ∈ N} is R-bounded,

then we show in section 3 that M ∈ Mp(Z; X, Y ). We also give d-dimensional
versions of this result. Our proof follows the techniques of [Zi], who proved d-
dimensional generalizations of Bourgain’s result for scalar multipliers. In Remark
1.1 below we point out that (1.6) is necessary for M to be in Mp(Z; X, Y ). If M
belongs to Mp(Z; X, Y ) and (1.2) holds, it follows that {M(x) x ∈ Z} is R-bounded,
and this indicates that R-boundedness arises naturally in the context of multiplier
theorems. The second part of the paper will treat the continuous case. In analogy
to the discrete setting we say that a function M : Rd \ {0} → B(X, Y ) is a Fourier
multiplier, i.e. M ∈ Mp(Rd; X, Y ), if the operator

(1.7) f �−→ KMf = (M(·)f̂(·))∨ ,

first defined for f ∈ S (Rd; X), extends to a bounded operator from Lp(Rd; X) to
Lp(Rd; Y ).

For multiplier theorems of the Mikhlin type, one considers the sets

(1.8) {|x||γ|(DγM)(x) : x ∈ R
d \ {0}, γ ≤ (1, . . . , 1)}

or

(1.9) {xγ(DγM)(x) : x ∈ R
d \ {0}, γ ≤ (1, . . . , 1)}.
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Again the norm boundedness of these sets is only sufficient in Hilbert spaces. If
X and Y are UMD-spaces and (1.8) is R-bounded, we show then in Theorem 4.4
that M ∈ Mp(Rd; X, Y ) holds. For the finer condition (1.9) we need besides the
R-boundedness of (1.9) and the UMD property an additional assumption on X and
Y , which is the property (α), introduced by Pisier (see [Pi2]). In particular every
q-concave Banach-lattice with q < ∞, or more generally, every Banach space with
local unconditional structure and finite cotype has property (α) (cf. [Pi2], [DJT],
Theorem 14.1). We reduce these theorems to the discrete case in section 3, again
following the method in [Zi].

We also give a new criterion for the R-boundedness of a function x ∈ I → M(x).
For one-dimensional intervals, R-boundedness follows if M is of bounded variation
(see Theorem 2.7). For d-dimensional intervals we give an integrability criterion
(see Theorem 4.1).

The next remark illustrates how the notion of R-boundedness is necessary if one
considers operator-valued Fourier multipliers on vector-valued Lp-spaces.

1.1. Remark. Let us assume that we have a multiplier M ∈ Mp(Z; X, Y ). For
trigonometric polynomials f =

∑n
k=1 xk ⊗ e2k we therefore obtain

(1.10) ‖
n∑

k=1

M(2k)xk ⊗ e2k‖Lp(T;Y ) ≤ C1 ‖
n∑

k=1

xk ⊗ e2k‖Lp(T;X) .

Now, it is known (see [Pi1]) that there is a universal constant C > 0 such that for
any Banach space E and any finite sequence y1, . . . , yn in E:

1
C
‖

n∑
k=1

εkyk‖Lp([0,1];E) ≤ ‖
n∑

k=1

yk ⊗ e2k‖Lp(T;E) ≤ C ‖
n∑

k=1

εkyk‖Lp([0,1];E),

where (εk)k≥1 denotes the sequence of Rademacher functions on [0, 1]. These in-
equalities in connection with (1.10) lead to

‖
n∑

k=1

εkM(2k)xk‖Lp([0,1];Y ) ≤ C2 ‖
n∑

k=1

εkxk‖Lp([0,1];X) .

This means that the collection {M(2k) : k ∈ N} ⊂ B(X, Y ) is R-bounded. By an
application of Proposition 1.3 in [Bl] we get that T = {M(r) : r ∈ Z} is R-bounded.

2. R-boundedness

In this section we list some important results about R-bounded collections T

of bounded linear operators. Let (Ω, A, P ) be a probability space and (εk)∞k=0 a
sequence of independent symmetric {−1, 1}-valued random variables on (Ω, A, P ).
With Lp(Ω; X) we denote the Bochner space of p-integrable X-valued functions on
(Ω, A, P ).

2.1. Definition. A collection T ⊂ B(X, Y ) is said to be R-bounded if there exist
a constant C > 0 such that for all T0, T1, . . . , Tn ∈ T, x0, x1, . . . , xn ∈ X and all
n ∈ N

(2.1) ‖
n∑

k=0

εkTkxk‖L1(Ω;Y ) ≤ C ‖
n∑

k=0

εkxk‖L1(Ω;X).

The smallest constant C, for which (2.1) holds is denoted by R(T).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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The notion of R-boundedness was already implicitly used in [Bou1], [Bou2] and
was introduced in the paper [BG]. Detailed studies about collections of R-bounded
operators can be found in [CPSW] and [We]. In [We] the reader will find as well
a new characterization of maximal Lp-regularity of abstract differential equations
using this notation.

Note. We want to emphasize that the definition of collections of R-bounded opera-
tors does not depend on the probability space (Ω, A, P ) and the sequence of random
variables (εk).

2.2. Remark. Here are some rather known facts about R-boundedness:
(a) Using Kahane’s inequality (see [LT]) we can replace (2.1) by (1 ≤ p < ∞)

(2.2) ‖
n∑

k=0

εkTkxk‖Lp(Ω;Y ) ≤ Cp ‖
n∑

k=0

εkxk‖Lp(Ω;X).

(b) It is easy to see that R-bounded collections T ⊂ B(X, Y ) are necessarily
bounded in B(X, Y ). If X and Y are both Hilbert spaces, (2.2) shows that
the converse also holds.

(c) If X and Y are q-concave Banach lattices (1 ≤ q < ∞) (for the Definition
see [LT] 1.d.3.(iii)) the definitions (2.1) and (2.2) are equivalent to (see [LT]
Theorem 1.d.6.(i))

(2.3)
∥∥∥∥
( n∑

k=0

|Tkxk|2
)1/2∥∥∥∥

Y

≤ C

∥∥∥∥
( n∑

k=0

|xk|2
)1/2∥∥∥∥

X

.

