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On operators close to isometries

by

Sameer Chavan (Pune)

Abstract. We introduce and discuss a class of operators, to be referred to as oper-
ators close to isometries. The Bergman-type operators, 2-hyperexpansions, expansive p-
isometries, and certain alternating hyperexpansions are main examples of such operators.
We establish a few decomposition theorems for operators close to isometries. Applications
are given to the theory of p-isometries and of hyperexpansive operators.

1. Preliminaries. In this paper, we discuss the following fundamental
problems from single-variable operator theory. If S in B(H) is a completely
non-unitary left-invertible operator, under what conditions does

• S∗ admit a complete set of eigenvectors?
• S possess the wandering subspace property?
• S admit a complete set of almost eigenvectors?

Recall that an operator S in B(H) admits a complete set of eigenvectors if

H =
∨
{f ∈ H : (S − µI)f = 0 for some µ ∈ C}

and that S possesses the wandering subspace property if

H =
∨
n≥0

Sn(H ∩ (SH)⊥).

A left-invertible operator S in B(H) admits a complete set of almost eigen-
vectors if

H =
∨
{f ∈ H : (S − µI)f ∈ null(S∗) for some µ ∈ C}.

One of the main results of this paper asserts that if a completely non-
unitary S in B(H) is close to isometry, then S∗ admits a complete set of
eigenvectors. Moreover, under some additional hypotheses, such an S pos-
sesses the wandering subspace property as well as a complete set of almost
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eigenvectors. We obtain these results as corollaries to certain decomposition
theorems for operators close to isometries. Our work is partly motivated
by the works of Clancey–Rogers ([7], [8]), Shimorin ([20]), and Yakubovich
([22]). Another motivation comes from the theory of m-isometries initiated
by Agler–Stankus ([1], [2]), and of hyperexpansive operators initiated by
Aleman ([3]) and Athavale–Sholapurkar ([5], [21]).

Unless stated otherwise, all the Hilbert spaces H occurring below are
complex infinite-dimensional separable, and B(H) denotes the Banach alge-
bra of bounded linear operators on H. For any bounded linear operator S on
H, we denote the spectrum, the point spectrum, the approximate point spec-
trum, the right spectrum, and the essential spectrum of S by σ(S), σp(S),
σap(S), σr(S), and σe(T ) respectively. The symbols null(S) and ran(S) will
stand for the null-space and the range-space of S respectively. If W is a
subset of H, then linspanW will stand for the smallest linear manifold gen-
erated byW. By

∨
{w : w ∈W}, we mean the smallest closed linear manifold

generated by W . For a subspace (that is, a closed linear manifold)M of H,
we use PM to denote the orthogonal projection of H ontoM.

An operator S in B(H) is said to be subnormal if there exist a Hilbert
space K containing H and a normal operator N in B(K) such that Nh = Sh
for every h ∈ H. An operator S in B(H) is hyponormal if the self-commutator
[S∗, S] ≡ S∗S−SS∗ of S is a positive operator. For the basic facts pertaining
to subnormals and hyponormals, the reader is referred to [10]. Recall that
a subnormal operator as well as the restriction of a hyponormal operator to
an invariant subspace is hyponormal.

Let m be a positive integer and let S be in B(H). The operator S is said
to be completely hyperexpansive if

Bn(S) ≡
∑

0≤p≤n
(−1)p

(
n

p

)
S∗pSp ≤ 0 for all integers n ≥ 1.

If Bn(S) ≤ 0 for 1 ≤ n ≤ m then S is said to be m-hyperexpansive. If
Bm(S) = 0 then S is said to be m-isometric. S is said to be expansive
(respectively isometric) if it is 1-expansive (respectively 1-isometric). S is
said to be alternatingly hyperexpansive if

Cn(S) ≡
∑

0≤p≤n
(−1)p−n

(
n

p

)
S∗pSp ≥ 0 for all integers n ≥ 1.

For the basic facts pertaining to m-isometries, m-hyperexpansions and alter-
nating hyperexpansions, the reader is referred to [2], [5], [16], [20] and [21].

An operator T in B(H) is said to be of Bergman type if

‖Tx+ y‖2 ≤ 2(‖x‖2 + ‖Ty‖2) (x, y ∈ H).
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Finally, if S in B(H) is left-invertible then the operator S′ given by S′ ≡
S(S∗S)−1 is said to be the operator Cauchy dual to S.

The paper is organized as follows. In the second section, we discuss
several examples of almost isometric restriction classes, and record a few
basic spectral properties of operators close to isometries (that is, the mem-
bers of almost isometric restriction classes). In the third section, we estab-
lish our first decomposition theorem for operators close to isometries. As
a consequence, we observe that a completely non-unitary operator close
to isometry with m-dimensional cokernel belongs to the Cowen–Douglas
class Bm(Dr) for some positive real r. In the fourth section, we establish
a Wold-type decomposition theorem for operators close to isometries. As
a consequence, we obtain a general Beurling-type theorem of which the
Beurling-type theorems for the Dirichlet shift and for the Bergman shift
are special cases. We conclude the paper with some generalizations and ex-
amples.

2. Operators close to isometries. Let ISO denote the class of bound-
ed linear isometries on Hilbert spaces. Note that the restriction of a member
of ISO to a non-zero invariant subspace belongs to ISO. Also, the invertible
members of ISO are precisely the unitaries. Moreover, the invariant subspaces
M of isometries S for which the restriction operator S|M turns out to be
unitary are reducing. As we will see soon, many more classes other than ISO
enjoy the same properties. We take these characteristic properties as part of
the following definition.

Definition 2.1. A class U of left-invertible bounded linear operators on
Hilbert spaces is said to be a restriction class if for every non-zero invariant
subspaceM of a bounded linear operator S in B(H), the restriction operator
S|M belongs to U whenever S belongs to U .

We are interested in those restriction classes U for which the following
hold.

Property I. If S belongs to U , and S is invertible, then S is unitary.