(d) If T := {akIX : k ∈ N0} ⊂ B(X), then R(T) ≤ 2‖a‖∞.

In the following we want to present four practical methods to enlarge an R-
bounded collection T. By aco(T) we denote the real or complex absolute convex
hull of a collection T ⊂ B(X, Y ). With this in mind, we can formulate the first
statement.

2.3. Lemma. Let T ⊂ B(X, Y ) be an R-bounded collection with R-bound R(T).
Then the absolute convex hull aco(T) as well as the strong closure of T are R-
bounded with R-bounds not larger than 2R(T).

The statement is based on ideas introduced in [Bou2]. For the proof we refer to
[CPSW]. The next two lemmas can also be found in [CPSW].

2.4. Lemma. Let S ⊂ B(X2, X3), T ⊂ B(X1, X2) be two collections which are
R-bounded. Then the collection

ST = {ST : S ∈ S, T ∈ T}
is R-bounded with an R-bound not greater than R(S)R(T).

Let E be a Banach space, X = Lp(Λ; E) for some σ-finite measure space (Λ, B, µ)
and 1 ≤ p < ∞. For ϕ ∈ L∞(Λ) we denote by Mϕ the pointwise multiplication
operator on X.

2.5. Lemma. Let X = Lp(Λ; E) and T ⊂ B(X). If T is R-bounded, then the
collection

{MϕTMψ : ϕ, ψ ∈ L∞(Λ) with ‖ϕ‖∞, ‖ψ‖∞ ≤ 1, T ∈ T}
is R-bounded as well.
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The following extension result is also useful and is taken from [We], Proposition
2.11.

2.6. Lemma. For T ∈ B(X, Y ) define the operator (T̃ f)(λ) := T (f(λ)), f ∈
Lp(Λ; X), λ ∈ Λ, 1 ≤ p < ∞. Then, if T ⊂ B(X, Y ) is R-bounded, the collection
T̃ = {T̃ : T ∈ T} ⊂ B(Lp(Λ; X), Lp(Λ; Y )) is also R-bounded.

In the next theorem we give a sufficient condition on the regularity of operator-
valued functions which ensures R-boundednes for their range collection. This result
generalizes in particular Proposition 2.5 in [We]. Other statements of this type can
be found in Corollary 3.5 and Theorem 4.1.

2.7. Theorem. If X, Y are arbitrary Banach spaces and the function M : I →
B(X, Y ) on an interval I = [a, b) ⊂ R is of bounded variation, then the collection

M := {M(x) : x ∈ I}
is R-bounded with R(M) ≤ C(‖M(a)‖ + var(M)).

Proof. Assume that M has the form

M(t) = M(a) +
m∑

j=1

χAj
(t)Mj

with Aj ⊂ I and Mj ∈ B(X, Y ). Then, using Lemma 2.4 in [We], we obtain

(2.4) R({M(x) : x ∈ I}) ≤ ‖M(a)‖ +
m∑

j=1

‖Mj‖ .

We will now show that for general M there is sequence of the form

(2.5) Mk(t) = M(a) +
∑

j

χAk,j
(t)Mk,j

with ∑
j

‖Mk,j‖ ≤ C var(M) ∀ k ∈ N

and

(2.6) ‖Mk(t) − M(t)‖ → 0

for k → ∞ and all t ∈ I. With this approximation property for M the claim follows
by an application of Lemma 2.3.

Without loss of generality we assume that M is continuous from the left. If we
put ∆(t) := lims↘t M(s)−M(t), the bounded variation property on M states that
for each n ∈ N the set

Tn := {t ∈ I :
1

n + 1
≤ ‖∆(t)‖ <

1
n
}

has to be finite, i.e. Tn = {tn,1, . . . , tn,k(n)}. If we put

N(t) :=
∞∑

n=1

∑
x∈Tn

∆(x)χ(x,b)(t),

one can show that N is continuous from the left and var(N) ≤ var(M) holds.
Moreover the function L := M − N is also of bounded variation with var(L) ≤
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3534 ŽELJKO ŠTRKALJ AND LUTZ WEIS

2 var(M), continuous and therefore uniformly continuous on [a, b). Obviously the
definition of N allows us to construct a sequence (Nk) of functions of the form

Nk = M(a) +
mk∑
j=1

χAk,j
(t)Nk,j

with ‖Nk(t) − N(t)‖ → 0 for k → ∞ and all t ∈ [a, b) and var(Nk) ≤ var(N). To
approximate L we choose for a given ε > 0 a δ > 0 such that |s − t| < δ implies
‖L(s)−L(t)‖ ≤ ε and that for a partition (tj) in (a, b) with supj |tj − tj−1| ≤ δ we
have ∣∣∣∣

∑
j

‖L(t′j) − L(t′j−1)‖ − var(L)
∣∣∣∣ ≤ ε

for all refinements (t′j) of (tj). Now the function

L̃(t) := M(a) +
∑

j

[L(tj) − L(tj−1)]χ[tj ,b)(t)

satisfies var(L̃) ≤ var(L) + ε and ‖L(t) − L̃(t)‖ ≤ ε. In this way we can find a
sequence (Lk) of the form

Lk = M(a) +
mk∑
j=1

χAk,j
(t)Mj

satisfying ‖Lk(t) − L(t)‖ → 0 for k → ∞, t ∈ [a, b) and var(Lk) ≤ 2 var(L). Now
the sequence Mk := Nk + Lk has the required properties (2.5) and (2.6). �

Since outside the Hilbert space setting bounded sets of operators are usually not
R-bounded anymore, we have to replace the operator norm in various estimates
and definitions by the following norms “measuring” R-boundedness:

2.8. Notation. For a bounded collection T ⊂ B(X, Y ) we denote the Minkowski
functional of aco (T) by

(2.7) ‖ · ‖T :
{

B(X, Y ) −→ [0,∞],
T �−→ ‖T‖T := inf{t > 0 : T ∈ t · aco(T)}.

Here are some obvious facts that will be used constantly in the next two sections.

2.9. Remark. a) If we set T := {akIX : k ∈ N0} ⊂ B(X), then we have

aco(T) = {zIX : |z| ≤ ‖a‖∞}

and thus by Remark 2.2.(d) we get

R(T)‖αIX‖T ≤ 2‖a‖∞‖αIX‖T ≤ 2|α|, α ∈ C.

b) Let T ⊂ B(X, Y ) be an R-bounded collection. Then the following holds:

(i) ‖T1 + T2‖T ≤ ‖T1‖T + ‖T2‖T .
(ii) If a collection M = {Mn : n ∈ N} has the property that

C := sup{‖Mn‖T : n ∈ N} < ∞ ,

then M is also R-bounded and the R-bound is not greater than 4CR(T).
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3. The discrete case

In this section we are interested in giving sufficient conditions on the function
M : Zd → B(X, Y ) so that the operator, defined in (1.1), extends to a bounded
operator. In particular we want to generalize the results given in [Bou2] and [Zi].

The next two sections will rather follow the examinations given in section 1 and
2 of [Zi]. For that reason we will use the same kind of notation which appears in
that work.

3.1. Definition. Let α, β ∈ Zd, α ≤ β (coordinatewise) and [α; β] := {x ∈ Zd :
α ≤ x ≤ β}. For a function M : Z

d → B(X, Y ) we define the restriction of M to
G ⊂ Zd by

MG(x) :=
{

M(x) : x ∈ G,
0 : x /∈ G.

The difference operators ∆ej (j = 1, . . . , d) are defined for the unit vectors ej of Zd

as

(∆ej M[α;β])(x) :=
{

M[α;β](x) − M[α;β](x − ej) : xj 
= αj ,
0 : xj = αj .

For arbitrary γ = (γ1, . . . , γd) =
∑d

j=1 γjej with γj ∈ {0, 1} we set

∆0M[α;β] := M[α;β], ∆γM[α;β] := ∆γ1e1 ◦ · · · ◦ ∆γdedM[α;β].

Next we generalize the defintion of a variation.

3.2. Definition. Let M : Zd → B(X, Y ) be an arbitrary function and T ⊂ B(X, Y )
a bounded collection. We define the T-variation of M in the interval [α; β] by

(3.1) varT
[α;β]

M[α;β] :=
∑

x∈[α;β]

‖(∆γxM[α;β])(x)‖T,

where γx = (γx1 , . . . , γxd
) with

γxj
:=

{
1 : xj 
= αj ,
0 : xj = αj .

Of course if T is the unit ball of B(X, Y ), we have the usual notation of bounded
variation, which we simply denote by var[α;β] M[α;β] without the subscript T.

The next result is a practical tool to estimate the T-variation of a (discrete)
function.

3.3. Lemma. Let αn, βn ∈ Zd, αn ≤ βn and ([αn; βn])n∈N be a (disjoint) decom-
position of Zd. If F : Rd → B(X, Y ) is a sufficiently smooth function and the
collection

T :=
⋃
n∈N

{(βn − αn)γ(DγF )(x) : x ∈ [αn, βn], γ ≤ (1, . . . , 1)}

is bounded, then the restriction of F to Zd satisfies

sup
n∈N

varT
[αn;βn]

F[αn;βn] ≤ 2d.

Proof. Let n ∈ N be arbitrary. If we rearrange the sum in Definition 3.1 we obtain

(3.2) varT
[αn;βn]

F[αn;βn] =
∑

γ≤(1,...,1)

∑
{x:γx=γ}

‖(∆γF[αn;βn])(x)‖T,

where the sum over γ has 2d summands.
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1. case: γ = (0, . . . , 0)
In this case only x = α has the property γx = γ and therefore∑

{x:γx=γ}
‖(∆γF[αn;βn])(x)‖T = ‖F[αn;βn](αn)‖T = ‖F (αn)‖T ≤ 1.

2. case: (0, . . . , 0) 
= γ ≤ (1, . . . , 1)
Take x ∈ [αn; βn] with γx = γ. Let q1, . . . , qr be the coordinate directions for

which γxq

= 0. Now by definition of the difference operator and the fundamental

theorem of calculus we get

(∆γxF[αn;βn])(x) =
∫

[xq1−1,xq1 ]

. . .

∫
[xqr−1,xqr ]

(DγF )(ξ) dξqr
. . . dξq1

=
1

(βn − αn)γ

∫
[xq1−1,xq1 ]

. . .

∫
[xqr−1,xqr ]

(βn − αn)γ(DγF )(ξ) dξqr
. . . dξq1 .

This immediately implies (∆γF[αn;βn])(x) ∈ 1
(βn−αn)γ · aco(T) and thus

(3.3)
∑

{x:γx=γ}
‖(∆γF[βn;αn])(x)‖T ≤

∑
{x:γx=γ}

1
(βn − αn)γ

= 1.

The last equality holds because there are exactly (βn − αn)γ different x in [αn; βn]
with γx = γ. Thus the first case, (3.3) and (3.2) yield to the desired result. �

The proof of the following result, which extends Stečkin‘s multilplier theorem,
illustrates how the notion of bounded variation allows us to write a multiplier
function as a sum of characteristic functions (cf. (3.6) below).

Let In := [αn; βn] with αn = (−n,−n, . . . ,−n), βn = (n, n, . . . , n) and

I(γ, n) := {x ∈ In : xi = −n if γi = 0}.

3.4. Theorem. Let X be a UMD-space, Y an arbitrary Banach space and 1 < p <
∞. Assume that the function M : Zd → B(X, Y ) satisfies

(3.4)
∑

x∈I(γ,n)

‖(∆γMIn
)(x)‖ ≤ C < ∞

for all γ ≤ (1, . . . , 1) and all n ∈ N. Then M ∈ Mp(Zd; X, Y ).