Property II. If S belongs to U , andM is a non-zero invariant subspace
of S such that S|M is unitary, then S reducesM.

A restriction class U is said to be an almost isometric restriction class
(for short, an AIR class) if it has Properties I and II. We will refer to the
members of AIR classes as operators close to isometries.

Remark 2.2. Suppose T in B(H) is close to isometry. Since a normal
left-invertible operator is invertible, it follows from Property I that T is com-
pletely non-normal (that is, T has no non-trivial normal direct summand) if
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and only if T is completely non-unitary (that is, T has no non-trivial unitary
direct summand).

Example 2.3. Let D1 and ∂D1 denote the open unit disc {µ∈C : |µ|<1}
and the unit circle, respectively. Consider the following classes.

(1) U1 ≡ {T : T is of Bergman type}.
(2) U2 ≡ {T : T is 2-hyperexpansive}.
(3) U3 ≡ {T : T is hyponormal such that σap(T ) ⊂ ∂D1}.
(4) U4 ≡ {T : T is an expansive p-isometry for some positive integer p}.
(5) U5 ≡ {T : T is alternatingly hyperexpansive such that σ(T ) ⊂ D1}.

Then all the above are AIR classes.

Verification. Suppose T ∈ U1. It follows from Corollary 2.12 of [6] that T
is a hyponormal contraction. Moreover, since the operator Cauchy dual to T
is a 2-hyperexpansion ([20, proof of Theorem 3.6]), by Lemma 2.14 and Re-
mark 2.4 of [6], one has σap(T ) ⊂ ∂D1. This shows that U1 ⊂ U3. Since a sub-
class of an AIR class is again an AIR class, it suffices to check that U2, . . . ,U5

are AIR classes. It either follows from the definition or some well-known fact
that U2, U3, and U4 are restriction classes. To see that U5 is a restriction class,
let T be alternatingly hyperexpansive such that σ(T ) ⊂ D1 and let M be
any subspace invariant for T. Clearly, T |M is alternatingly hyperexpansive.
Also, since σap(T |M) ⊂ σap(T ), one has σap(T |M) ⊂ σap(T ) ⊂ D1. Since
the boundary of the spectrum of a bounded linear operator is contained in
its approximate point spectrum, we must have σ(T |M) ⊂ D1. Hence T |M
belongs to U5.

Next we check that the members of U2, . . . ,U5 have Property I. Suppose
T ∈ U3. Since the boundary of the spectrum of a bounded linear operator
is contained in its approximate point spectrum, invertibility of T together
with σap(T ) ⊂ ∂D1 forces σ(T ) ⊂ ∂D1. Hence by the Putnam inequality
([10, Corollary 3.2 of Chapter IV]), an invertible T in U3 must be normal.
Hence such a T is unitary and U3 has Property I. Also, it is noted in [21,
Remark 3.4] that an invertible 2-hyperexpansive T is unitary, so that U2 has
Property I. Suppose T is an invertible expansive p-isometry. It follows that
T−1 is a contractive p-isometry. We claim that T−1 is isometric. We will
derive this from the following general fact.

Lemma 2.4. If S in B(H) is a contraction then for any n ≥ 1, one has

Bn+1(S) ≤ 0 ⇒ Bn(S) ≤ 0,

where Bm(S) =
∑

0≤p≤m(−1)p
(
m
p

)
S∗pSp (m ≥ 1).

Proof. Suppose that S in B(H) is a contraction, and Bn+1(S) ≤ 0 for
some n ≥ 1. Since S is a contraction, there exists a positive operator A in
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B(H) such that

S∗nSn → A (SOT) as n→∞(2.1)

(see [17]). Also, since Bn+1(S) = Bn(S) − S∗Bn(S)S, one has Bn(S) ≤
S∗Bn(S)S. An induction argument shows that Bn(S) ≤ S∗mBn(S)Sm

(m≥1). Thus it suffices to check that S∗mBn(S)Sm → 0 (SOT) as m→∞.
Note that

Bn(S) = Bn−1(S)− S∗Bn−1(S)S

=
∑

0≤p≤n−1

(−1)p
(
n− 1
p

)
(S∗pSp − S∗p+1Sp+1),

so that

S∗mBn(S)Sm =
∑

0≤p≤n−1

(−1)p
(
n− 1
p

)
(S∗p+mSp+m − S∗p+m+1Sp+m+1)

for every integer m ≥ 1. By (2.1), a passage m→∞ leads to

S∗mBn(S)Sm →
∑

0≤p≤n−1

(−1)p
(
n− 1
p

)
(A−A) (SOT) = 0.

Now we prove the claim. Since T−1 is a p-isometry, we have Bp(T−1) = 0.
In particular, Bp(T−1) ≤ 0. Also, since T−1 is a contraction, by repeated
applications of Lemma 2.4, one has B1(T−1) ≤ 0, that is, T−1 is expansive.
Hence T−1 is isometric, and therefore T is unitary.

Next, assume that T is an invertible alternating hyperexpansion and that
σ(T ) ⊂ D1. Since an invertible alternating hyperexpansion is subnormal ([21,
Remark 4.2]), and since norm and spectral radius coincide for subnormals
([10]), the invertibility of T together with σ(T ) ⊂ D1 forces T to be a con-
traction. Hence T is an invertible isometry, that is, a unitary.

To see that all the classes under consideration have Property II, we
need the following simple lemma (cf. [20, Lemma 3.3], [6, proof of Proposi-
tion 2.17]).

Lemma 2.5. If S in B(H) is either contractive or expansive, and if M
is a non-zero invariant subspace of S such that S|M is unitary , then S re-
ducesM.