Proof. Using the same rearrangement as in (3.2) and the assumption (3.4) we have
that

(3.5) var
In

MIn
=

∑
γ≤(1,...,1)

∑
x∈I(γ,n)

‖(∆γMIn
)(x)‖ ≤ 2dC.

The point of this notation of bounded variation is that M can be written as

(3.6) M[αn;βn] =
∑

x∈[αi,n;βi,n]

((∆γxM[αn;βn])(x))χ[x;βn] .

For scalar valued M this was checked in [Zi], Lemma 1.3 (ii) and we apply this
identity to y∗(M[αn;βn](x)x) for all x ∈ X, y∗ ∈ Y ∗.

Now for an arbitrary f : Td → X with supp f̂ ⊂ In we obtain from (3.6)

(3.7) KMIn
f =

∑
x∈In

((∆γxMIn
)(x))∼ ◦ Kχ[x;βn]f ,
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where ((∆γxMIn
)(x))∼ is the operator which arises from (∆γxMIn

)(x) in the same
way as it was done in Lemma 2.6. Since X is a UMD-space we know by [Zi] that
there exists a constant D such that

‖Kχ[α;β]f‖ ≤ D‖f‖
for all intervals [α; β]. Hence by (3.7) and (3.5)

‖KMf‖ = ‖KMIn
f‖ ≤ D‖f‖

∑
x∈In

‖(∆γxMIn
)(x))‖

= D var
In

MIn
‖f‖ ≤ 2dCD‖f‖.

Since the functions f with compact support f̂ are dense in Lp(Td; X), the claim
follows. �

3.5. Corollary. If X and Y are arbitrary Banach spaces, and M : Z
d → B(X, Y )

satisfies (3.4), then {M(x) : x ∈ Zd} is R-bounded.

Proof. This follows from [We], Lemma 2.4, and the representations (3.6) and (3.7).
�

To obtain more refined multiplier theorems that generalize the Marcinkiewicz
multiplier theorem, we assume that M is not of bounded variation on all of Zd but
only uniformly on certain partitions of Z

d. As one might guess from Corollary 3.5,
the R-boundedness will then be needed. The partitions we will use are the following
ones:

(a) The coarse decomposition. Set D0 := {0} ⊂ Zd and for n = dr + j, r ∈
N0, j ∈ {1, . . . , d}

Dn := {x = (x1, . . . , xd) ∈ Z
d : |x1|, . . . , |xj−1| < 2r+1, 2r ≤ |xj | < 2r+1,

|xj+1|, . . . , |xd| < 2r}.

(b) The fine decomposition. For ν = (ν1, . . . , νd) ∈ N
d
0 we define

Dν := Iν1 × . . . × Iνd
,

where I0 = {0} and In = {k ∈ Z : 2n−1 ≤ |k| < 2n} (n ∈ N).
Since D = Dn (resp. Dν) are unions of s = 2 (resp. s = 2d) intervals, we can
moreover define the T-variation of M with respect to the decompositions by

varT
D

M :=
s∑

i=1

varT
[αi;βi]

M[αi;βi] .

We are now able to define the generalized Marcinkiewicz conditions.

3.6. Definition. A function M : Zd → B(X, Y ) is said to be of bounded T-variation
with respect to the decompositions (Dk) (resp. (Dν)), if there exist an R-bounded
collection T ⊂ B(X, Y ) such that the condition (MT

cD)

sup
k∈N0

varT
Dk

M < ∞ ,

respectively (MT
fD)

sup
ν∈N

d
0

varT
Dν

M < ∞

is fullfilled.
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3.7. Theorem (operator-valued Marcinkiewicz theorem for (Dk)). Let X, Y be
UMD-spaces and 1 < p < ∞. If the function M : Zd → B(X, Y ) possesses
condition (MT

cD), then M ∈ Mp(Zd; X, Y ).

3.8. Theorem (operator-valued Marcinkiewicz theorem for (Dν)). Let X, Y be
UMD-spaces with the property (α) and 1 < p < ∞. If the function M : Z

d →
B(X, Y ) possesses condition (MT

fD), then M ∈ Mp(Zd; X, Y ).

3.9. Example. The Marcinkiewicz multiplier theorems in [Bou2] and [Zi] are special
cases of these theorems. In both papers one considers functions M of the form
M(x) = a(x)I , a(x) ∈ C. If we set T := {M(x) : x ∈ Zd}, then using Remark 2.9 a)
we get

R(T) varT
D

M = R(T)
∑

i

varT
[αi;βi]

M[αi;βi] = R(T)
∑

i

∑
x∈[αi;βi]

‖(∆γxM[αi;βi])(x)‖T

= R(T)
∑

i

∑
x∈[αi;βi]

‖(∆γxa[αi;βi])(x)I‖T ≤ 2
∑

i

∑
x∈[αi;βi]

|(∆γxa[αi;βi])(x)| = 2 var
D

a .

3.10. Remark. Since the elements Dk are unions of two intervals [α1k; β1k], [α2k; β2k],
the assumption of Theorem 3.7 implies in particular that the collection S={M(αik) :
i = 1, 2; k ∈ N0} has to be R-bounded (use Remark 2.9 b,(ii)).

Before we start to prove both theorems we list some further results, which will
simplify the later arguments. For G ⊂ Z

d we define a characteristic multiplier
function from Zd to B(E) by

χG(x) :=
{

I : x ∈ G,
0 : x /∈ G.

Now the following results hold

3.11. Theorem. Let E be a UMD-space, 1 < p < ∞ and SE
k := KχDk

, k ∈ N0.
Then there exist a Cp > 0 such that for every trigonometric polynomial f

(3.8)
1

Cp
‖f‖Lp(Td;E) ≤ ‖

∞∑
k=0

εkSE
k f‖Lp(Ω;Lp(Td;E)) ≤ Cp ‖f‖Lp(Td;E) .

A similar result is true for the fine decomposition. By (εν)ν∈Nd
0

we denote an
arbitrary d-dimensional renumeration of (εk)∞k=0.