Proof. Note that PMS∗Sh = h for any h ∈M, where PM is the orthogo-
nal projection from H ontoM. Therefore for any h ∈M, 〈h− S∗Sh, h〉H =
〈h− PMS∗Sh, h〉M = 0. If S is contractive then ‖(I − S∗S)1/2h‖H = 0 for
any h ∈ M. If S is expansive then ‖(S∗S − I)1/2h‖H = 0 for any h ∈ M.
In any case, S∗Sh = h for any h ∈ M. This observation together with
SM =M leads to S∗M =M. Thus S reducesM.
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Since the spectral radius of a hyponormal operator is equal to its norm
([10]), it follows that the members of U3 are contractive. It is now clear that
the members of all classes under consideration are either contractions or
expansions. Hence by the preceding lemma, Property II holds for all such
classes. This completes the verification of Example 2.3.

We conclude the section with a brief discussion of the spectral behavior
of operators close to isometries.

Lemma 2.6. Let T ∈ B(H) be completely non-unitary and close to isom-
etry. For r > 0 let Dr denote {z ∈ C | |z| < r}. Then there exists r0 > 0
such that

(a) Dr0 ⊂ σp(T ∗).
(b) ran(T ∗ − µI) = H (µ ∈ Dr0).
(c) nullity(T − µI) = nullity(T ) (µ ∈ Dr0), where nullity(S) stands for

the dimension of the null-space of the bounded linear operator S.

Proof. Since T is completely non-unitary, 0 ∈ σ(T ) by Property I. Since
T is left-invertible, there exists r0 > 0 such that ‖Tx‖ ≥ r0‖x‖ for every
x ∈ H. Hence by a standard argument, ‖(T − µI)x‖ ≥ (r0 − |µ|)‖x‖ for all
µ ∈ Dr0 and x ∈ H. This shows that Dr0 ∩ σap(T ) = ∅. Now the desired
assertions can be concluded from the standard spectral and Fredholm theory
([17], [10]).

Remark 2.7. In the case where U is one of U1, . . . ,U5 (see Example 2.3),
for a completely non-unitary T in U , the positive real r0 in the conclusions
(a), (b), (c) of Lemma 2.6 can be chosen to be 1. Indeed, in this case σ(T ) =
D1 (see [2, Lemma 1.21], [21, Remark 2.4], [6, Lemma 2.14], [17]).

The author does not know a single example of a completely non-unitary
operator close to isometry with spectrum different from the closed unit
disc D1. In view of this and Remark 2.7, the following question is interesting.

Question. If T is close to isometry, does the following spectral dicho-
tomy hold: if T is invertible then σ(T ) ⊂ ∂D1, and if not then σ(T ) = D1?

3. Completeness of eigenvectors. In this section, we establish our
first decomposition theorem (cf. [7]) for operators close to isometries. As
a consequence, we observe that the m-multicyclic completely non-unitary
operators which are close to isometries belong to the Cowen–Douglas class
Bm(Dr) for some r > 0. Also, we observe that for a completely non-unitary
operator T which is close to isometry, the operator αT ∗ turns out to be
hypercyclic for any complex α of modulus greater than 1 provided σ(T ′) ⊂
D1.We begin with a lemma, which is definitely known (see, for example, [7]).
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Lemma 3.1. Let T in B(H) be such that ‖Tx‖ ≥ r0‖x‖ (x ∈ H) for some
r0 > 0. Define P (·) : Dr0 → B(H) by P (µ) = Pnull(T ∗−µI) (µ ∈ Dr0). Then
P (·) is continuous at 0 in the uniform sense, that is, ‖P (µ)−P (0)‖ → 0 as
µ→ 0.

Proof. Consider the operator-valued function R : Dr0 → B(H) given by

R(µ) = (T − µI)′∗ (µ ∈ Dr0),

where (T − µI)′ denotes the operator Cauchy dual to the left-invertible
operator T − µI (µ ∈ Dr0). Using the fact that the map S 7→ S−1 from the
set G(L) of invertible operators on a Hilbert space L into B(L) is continuous
in the norm topology ([9]), it is easy to see that R(·) is continuous at 0 in
the uniform sense. As (T − µI)R(µ) = I − Pnull(T ∗−µI) for every µ ∈ Dr0 ,
the assertion follows.

Theorem 3.2. Let T be in B(H), and let r > 0. If T is close to isometry ,
then

T = U ⊕ C on H = Hu ⊕Hc,

where U is unitary on Hu, C is completely non-unitary on Hc, and Hc is
equal to

∨
{null(C∗ − µI) : µ ∈ Dr}.

Proof. Let U be an AIR class, and let T be in U ∩ B(H). Let r > 0 be
given. Write

T = U ⊕ C on H = Hu ⊕Hc,

where U is a normal operator on Hu and C is completely non-normal on
Hc ([18, Corollary 1.3]). Note that U,C ∈ U . Hence by Remark 2.2, C is
completely non-unitary. Thus it suffices to show thatHc =

∨
{null(C∗−µI) :

µ ∈ Dr}.We adapt the argument of ([8, Theorem 2]) to the present situation.
Set H1 ≡

∨
{null(C∗ − µI) : µ ∈ Dr}. Thus

C =
(
C2 0
X C1

)
on Hc = H1 ⊕H⊥1 .

Clearly, C1 belongs to U . In particular, null(C1) = {0} and ran(C1) =
ran(C1). Next note that linspan{null(C∗ − µI) : µ ∈ Dr, µ 6= 0} ⊂ ran(C∗2 ).
Hence using the continuity of P (·) at 0 (Lemma 3.1), it can be easily seen
that null(C∗) ⊂ ran(C∗2 ). Thus ran(C∗2 ) = H1 and so null(C2) = {0}.

We claim that C1 is onto. Since ran(C1) is closed, it suffices to check
that null(C∗1 ) = {0}. To see the latter, we may check that g is zero whenever
g ∈ Hc, Cg ∈ H⊥1 and C∗1Cg = 0. This follows by a routine calculation using
null(C1) = {0} and null(C2) = {0}. Therefore C∗1 is injective. It follows
that C1 is an invertible operator in U . By Property I, C1 is unitary. Also,
since C1 = C|H⊥1 , by Property II, C reduces H⊥1 . Since C is completely
non-unitary, we must have Hc = H1, and the proof is over.
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Remark 3.3. In the case where U = U3 (see Example 2.3), and T in U
is completely non-unitary, Theorem 3.2 recovers a special case of Theorem 2
of [8], which was proved under the hypotheses that T is pure hyponormal
and Area(σap(T )) = 0. On the other hand, our method applies to a number
of classes including that of 2-hyperexpansions, expansive p-isometries, and
certain alternating hyperexpansions.

We discuss below several applications of Theorem 3.2 to the theory of p-
isometries and of hyperexpansive operators. We need some definitions. Letm
be a positive integer. An operator S in B(H) is said to be finitely multicyclic
if there are a finite number of vectors h1, . . . , hm in H such that

H =
∨
{Skh1, . . . , S

khm : k ≥ 0}.(3.2)

S is said to be m-multicyclic if (3.2) holds for some set {h1, . . . , hm} of m
vectors in H but for no set of m − 1 vectors. S is cyclic if it is 1-cyclic. In
that case, there exists a vector e0 in H such that H =

∨
{Ske0 : k ≥ 0}. The

vector e0 is referred to as a cyclic vector for S.

Corollary 3.4. Let T ∈ B(H) be completely non-unitary and close to
isometry. Then:

(a) For any positive real r, one has H =
∨
{null(T ∗ − µI) : µ ∈ Dr}.

(b) T ∗ has a dense set of cyclic vectors.

Proof. (a) follows from the previous theorem. The other part follows from
Theorem 3 of [8] provided we show that

∨
{null(T ∗−µI) : µ /∈ σr(T ∗)} = H.

Since one can choose r0 > 0 so that Dr0 ⊂ C \ σr(T ∗), the proof is over.

Remark 3.5. Let T ∈ B(H) be completely non-unitary and close to
isometry. Let e0 in H be a cyclic vector for T ∗ such that ‖e0‖ = 1 (Corol-
lary 3.4). Let {en}n≥0 be the orthonormal basis obtained from the Gram–
Schmidt orthonormalization process applied to the linearly independent set
{T ∗ne0 : n ≥ 0}. (In case {T ∗ne0 : n ≥ 0} is linearly dependent, H is finite-
dimensional, and consequently T is invertible. By Property I, T is unitary.
Since T is completely non-unitary, we arrive at a contradiction.) Then it is
easy to see that T has an “almost” upper triangular matrix representation
with respect to {en}n≥0, in the sense that the only non-zero entries above
the main diagonal are possibly on the super diagonal. This idea of “almost”
upper triangularization is due to Halmos ([12, Corollary 3.12]).

An operator S in B(H) is said to be hypercyclic or S-universal if its orbit
{Snh : n ≥ 0} is dense in H for some vector h ∈ H. If U is a unilateral shift,
then αU∗ is hypercyclic for every complex number α of modulus greater
than 1. Surprisingly, every completely non-unitary member of Ui enjoys the
same property (i = 1, 2, 3). This can be deduced from Corollary 3.6(b) and
Example 3.10 below. Recall that S in B(H) is strongly stable if ‖Snh‖ → 0 as
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n→∞ for every h ∈ H. The following corollary shows in particular that if S
is a completely non-unitary hyponormal operator such that σap(S) ⊂ ∂D1,
then S∗ is strongly stable. This recovers a special case of Theorem 5.3 of [17].

Corollary 3.6. Let T in B(H) be completely non-unitary and close to
isometry. Let T ′ be the operator Cauchy dual to T. Then the following are
true.

(a) There exists a linear manifold M invariant for T ∗ and dense in H
such that T ∗|M is strongly stable. If in addition T is power bounded
(that is, supn≥0 ‖Tn‖ <∞), then T ∗ is strongly stable.

(b) If σ(T ′) ⊂ D1 then αT ∗ is hypercyclic for any complex α of modulus
greater than 1.

Proof. By Corollary 3.4, one has H =
∨
{null(T ∗ − µI) : µ ∈ Dr} for

every r ∈ (0, 1). Hence the linear manifold

Mr ≡ linspan{h ∈ H : h ∈ null(T ∗ − µI), µ ∈ Dr}
invariant for T ∗ is dense in H. Moreover, for every h ∈ null(T ∗ − µI), one
has ‖T ∗nh‖ = |µ|n‖h‖ (µ ∈ Dr). It is now clear that ‖T ∗nh‖ → 0 as n→∞,
and hence T ∗|M is strongly stable. If in addition supn≥0 ‖Tn‖ < ∞, then
using the stability of T ∗|Mr and the density of Mr, it can be easily seen
that T ∗ is strongly stable. Hence (a) is proved.

To establish (b), we use the hypercyclicity criterion ([13, Theorem 2.2]).
Assume that σ(T ′) ⊂ D1. In view of the proof of (a), it suffices to check the
following: For every α ∈ C such that |α| > 1, there exists r > 0 such that

‖αnT ∗nh‖ → 0, ‖α−nT ′nh‖ → 0 as n→∞
for every h ∈Mr. Let α ∈ C be such that |α| > 1 and let ε > 0 be such that
1 + ε < |α|. Since limn→∞‖T ′n‖1/n ≤ 1, one can choose a positive integer
n0 such that ‖T ′nh‖ ≤ ‖h‖(1 + ε)n for every n ≥ n0. Then it is clear that
‖α−nT ′nh‖ → 0 as n → ∞ (h ∈ H). Let r0 ∈ (0, |α|−1). It follows that
‖αnT ∗nh‖ → 0 as n→∞ for every h ∈Mr0 .

For a connected open subset Ω of the complex plane C and a positive
integer m, let Bm(Ω) denote the class of operators S in B(H) for which

Ω ⊂ σ(S), ran(S − µI) = H (µ ∈ Ω),∨
µ∈Ω

null(S − µI) = H, nullity(S − µI) = m (µ ∈ Ω).

The classes Bm(Ω) were introduced by Cowen and Douglas in [11].