3.12. Theorem. Let E be a UMD-space with the property (α), 1 < p < ∞ and
SE

ν := KχDν
, ν ∈ Nd

0. Then there exist a Cp > 0 such that for every trigonometric
polynomial f

(3.9)
1

Cp
‖f‖Lp(Td;E) ≤ ‖

∑
ν∈Nd

0

ενSE
ν f‖Lp(Ω;Lp(Td;E)) ≤ Cp ‖f‖Lp(Td;E) .

The proofs of both lemmas can be found in [Bou2] and [Zi]. Actually Zimmer-
mann assumes for Theorem 3.12 that E is a UMD-space with local unconditional
structure. But his proof works also for our weaker assumption. The next result
is a consequence of the Definition of a UMD-space and Lemma 2.5. The proof is
implicitly in [Zi] (see also Lemma 7 in [Bou2] or Lemma 3.5 in [BG]).
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3.13. Lemma. Let E be a UMD-space and 1 < p < ∞. Then the collection

K := {KχG
: G is an interval in Z

d} ⊂ B(Lp(Td; E))

is R-bounded.

3.14. Remark. The same statement also holds in the case R
d.

Proof of Theorem 3.7. Let Kn := KMDn
, n ∈ N0. Now for any trigonometric

polynomial we get
SY

n ◦ KMf = Kn ◦ SX
n f

and thus, using Theorem 3.11,

‖KMf‖Lp(Td;Y ) ≤ Cp ‖
∞∑

n=0

εnKn ◦ SX
n f‖Lp(Ω;Lp(Td;Y )).

Now, if we can prove that the collection {Kn : n ∈ N0} is R-bounded, an additional
application of Theorem 3.11 would complete this proof. �

3.15. Lemma. The collection

{Kn : n ∈ N0} ⊂ B(Lp(Td; X), Lp(Td; Y ))

is R-bounded.

Proof of Lemma 3.15. By assumption there exist an R-bounded collection T with

(3.10) varT
Dk

M =
2∑

i=1

∑
x∈[αi,k;βi,k]

‖(∆γxM[αi,k;βi,k])(x)‖T ≤ C < ∞ ∀ k ∈ N0 .

For the operator Kn we have the representation

(3.11) Kn = KM[α1,n;β1,n] + KM[α2,n;β2,n] .

Let us define the collection
S := aco(T̃)K ,

where T̃ is the collection from Lemma 2.6 and K is the one from Lemma 3.13. Using
Lemma 2.4, Lemma 2.6 and Lemma 3.13 we get that S is R-bounded. Now using
the representation formulas from (3.6) and (3.7) we obtain

(3.12) KM[αi,n;βi,n] =
∑

x∈[αi,n;βi,n]

((∆γxM[αi,n;βi,n])(x))∼ ◦ Kχ[x;βi,n] .

Since

‖((∆γxM[αi,n;βi,n])(x))∼ ◦ Kχ[x;βi,n]‖S

= inf{t > 0 : ((∆γxM[αi,n;βi,n])(x))∼ ◦ Kχ[x;βi,n] ∈ t · aco(S)}

≤ inf{t > 0 : ((∆γxM[αi,n;βi,n])(x))∼ ◦ Kχ[x;βi,n] ∈ t · aco(T̃)K}

≤ inf{t > 0 : ((∆γxM[αi,n;βi,n])(x))∼ ∈ t · aco(T̃)}
= inf{t > 0 : (∆γxM[αi,n;βi,n])(x) ∈ t · aco(T)}
= ‖(∆γxM[αi,n;βi,n])(x)‖T,

we thus obtain from (3.12) and Remark 2.9 b,(i) that

‖KM[αi,n;βi,n]‖S ≤
∑

x∈[αi,n;βi,n]

‖(∆γxM[αi,n;βi,n])(x)‖T .
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Taking (3.11), (3.10) and again Remark 2.9 b,(i) this yields

‖Kn‖S ≤ C < ∞ ∀n ∈ N0.

Applying Remark 2.9 b,(ii) the proof is complete. �

3.16. Remark. The proofs of Theorem 3.7 and Lemma 3.15 showed that the operator
norm of KM can be estimated by

‖KM‖B(Lp(Td;X),Lp(Td;Y )) ≤ CR(T) sup
k∈N0

varT
Dk

M,

where the constant C only depends on p and the dimension d, but not on the
collection T and the multiplier M .

3.17. Remark. The proof of Theorem 3.8 works in the same way.

4. The continuous case

In the beginning of this section we’d like to present a criterion for the R-
boundedness of an operator-valued function on Rd. This will be done by using
Corollary 3.5 of the preceding section, which already gave a tool on how to decide
whether an operator-valued function on Z

d is R-bounded. Before stating the result,
we need some additional notation.

Let ξ ∈ Rd, γ be a multiindex with 0 
= γ ≤ (1, . . . , 1) and q1, . . . , qr be the
coordinate directions for which γqi

= 1. In this case we set ξγ = (ξq1 , . . . , ξqr
) ∈ Rr.

4.1. Theorem. Let X, Y be arbitrary Banach spaces and M : R
d → B(X, Y ) a

bounded function with continuous derivatives DγM , γ ≤ (1, . . . , 1). If moreover

(4.1)
∫

Rr

‖(DγM)(ξγ)‖ dξγ ≤ C < ∞

for each 0 
= γ ≤ (1, . . . , 1), then the collection

M := {M(x) : x ∈ R
d}

is R-bounded.

Proof. Set Mk(x) := M(x/2k), k ∈ N, and restrict Mk to Z
d. Since M is bounded,

we know from Corollary 3.5 that the collection

Mk := {Mk(x) : x ∈ Z
d}

is R-bounded, if ∑
x∈I(γ,n)

‖(∆γMk,In
)(x)‖ ≤ C̃k < ∞

for each 0 
= γ ≤ (1, . . . , 1) holds. Now, in analogy to the proof of Lemma 3.3, the
fundamental theorem of calculus states that for x ∈ I(γ, n) we have

(∆γMk,In
)(x) =

∫
[xq1−1,xq1 ]

. . .