Corollary 3.7. Let T in B(H) be close to isometry. If T is m-multi-
cyclic and completely non-unitary , then there exists a positive real r such
that T ∗ belongs to the Cowen–Douglas class Bm(Dr).
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Proof. Since T is m-multicyclic, nullity(T ∗) = m ([14]). Moreover, by
Corollary 3.4, one has H =

∨
{null(T ∗ − µI) : µ ∈ Dr} for all r > 0. Now

one may appeal to Lemma 2.6.

Remark 3.8. It is clear from Remark 2.7 and the preceding corollary
that if T in B(H) belongs to one of the restriction classes U1, . . . ,U5, and if
it is m-multicyclic and completely non-unitary, then T ∗ ∈ Bm(D1).

We conclude the section with one more application of Theorem 3.2. Recall
that a left-invertible operator S in B(H) admits a complete set of almost
eigenvectors if

H =
∨
{f ∈ H : (S − µI)f ∈ null(S∗) for some µ ∈ C}.

Completeness of almost eigenvectors is important in the construction of bun-
dle shift models of left-invertible operators (see [22]).

Definition 3.9. Let U ,V be restriction classes. Then the Cauchy map
C from U into V is given by C(S) = S′ (S ∈ U), where S′ ≡ S(S∗S)−1 is the
operator Cauchy dual to S.

Example 3.10. Consider the AIR classes U1,U2,U3 of Example 2.3.
Then the map Ci,i+1 : Ui → Ui+1 given by Ci,i+1(T ) = T ′ (T ∈ Ui) is a
Cauchy map (i = 1, 2).

Verification. It is noted in [20, proof of Theorem 3.6] that the operator
Cauchy dual to an operator T ∈ U1 is 2-hyperexpansive. Hence C1,2 is a
Cauchy map. The fact that C2,3 is a Cauchy map follows from Theorem 2.9
and Lemma 2.14 of [6].

Corollary 3.11. Let U ,V be AIR classes, and let C : U → V be the
Cauchy map. Let T in U ∩ B(H) be completely non-unitary. Then the set of
almost eigenvectors of T is complete.

Proof. Let T ′ be the operator Cauchy dual to T, and let fµ∈null(T ′∗−µI)
for a non-zero µ in C. Since T ′∗fµ = µfµ, and TT ′∗ = Pran(T ), one has
Tfµ = µ−1Pran(T )fµ. Hence

(µ−1I − T )fµ = µ−1Pnull(T ∗)fµ.(3.3)

Thus

(µ−1I − T )fµ ∈ null(T ∗) whenever (fµ ∈ null(T ′∗ − µI), µ 6= 0).

Moreover, if for some f ∈ H and µ 6= 0, the vector (µ−1I − T )f be-
longs to null(T ∗), then using the fact that null(T ∗) = null(T ′∗), one has
µ−1T ′∗f − f = 0. Hence f ∈ null(T ′∗ − µI). Thus fµ ∈ null(T ′∗ − µI) if
and only if fµ is an almost eigenvector of T corresponding to the almost
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eigenvalue µ−1. Hence the set

G ≡ linspan{fµ ∈ null(T ′∗ − µI) : µ ∈ C \ {0}}

consists of precisely the almost eigenvectors of T corresponding to non-zero
almost eigenvalues. We claim that G is dense in H.

Note that the Cauchy dual operator T ′ is completely non-unitary since
T is. Also, since C is a Cauchy map, T ′ belongs to the almost isometric
restriction class V. Hence by Corollary 3.4, the set of eigenvectors of T ′∗ is
complete. We conclude the proof by showing that a vector h ∈ H is zero
whenever 〈h, f〉 = 0 for every f ∈ G. To see that, let h ∈ H be such that
〈h, f〉 = 0 for every f ∈ G. Thus for a non-zero µ, 〈h, Pnull(T ′∗−µI)f〉 = 0 for
every f ∈ G. Since the projection-valued map P given by

P (µ) = Pnull(T ′∗−µI) (µ ∈ σ(T ′∗) \ σr(T ′∗))

is continuous at 0 (Lemma 3.1), for any f in null(T ′∗), one has

0 = 〈h, Pnull(T ′∗−µI)f〉 → 〈h, f〉 as µ→ 0,

hence 〈h, f〉 = 0 for every eigenvector of T ′∗. Since the set of eigenvectors of
T ′∗ is complete, h = 0, and the desired conclusion follows.

4. The wandering subspace property. In this section, we establish
a Wold-type decomposition theorem for operators close to isometries under
some additional assumptions. The proof is based on the technique developed
by Shimorin in his work on the wandering subspace problem ([20]). As an
application, we establish a decomposition theorem for completely hyperex-
pansive operators.

Recall that S in B(H) is analytic if
⋂
n≥0 S

nH = {0}. To establish the
promised Wold-type decomposition theorem, we need a couple of lemmas;
one of these is borrowed from [20].

Lemma 4.1 ([20, Proposition 2.7]). If S in B(H) is a left-invertible op-
erator and if S′ is the operator Cauchy dual to S then the following duality
formulae hold :(⋂

n≥0

S′nH
)⊥

=
∨
n≥0

Sn(null(S∗)),
(⋂
n≥0

SnH
)⊥

=
∨
n≥0

S′n(null(S∗)).

Lemma 4.2. Let S ∈ B(H) be close to isometry. Set Hu =
⋂
n≥0 S

nH.
Then SHu = Hu, S

∗Hu = Hu, S reduces Hu and S|Hu is unitary.

Proof. Let U be an AIR class. Let S ∈ U∩B(H) and setHu =
⋂
n≥0 S

nH.
Clearly, Hu is invariant for S. Indeed, SHu = Hu. Thus S|Hu is an invertible
member of U . Hence by Property I, S|Hu is unitary. By Property II, S reduces
Hu. It is now obvious that S∗Hu = Hu.
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Theorem 4.3. Let U ,V be AIR classes, and let C : U → V be the Cauchy
map. If T belongs to U ∩ B(H), then

T = U ⊕A on H = Hu ⊕Ha,

where U is unitary on Hu, A is analytic on Ha, and Ha =
∨
n≥0 T

n(null(T ∗)).

Proof. Set Hu =
⋂
n≥0 T

nH. By the preceding lemma,

T = U ⊕A on H = Hu ⊕Ha,

where U is unitary on Hu and A is analytic on Ha. To conclude the proof,
it suffices to check that Ha =

∨
n≥0 T

n(null(T ∗)). Since C is a Cauchy map,
the Cauchy dual operator T ′ belongs to V. Since T ′ extends A′, A′ belongs
to V. By the previous lemma, A′H′u = H′u and A′∗H′u = H′u, where H′u ≡⋂
n≥0A

′nHa. It is now easy to see that AH′u = H′u. Thus

H′u =
⋂
n≥0

AnH′u ⊂
⋂
n≥0

AnHa = {0}.

Consequently, H′u = {0}. By Lemma 4.1, Ha =
∨
n≥0 A

n(null(A∗)). Since T
extends A and null(T ∗) = null(A∗), Ha =

∨
n≥0 T

n(null(T ∗)) as desired.

Corollary 4.4. Let U ,V be AIR classes, and let C : U → V be the
Cauchy map. If T in U is analytic, then for every invariant subspace M
of T, one hasM =

∨
n≥0 T

n(M∩ (TM)⊥).

Remark 4.5. We consider here two important cases of Corollary 4.4. In
the case where U = U1,V = U2, and C = C1,2 (see Example 3.10), the previous
corollary recovers Beurling’s theorem for Bergman-type operators ([4], [20]).
In the case where U = U2,V = U3, and C = C2,3 (Example 3.10), the corollary
recovers Beurling’s theorem for 2-hyperexpansive operators ([19], [6]).

Recall that a subspace M of H is said to be hyperinvariant for T in
B(H) if it is invariant for every operator S in B(H) that commutes with T.
The following corollary shows in particular that the class of power bounded
complete hyperexpansions arises naturally out of the class of complete hy-
perexpansions.

Corollary 4.6. Let T in B(H) be a completely hyperexpansive operator.
Then there exist subspacesM,M1,M2 of H such that :

(a) M is hyperinvariant for T,
(b) T |M = U ⊕ S onM =M1 ⊕M2, where U onM1 is unitary , S on
M2 is similar to a unilateral shift , and

M2 =
∨
n≥0

Tn(M2 ∩ (TM2)⊥),

(c) ‖Tnh‖ → ∞ as n→∞ for every non-zero h inM⊥.
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In particular , a completely non-unitary power bounded 2-hyperexpansive T
is similar to the unilateral shift of multiplicity nullity(T ∗).

Proof. By Corollary 4.3 of [15], there exist a unique maximal tight PO
measure G on the interval [0, 1) ⊂ R and a unique B ∈ B(H) such that

(4.4) T ∗nTn = I + nB +
�

[0,1)

(1− xn) dG(x) (n ≥ 1).

Set M ≡ null(B) and write H = M⊕M⊥. Let S ∈ B(H) with ST = TS
and let h ∈ H be such that Bh = 0. We first check that BSh = 0.

By (4.4) and using ST = TS, Bh = 0, one has

‖TnSh‖2 = 〈T ∗nTnSh, Sh〉

=
〈(
I + nB +

�

[0,1)

(1− xn) dG(x)
)
Sh, Sh

〉
= ‖Sh‖2 + n‖B1/2Sh‖2 +

〈( �

[0,1)

(1− xn) dG(x)
)
Sh, Sh

〉
and

‖TnSh‖2 = ‖STnh‖2

≤ ‖S‖2‖Tnh‖2 = ‖S‖2〈T ∗nTnh, h〉

= ‖S‖2
〈(
I + nB +

�

[0,1)

(1− xn) dG(x)
)
h, h

〉
= ‖S‖2

{
‖h‖2 +

〈( �

[0,1)

(1− xn) dG(x)
)
h, h

〉}
.

Therefore

‖Sh‖2 + n‖B1/2Sh‖2 +
〈( �

[0,1)

(1− xn) dG(x)
)
Sh, Sh

〉
≤ ‖S‖2

{
‖h‖2 +

〈( �

[0,1)

(1− xn) dG(x)
)
h, h

〉}
.

An easy application of the Lebesgue monotone convergence theorem yields

‖Sh‖2 + lim
n→∞

n‖B1/2Sh‖2 + 〈G([0, 1)Sh, Sh〉

≤ ‖S‖2(‖h‖2 + 〈G([0, 1))h, h〉).
Consequently, ‖B1/2Sh‖ = 0 and hence BSh = 0. This proves (a).

Using the representation (4.4), it can be easily seen that T |M is power
bounded. Hence T |M is a power bounded complete hyperexpansion. Let h
be a non-zero vector in M⊥. Then Bh 6= 0 and hence using (4.4), one has
‖Tnh‖ → ∞ as n→∞. To conclude the proof, it suffices to show that T |M
can be decomposed as a direct sum of a unitary and an operator similar to a
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unilateral shift. Indeed, we show that any power bounded 2-hyperexpansion
can be decomposed in this manner. To see that, let T in B(H) be a power
bounded expansion. By the standard theory (see for example, Section 3.2
of [17]), a power bounded expansion is similar to an isometry. Since we
need to know the intertwining operator, we include the elementary details.
Notice that {T ∗nTn}n≥0 is a non-decreasing, bounded sequence of positive
expansions, so it converges strongly in B(H) ([17]). Hence there exists a
positive operator A in B(H) such that

T ∗nTn → A (SOT) as n→∞.