∫
[xqr−1,xqr ]

(DγMk)(ξ) dξqr
. . . dξq1
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and moreover
∑

x∈I(γ,n)

‖(∆γMk,In
)(x)‖ ≤

∫
[−n,n]r

‖(DγMk)(ξγ)‖ dξγ

=
∫

[−n/2k,n/2k]r
‖(DγM)(ξγ)‖ dξγ

≤
∫

Rr

‖(DγM)(ξγ)‖ dξγ ≤ C.

So by now we have proved that∑
x∈I(γ,n)

‖(∆γMk,In
)(x)‖ ≤ C ,

where the constant is independent of k. Since Mk ⊂ Mk+1, we obtain from Corol-
lary 3.5 that the collection

∞⋃
k=1

Mk = {M(x/2k) : x ∈ Z
d, k ∈ N}

is R-bounded. An application of Lemma 2.3 completes the proof. �

The remaining part of this section is concerned with extensions of the Mikhlin
multiplier theorems from [Bou2], [McC] and [Zi] for scalar-valued multipliers to new
theorems with operator-valued multiplier functions. In [We] the second author al-
ready considered the one-dimensional case and used it to give a new characterization
of maximal Lp-regularity of abstract differential equations. In this paragraph we
will generalize this result to the higher-dimensional setting using the Marcinkiewicz
theorems from section 3.

To be able to use the results of the preceeding section we apply the Poisson
summation formula, as in section 2 of [Zi], and the following two lemmas.

4.2. Lemma. Let E be a Banach space, 1 ≤ p < ∞ and ϕ ∈ S (Rd; E). Then we
have

‖ϕ‖Lp(Rd;E) = lim
k→∞

‖ϕk,p‖Lp(Td;E),

where
ϕk,p(x) = 2−

dk
p′

∑
x∈Zd

ϕ̂(x/2k) ⊗ ex (1/p + 1/p′ = 1).

4.3. Lemma. Let (Mn)n∈N ⊂ Mp(Rd; X, Y ) be a sequence of Fourier multipliers
that converges almost everywhere to M . Then

‖KM‖B(Lp(Td;X),Lp(Td;Y )) ≤ sup{‖KMn
‖B(Lp(Td;X),Lp(Td;Y )) : n ∈ N}.

We now state the first of two Mikhlin-type Fourier multiplier theorems

4.4. Theorem (First operator-valued Mikhlin theorem). Let X, Y be UMD spaces
and 1 < p < ∞. If the function M : Rd \{0} → B(X, Y ) has the property that their
distributional derivatives DγM of order γ ≤ (1, . . . , 1) are represented by functions
and moreover

R({|x||γ|(DγM)(x) : x ∈ R
d \ {0}, γ ≤ (1, . . . , 1)}) < ∞

holds, then M ∈ Mp(Rd; X, Y ).
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Proof. We will divide the proof into three steps.
Step 1: M ∈ S (Rd; B(X, Y ))
For f ∈ S (Rd; X) we now have

KMf = (M(·)f̂(·))∨ = M̌ ∗ f ∈ S (Rd; Y ).

By applying Lemma 4.2 we thus obtain

‖KMf‖Lp(Rd;Y ) = lim
k

‖KMk
fk‖Lp(Td;Y )

≤ sup{‖KMk
‖B(Lp(Td;X),Lp(Td;Y )) : k ∈ N}‖f‖Lp(Rd;X),

(4.2)

where

Mk(x) := M(x/2k), fk(x) = 2−
dk
p′

∑
x∈Zd

f̂(x/2k) ⊗ ex, x ∈ Z
d.

The goal of the next calculation is to show that

‖KMk
‖B(Lp(Td;X),Lp(Td;Y )) ≤ C ∀ k ∈ N.

This will be done by using Theorem 3.7. For that reason we have to secure that the
Marcinkiewicz conditions (MTk

cD) hold for each Mk with Marcinkiewicz constants
that can be estimated independently of k (see Remark 3.16). For the R-bounded
collection Tk we choose

Tk :=
⋃

i∈{1,2},n∈N0

{(βi,n −αi,n)γ(DγM(·/2k))(x) : x ∈ [αi,n, βi,n], γ ≤ (1, . . . , 1)}.

Here ([αi,n; βi,n])i,n is the coarse decomposition. By definition of the T-variation
we have (n ∈ N0)

varTk
Dn

Mk =
2∑

i=1

∑
x∈[αi,n;βi,n]

‖(∆γxM[αi,n;βi,n](·/2k))(x)‖Tk
.

Using Lemma 3.3, we obtain

(4.3) sup
n∈N0

varTk
Dn

Mk ≤ 2d .

To apply Theorem 3.7 and Remark 3.16 we have to estimate R(Tk). If we define
∆0 = {0} ⊂ Rd and for n = dr + j, r ∈ N0, j ∈ {1, . . . , d}

∆n := {x = (x1, . . . , xd) ∈ R
d : |x1|, . . . , |xj−1| < 2r+1, 2r ≤ |xj | < 2r+1,

|xj+1|, . . . , |xd| < 2r},

then from the definition of the coarse decomposition we know that (note that the
following constant r depends on n)

• The sizes of the edges of the two subcubes [α1,n; β1,n], [α2,n; β2,n] of Dn are
not greater than 2r+1,

• |x|∞ ≥ 2r for all x ∈ ∆n (n ≥ 1).

Now let x ∈ [αi,n; βi,n] be arbitrary. Thus

(βi,n − αi,n)γ(DγM(·/2k))(x) = 2|γ|
(βi,n − αi,n)γ

2(r+1)|γ| 2(r−k)|γ|(DγM)(x/2k)
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and therefore (use Remark 2.2 (d))

R(Tk) ≤ C1R(
⋃
i,n

{2(r−k)|γ|(DγM)(x/2k) : x ∈ [αi,n, βi,n], γ ≤ (1, . . . , 1)})

= C1R(
⋃
n

{2(r−k)|γ|(DγM)(x/2k) : x ∈ ∆n, γ ≤ (1, . . . , 1)})

= C1R(
⋃
n

{2(r−k)|γ|

|x||γ| · |x||γ|(DγM)(x) : x ∈ 1
2k

∆n, γ ≤ (1, . . . , 1)})

≤ C2R(
⋃
n

{|x||γ|(DγM)(x) : x ∈ 1
2k

∆n, γ ≤ (1, . . . , 1)})

≤ C2R({|x||γ|(DγM)(x) : x ∈ R
d \ {0}, γ ≤ (1, . . . , 1)}).

So (4.3), (4.2) and Remark 3.16 yield

(4.4) ‖KM‖ ≤ CR({|x||γ|(DγM)(x) : x ∈ R
d \ {0}, γ ≤ (1, . . . , 1)}),

where C does not depend on the multiplier function M .
Step 2: M is infinitely often differentiable.
Fix an infinitely often differentiable (scalar) function  with compact support

such that (0) = 1. Define for all ε > 0, ε(·) := (ε·). Now Mε := εM ∈
S (Rd; B(X, Y )) converges pointwise to M as ε goes to 0. By Lemma 4.3 and (4.4)
we get

(4.5) ‖KM‖ ≤ sup{‖KMε
‖ : ε > 0}

≤ C sup
ε

R({|x||γ|(DγMε)(x) : x ∈ R
d \ {0}, γ ≤ (1, . . . , 1)}).

By Leibniz’s formula we have

|x||γ|(DγMε)(x) =
∑

α+β=γ

Cα,β |x||α|(DαM)(x)|x||β|(Dβε)(x).

The R-bound of each term in the sum can be estimated by

R({|x||α|(DαM)(x)|x||β|(Dβε)(x) : x ∈ R
d \ {0}})

≤ R({|x||α|(DαM)(x) : x 
= 0}) · sup
ε
{|x||β|(Dβε)(x) : x 
= 0},

where the supremum is independent of ε. Therefore Remark 2.2 (d) and (4.5) yield

‖KM‖ ≤ C sup
ε

R({|x||γ|(DγMε)(x) : x ∈ R
d \ {0}, γ ≤ (1, . . . , 1)})

≤ C1 sup
ε,γ

∑
α+β=γ

Cα,βR({|x||α|(DαM)(x)|x||β|(Dβε)(x) : x ∈ R
d \ {0}})

≤ C2R({|x||γ|(DγM)(x) : x ∈ R
d \ {0}, γ ≤ (1, . . . , 1)}).

Here C2 is again independent of M .
Step 3: M arbitrary as in the assumption.
Choose an infinitely often differentiable (scalar) function  with  ≥ 0, ‖‖1 = 1

and supp  ⊂ [−1, 1]d. For ε > 0 define ε(·) := ε−d(·/ε). Now Mε := M ∗ ε is
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infinitely often differentiable and converges almost everywhere to M as ε converges
to 0. The result from the second step in connection with Lemma 4.3 lead to

(4.6) ‖KM‖ ≤ sup{‖KMε
‖ : ε > 0}

≤ C sup
ε

R({|x||γ|(Dγ [M ∗ ε])(x) : x ∈ R
d \ {0}, γ ≤ (1, . . . , 1)}).

Since for arbitrary γ ≤ (1, . . . , 1)

R({|x||γ|(Dγ [M ∗ ε])(x) : 0 < |x|∞ ≤ 2ε})

= R({ |x||γ|
(2ε)|γ|

· (2ε)|γ| · ‖Dγε‖1 · (M ∗ Dγε

‖Dγε‖1
)(x) : 0 < |x|∞ ≤ 2ε})

≤ C1(2ε)|γ| · ‖Dγε‖1 · R({M(x) : x ∈ R
d \ {0}})

= C12|γ| · ‖Dγ‖1 · R({M(x) : x ∈ R
d \ {0}}),

we thus in particular obtain

(4.7) R({|x||γ|(Dγ [M ∗ ε])(x) : 0 < |x|∞ ≤ 2ε, γ ≤ (1, . . . , 1)})
≤ C2R({|x||γ|(DγM)(x) : x ∈ R

d \ {0}, γ ≤ (1, . . . , 1)}).

The above estimations are consequences of Remark 2.2 (d) and Lemma 2.3.
For arbitrary ε > 0, ε has its support in [−ε, ε]d and so for any α ≤ (1, . . . , 1)

and each |x|∞ ≥ 2ε

|x||α|(Dα[M ∗ ε])(x) = |x||α|
∫
{ξ:|x−ξ|≤ε}

(DαM)(ξ)ε(x − ξ) dξ

=
∫
{ξ:|x−ξ|≤ε}

|ξ||α|(DαM)(ξ) · |x|
|α|

|ξ||α| ε(x − ξ) dξ

= C1

∫
{ξ:|x−ξ|≤ε}

|ξ||α|(DαM)(ξ) · |x||α|

C1|ξ||α| ε(x − ξ) dξ,

where C1 is a constant which fulfills for all α and ε > 0

sup{ |x|
|α|

|ξ||α| : |x − ξ| ≤ ε, |x|∞ ≥ 2ε} ≤ C1.

Since ‖ε‖1 = 1 we obtain that for each x with |x|∞ ≥ 2ε∫
{ξ:|x−ξ|≤ε}

|ξ||α|(DαM)(ξ) · |x||α|

C1|ξ||α| ε(x − ξ) dξ

∈ aco({|x||α|(DαM)(x) : x ∈ R
d \ {0}})

and thus by Lemma 2.3

(4.8) R({|x||γ|(DγM ∗ ε)(x) : |x|∞ ≥ 2ε, γ ≤ (1, . . . , 1)})
≤ C2R({|x||γ|(DγM)(x) : x ∈ R

d \ {0}, γ ≤ (1, . . . , 1)}).