Since T ∗nTn is a positive expansion for every n ≥ 0, so is A. By uniqueness
of strong limits, {T ∗nT ∗kT kTn}n,k≥0 and {T ∗kT k}k≥0 converge to A for any
n ≥ 0. Therefore T ∗nATn = A for every n ≥ 0. Consequently,

‖A1/2Tnh‖2 = 〈T ∗nATnh, h〉 = 〈Ah, h〉 = ‖A1/2h‖2

for every h ∈ H and n ≥ 0. Define an isometry V in B(H) as follows.
For an arbitrary y ∈ H, let x ∈ H be such that y = Ax and define
V y = A1/2TA1/2x. It is easy to check that T = A−1/2V A1/2 and that V
is isometric.

Now suppose that T in B(H) is a power bounded 2-hyperexpansion. By
Example 3.10 and Theorem 4.3, Hu is a reducing subspace for T, U = T |Hu

is unitary, and H	Hu =
∨
n≥0 T

n(H∩(TH)⊥). Thus it suffices to check that
C = T |H⊥u is similar to a unilateral shift. By the discussion in the preceding
paragraph, there exist an isometry V and a positive expansion B in B(H)
such that

BT = V B, B2 = lim
n→∞

T ∗nTn (SOT).

Since T reduces Hu, we must have T ∗nTnHu ⊂ Hu for every n ≥ 0. Let-
ting n → ∞ leads to B2Hu ⊂ Hu. The spectral theorem yields BHu ⊂ Hu.
Because B is a positive expansion, B reduces Hu, and B|Hu , B|H⊥u are pos-
itive expansions. Set H∞ ≡

⋂
n≥0 V

nH. We claim that BHu ⊂ H∞ and
BH⊥u ⊂ H⊥∞. To see the first inclusion, let x ∈ Hu. Then for every n ≥ 0,
there exists xn ∈ H such that x = Tnxn. Thus

Bx = BTnxn = BTnB−1(Bxn) = V nBxn ∈ V nH

for every n ≥ 0. Hence BHu ⊂ H∞. Next let x ∈ H⊥u and y ∈ H∞. Since for
every n ≥ 0, y = V nxn for some xn ∈ H, one has

〈Bx, y〉 = 〈x,By〉 = 〈x,B2(B−1V nB)B−1xn〉 = 〈x,B2TnB−1xn〉

for every n ≥ 0. Since TnB−1xn ∈ Hu and BHu ⊂ Hu, we must have
B2(TnB−1xn) in Hu. Hence 〈Bx, y〉 = 0 for every y ∈ H∞. Consequently,
BH⊥u ⊂ H⊥∞. This completes the proof of the claim.
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By the von Neumann–Wold–Kolmogorov decomposition theorem for iso-
metries, one has

V = V1 ⊕ V2 on H = H∞ ⊕H⊥∞,
where V1 is unitary and V2 is the unilateral shift of multiplicity nullity(V ∗)
([10]). Now it follows readily from BT = V B and the inclusions BHu ⊂ H∞,
BH⊥u ⊂ H⊥∞ established in the preceding paragraph that

T |H⊥u = (B|H⊥u )−1V2(B|H⊥u ),

that is, T |H⊥u is similar to V2 as desired.
Remark 4.7. Let T andM be as in the statement of Corollary 4.6. We

consider here two extreme cases:
(a) The case in which M = H and T is a power bounded complete

hyperexpansion. In this case, there exist a unitary U, an invertible
expansion B, a unilateral shift V and a reducing subspace L for T
such that

T = U ⊕B−1V B on H = L ⊕ L⊥,
where B is the restriction of the positive square root of the SOT
limit limn→∞ T

∗nTn to L⊥. By Theorem 5.3 of [15], there exists a
maximal tight PO measure G on [0, 1) ⊂ R such that T ∗nTn =
I +

	
[0,1)(1 − xn) dG(x). By a routine application of the Lebesgue

monotone convergence theorem, T ∗nTn → I + G([0, 1)) (SOT) as
n→∞. Hence B = (I +G([0, 1)))1/2|L⊥ .

(b) The case in which M = {0} and ‖Tnh‖ → ∞ for every non-zero
h in H. One may refer to such operators as strict complete hyper-
expansions. The Dirichlet shift T : {

√
(n+ 2)/(n+ 1)}n≥0 given by

Ten =
√

(n+ 2)/(n+ 1)en+1 is an example of a strict complete hy-
perexpansion, where {en}n≥0 is an orthonormal basis of H. Using
the representation (4.4), it is easy see that ‖Th‖ > ‖h‖ for every
non-zero vector h in H. Note also that a strict complete hyperexpan-
sion is completely non-isometric (that is, has no non-trivial isometric
direct summand), and hence completely non-unitary. The Dirichlet
shift may play a significant role in a model theory for strict complete
hyperexpansions.

We conclude this section with an application of Corollary 4.6. Let T be
a completely non-unitary power bounded 2-hyperexpansion. For S in B(H),
let P∞(S) denote the weak∗ closed algebra generated by S and the identity
operator I. Let nullity(T ∗) = n ∈ N ∪ {∞} and let S denote the unilateral
shift. Recall that a unilateral shift of multiplicity n is unitarily equivalent
to the direct sum S(n) of n copies of S ([10]). By Theorem 6.2 of Chapter I
of [10], the map φ 7→ φ(S)(n) is an isometric algebraic isomorphism ofH∞(D)
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onto P∞(S(n)) that is a weak∗ homeomorphism. In view of Remark 4.9(a),
one may define a functional calculus for T by φ(T ) = B−1φ(S)(n)B for any
φ in the Hardy space H∞(D1). The mapping ψT : H∞(D1)→ P∞(T ) given
by ψT (φ) = φ(T ) is evidently a bounded algebraic homomorphism and a
weak∗ homeomorphism onto P∞(T ). Moreover, ψT is injective. To see that,
let h ∈ H with ‖h‖ = 1 and let φ ∈ H∞(D1). Using ‖Bh‖ ≥ 1, one can
easily check that

‖ψT (φ)h‖ ≥ ‖B‖−1

∥∥∥∥φ(S)(n) Bh

‖Bh‖

∥∥∥∥.
Since B is onto and ‖φ(S)(n)‖ = ‖φ‖∞, the preceding inequality yields

‖ψT (φ)‖ = sup
h∈H, ‖h‖=1

‖ψT (φ)h‖

≥ ‖B‖−1 sup
h∈H, ‖h‖=1

∥∥∥∥φ(S)(n) Bh

‖Bh‖

∥∥∥∥
= ‖B‖−1‖φ(S)(n)‖ = ‖B‖−1‖φ‖∞.

In particular, ψT is injective. An immediate consequence of this functional
calculus is that σ(φ(T )) = φ(D1) for any φ ∈ H∞(D1) (refer to Sections 4, 6
of Chapter I of [10]). Summing up:

Corollary 4.8. Let T be a completely non-unitary power bounded 2-
hyperexpansion, and let ψT : H∞(D1) → P∞(T ) be as in the preceding
paragraph. Then ψT is an injective bounded algebraic homomorphism and
a weak∗ homeomorphism onto P∞(T ). In particular , σ(φ(T )) = φ(D1) for
any φ ∈ H∞(D1).

5. Concluding remarks. In this section we briefly discuss one possible
generalization of some results established in Section 3. For that purpose, we
will have to introduce some more restriction classes, which satisfy properties
slightly weaker than Properties I and II (see Definition 2.1). To be more
precise, we consider those restriction classes N for which the following hold.

Property I∗. If S belongs to N , and S is invertible, then S is normal.

Property II∗. If S belongs to N , and M is a non-zero invariant sub-
space of S such that S|M is normal, then S reducesM.

Note that every AIR class has Properties I∗, II∗. Thus the restriction
classes discussed in Example 2.3 have these properties. Moreover, we have
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Example 5.1. Set

N1 ≡ {T : T is hyponormal with σap(T ) ⊂ ∂Dr for some r > 0},
N2 ≡ {T : T is alternatingly hyperexpansive with

r−1T expansive and σap(T ) ⊂ ∂Dr for some r > 0}.
Then N1 and N2 are restriction classes and have Properties I∗, II∗.

Verification. Since the argument is similar to one in Example 2.3(1),
we omit the verification that N1,N2 have Property I∗. To see that they
have Property II∗, let T in B(H) be such that r−1T is either contractive or
expansive, with σap(T ) ⊂ ∂Dr. Suppose further that T |M is normal for some
non-zero invariant subspaceM of T. Using the spectral mapping property of
bounded linear operators ([9]), it is easy to see that r−1T |M is unitary. Since
r−1T is either contractive or expansive, by Lemma 2.5, T reducesM. It is
now clear that N2 has Property II∗. Since for any hyponormal S, the norm
of S is equal to its spectral radius, an operator T in N1 satisfies ‖r−1T‖ ≤ 1.
Hence by the preceding discussion, N1 also has Property II∗. This completes
the verification of Example 5.1.

The following theorem generalizes Theorem 3.2 of Section 3.

Theorem 5.2. Let N be a restriction class with Properties I∗, II∗. Let
r > 0. If T belongs to N ∩ B(H), then

T = N ⊕ C on H = Hn ⊕Hc,

where N is normal on Hn, C is completely non-normal on Hc, and Hc is
equal to

∨
{null(C∗−µI) : µ ∈ Dr}. If in addition T is completely non-normal

then T ∗ admits a dense set of cyclic vectors.

Proof. For the first part, imitate the proof of Theorem 3.2. The remaining
part can be derived from Theorem 3 of [8].

Corollary 5.3. If T in B(H) belongs to one of the restriction classes
N1, N2 (see Example 5.1), and if T is an m-multicyclic completely non-
normal operator , then T ∗ belongs to Bm(Dr) for some r > 0.

Proof. The desired conclusion follows from Example 5.1, Lemma 2.6, and
the preceding theorem.

There are some important and natural restriction classes to which the
preceding results are not applicable.

Example 5.4. The restriction classes

R1 ≡ {T : T is a p-isometry for some positive integer p},
R2 ≡ {T : T is alternatingly hyperexpansive}

do not have Property I∗.
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Verification. We first check that R1 does not have Property I∗. Consider
the operator

T ≡
∞⊕
n=1

(
αn c

0 αn

)
on H ≡

∞⊕
n=1

C2,

where c > 0 and {αn}n≥1 is a sequence in ∂D1. It is not difficult to see that
T is an invertible 3-isometry which is not normal. Thus R1 does not have
Property I∗.

To construct an invertible alternating hyperexpansion which is not nor-
mal, we proceed as follows. Let A(1/2, 1) be the open annulus {z ∈ C : 1/2 <
|z| < 1}. Let L2(A(1/2, 1)) denote the Lebesgue space of measurable func-
tions square-integrable with respect to the area measure restricted to
A(1/2, 1). Let L2

a(A(1/2, 1)) be the Bergman space

{f ∈ L2(A(1/2, 1)) : f is analytic on A(1/2, 1)}.

Then L2
a(A(1/2, 1)) is a Hilbert space. Let B denote the operator of multi-

plication by the coordinate function z on L2
a(A(1/2, 1)). Then B is an invert-

ible subnormal contraction which is not normal (see Section 8 of Chapter II
of [10]). Since the inverse of an invertible subnormal contraction is alter-
natingly hyperexpansive ([21, Proposition 4.1(i)]), it follows that B−1 is an
invertible alternating hyperexpansion which is not normal. This completes
the verification of Example 5.4.

Remark 5.5. Since the operator B in the preceding example is an in-
vertible hyponormal operator which is not normal, Property I∗ is violated
for the restriction class {T : T is hyponormal}.

At this point, we mention that as in the case of the AIR classes Ui (i =
1, 2) the Wold-type decomposition theorems for the restriction classes U4,N1

demand the existence of the corresponding Cauchy maps. This is one of
the reasons one should know more about the operators Cauchy dual to m-
isometries (m ≥ 3) and alternating hyperexpansions ([20], [6]).
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