Using (4.6), (4.7) the theorem is proved. �

4.5. Theorem (Second operator-valued Mikhlin theorem). If X and Y are UMD-
spaces with the property (α) and where the function M : Rd \ {0} → B(X, Y ) has
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the property that their distributional derivatives DγM of order γ ≤ (1, . . . , 1) are
represented by functions which fulfill

R({xγ(DγM)(x) : x ∈ R
d \ {0}, γ ≤ (1, . . . , 1)}) < ∞ ,

then M ∈ Mp(Rd; X, Y ) (1 < p < ∞).

Proof. Again we divide the proof into three steps.
Step 1: M ∈ S (Rd; B(X, Y ))
Arguing as in the first step of the proof of Theorem 4.4 we obtain in analogy to

(4.3)
sup
ν∈Nd

0

varTk
Dν

Mk ≤ 2d ,

where the collection Tk is defined by

Tk :=
⋃

i∈{1,...,2d}
ν∈N

d
0

{(βi,ν − αi,ν)γ(DγM(·/2k))(x) : x ∈ [αi,ν , βi,ν ], γ ≤ (1, . . . , 1)}.

Here ([αi,ν ; βi,ν ])i,ν is the fine decomposition. Again it remains to show that Tk is
R-bounded. Now we define for ν = (ν1, . . . , νd) ∈ Zd

∆ν := {x ∈ R
d \ {0} : 2νi−1 ≤ |xi| < 2νi for i ∈ {1, . . . , d}}.

For the fine decomposition we know
• The sizes of the edges of the 2d subcuboids [αi,ν ; β1,ν ] of Dν in the j-th

coordinate direction are not larger than 2νj .
• For x ∈ ∆ν , (ν ∈ Nd) we have |xj | ≥ 2νj−1.

If x ∈ [αi,ν ; βi,ν ] is arbitrary, we use the identity ((2α) := (2α1 , . . . , 2αd), α ∈ Zd)

(βi,ν − αi,ν)γ(DγM(·/2k))(x) =
(βi,n − αi,n)γ

(2ν)γ
· (2ν)γ · 2−k|γ|(DγM)(x/2k)

and Remark 2.2 (d) to get

R(Tk) ≤ C1R(
⋃
i,ν

{ (2ν)γ

2k|γ| (DγM)(x/2k) : x ∈ [αi,ν , βi,ν ], γ ≤ (1, . . . , 1)})

= C1R(
⋃
ν

{(2ν)γ · 2−k|γ|(DγM)(x/2k) : x ∈ ∆ν , γ ≤ (1, . . . , 1)})

= C1R(
⋃
ν

{ (2ν)γ · 2−k|γ|

xγ
· xγ(DγM)(x) : x ∈ 1

2k
∆ν , γ ≤ (1, . . . , 1)})

≤ C2R(
⋃
ν

{xγ(DγM)(x) : x ∈ 1
2k

∆ν , γ ≤ (1, . . . , 1)})

≤ C2R({xγ(DγM)(x) : x ∈ R
d \ {0}, γ ≤ (1, . . . , 1)})

and therefore

‖KM‖ ≤ CR({xγ(DγM)(x) : x ∈ R
d \ {0}, γ ≤ (1, . . . , 1)}),

where C does not depend on the multiplier function M .
Step 2: The case where M is infinitely often differentiable can be treated in

the same way as in Theorem 4.4.
Step 3: M fulfills the assumption of Theorem 4.5.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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For this step we modify the first part of the proof of Theorem 4.4 and obtain
similarly to (4.7) for all 0 < ε ≤ 1

(4.9) R({xγ(Dγ [M ∗ ε])(x) : 0 < |x|∞ ≤ ε, γ ≤ (1, . . . , 1)})
≤ C R({xγ(DγM)(x) : x ∈ R

d \ {0}, γ ≤ (1, . . . , 1)}).
The remaining part will be treated in the following way:

Choose γ ≤ (1, . . . , 1) arbitrary. Applying the binomial formula we get

xγ(Dγ [M ∗ ε])(x) =
∑

α+β≤γ

Cα,β((ξα(DαM)(ξ)) ∗ (ξβ(Dβε)(ξ)))(x).

Since supp ε ⊂ [−ε, ε]d, our assumption on the function M enables us to write the
above convolution for each |x|∞ > ε as follows:

xγ(Dγ [M ∗ ε])(x) =
∑

α+β=γ

Cα,β

∫
[−ε,ε]d

(x − ξ)α(DαM)(x − ξ)ξβ(Dβε)(ξ) dξ .

Now a similar argument as used in step 3 of the proof of Theorem 4.3 yields

R({xγ(Dγ [M ∗ ε])(x) : |x|∞ > ε})
≤ C1R({xα(DαM)(x) : x ∈ R

d \ {0}, α ≤ (1, . . . , 1)})
· sup

ε
{‖ξβ(Dβε)(ξ)‖ : β ≤ (1, . . . , 1)}

= C1R({xα(DαM)(x) : x ∈ R
d \ {0}, α ≤ (1, . . . , 1)})

· sup{‖ξβ(Dβ)(ξ)‖ : β ≤ (1, . . . , 1)}
and thus also

R({xγ(Dγ [M ∗ ε])(x) : |x|∞ > ε, γ ≤ (1, . . . , 1)})
≤ C2 R({xγ(DγM)(x) : x ∈ R

d \ {0}, γ ≤ (1, . . . , 1)}).
Together with (4.9) this completes the proof. �

Note. Observe that the weight function |x||γ| of Theorem 4.4 is larger than |xγ |
from Theorem 4.5.

4.6. Remark. i) Theorem 4.4 and Theorem 4.5 are generalizations of Proposition 3
in [Zi].

ii) If X and Y are Hilbert spaces, then the unit ball of B(X, Y ) is R-bounded
and both theorems reduce to the result of Schwartz, which assumes that

‖xγ(DγM)(x)‖ ≤ C < ∞
for all x ∈ Rd \ {0} and γ ≤ (1, . . . , 1).
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