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Abstract

We discuss operators of strong type B between a Banach lattice and a
Banach space and give necessary and sufficient conditions for this class
of operators to coincide with weakly compact operators.
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1. Introduction

A vector lattice E is an ordered vector space for which sup{x, y} exists for every pair
of vectors x, y in E. Let E be a vector lattice. For x, y ∈ E with x ≤ y in E, the set
[x, y] = {t ∈ E : x ≤ t ≤ y} is called an order interval. A subset of E is called order

bounded if it is contained in some order interval. A Banach lattice E is a Banach space
(E, || · ||) where E is also a vector lattice and its norm satisfies the following property:
For each x, y ∈ E with |x| ≤ |y|, we have ||x|| ≤ ||y||. If E is a Banach lattice, its
topological dual E′ equipped with the dual norm and order is also a Banach lattice. A
norm || · || on a Banach lattice E is called order continuous if for each net (xα) with
xα ↓ 0 in E, (xα) converges to zero for the norm || · ||, where (xα) ↓ 0 means that (xα)
is decreasing, its infimum exists and is equal to zero.

A Banach lattice E is said to be a KB-space whenever every increasing norm bounded
sequence in E+ = {x ∈ E : 0 ≤ x} is norm convergent. Each KB-space has order
continuous norm, but a Banach lattice with an order continuous norm is not necessarily
a KB-space. Indeed, the Banach lattice c0 has order continuous norm but it is not a KB-
space. However, if E is a Banach lattice, the topological dual is a KB-space if and only
if its norm is order continuous. A Banach lattice E is an abstract M-space (AM-space

in short) if for each x, y ∈ E with inf{x, y} = 0, we have ||x + y|| = max{||x||, ||y||}. A
Banach lattice E is an AL-space if its dual E′ is an AM-space.

We will use the term operator to mean a bounded linear mapping. The space of
bounded linear operators between Banach spaces E,F will be denoted by L(E,F ). All
vector lattices considered in this note are assumed to have separating order duals. We
refer the reader to [1] and [18] for further terminology and notation.
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2. Operators of strong type B

A subset B of a vector lattice E is called b-order bounded in E if it is order bounded
in the order bidual E∼∼. Clearly every order bounded subset of E is b-order bounded.
However, the converse does not hold in general. Indeed, the subset B = {en}, where (en)
is the sequence of reals with all terms are zero except the n’th which is one, is a b-order
bounded sequence in c0 which is not order bounded in c0. A vector lattice E is said to
have the b-property if each b-order bounded subset of E is order bounded in E. The
b-property and vector lattices with the b-property were defined and studied in [2,3,6,7],
and [8].

Let E be a Banach lattice and X a Banach space. An operator T : E → X is called a
b-weakly compact operator if T maps b-order bounded subsets of E into relatively weakly
compact subsets of X. b-weakly compact operators are studied in the papers [4,5,7,8] and
[10-15]. b-weakly compact operators also appear in the papers [16-17], and [18] under the
name operators of type B. The space of b-weakly compact operators between a Banach
lattice E and a Banach space X will be denoted by Wb(E,X). Let us recall that an
operator T : E → X is called order weakly compact if T (B) is relatively weakly compact
in X for each order bounded subset B of E. We refer the reader to [1] for an account of
order weakly compact operators. The space of order weakly compact operators between
a Banach lattice E and a Banach space X will be denoted by Wo(E,X). If W (E,X)
is the space of weakly compact operators between E and X, then we have the following
inclusions:

W (E,X) ⊆ Wb(E,X) ⊆ Wo(E,X)

between the classes of operators introduced above. Let us note that these inclusions may
well be proper [5,17].

The following class of operators was introduced in [19].

2.1. Definition. An operator : E → X from a Banach lattice E into a Banach space
X is called an operator of strong type B if T ′′, the second adjoint of T , maps the band
B(E), generated by E in E′′, into X.

The space of operators of strong type B will be denoted by Wsb(E,X). Since E′′ is
Dedekind complete, every band in E′′ is a projection band and in particular, there is a
positive projection from E′′ onto B(E). Thus, operators of strong type B extend to E′′.
One of the open problems put forward in [19] was the existence of a b-weakly compact
operator which is not of strong type B. This question was settled in [16] and it was shown
that there does exist a b-weakly compact operator which is not of strong type B. Thus
we have:

W (E,X) ⊆ Wsb(E,X) ⊆ Wb(E,X) ⊆ Wo(E,X),

where the inclusions may be proper. Let us remark that operators of strong type B are
of substance only when they do not coincide with weakly compact or b-weakly compact
operators. For example, when E has order continuous norm or is an AM-space then we
have Wsb(E,X) = Wb(E,X). On the other hand, when E is a KB-space, then E = B(E)
and each operator T : E → X is an operator of strong type B and we have:

Wsb(E,X) = Wb(E,X) = Wo(E,X) = L(E,X).

Similarly, when E′ has order continuous norm (i.e. l1 does not embed in E) and c0 does
not embed in X, then the Grothendieck-Ghoussoub-Johnson Theorem (cf. [1, Theorem
17.6]) asserts that each operator T : E → X is weakly compact and again we have
W (E,X) = Wsb(E,X) = Wb(E,X) = Wo(E,X) = L(E,X). The space of operators of
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strong type B is a norm closed subspace of L(E,X) and is an order ideal whenever F is
a Banach lattice.

Let E,F be Banach lattices and T : E → F a positive operator. Let x ∈ B(E) be
an arbitrary positive vector. Then there exists a net {xα} of positive elements in the
order ideal I(E) generated by E in E′′ such that xα ↑ x in E′′, i.e. x = supα xα (cf. [1,
Theorem 3.4]). Since adjoint operators are order continuous (cf. [1, Theorem 5.8]), we
have T ′′xα ↑ T ′′x in F ′′. As T is a positive operator, T ′′ maps the order ideal generated
by E in E′′ into the order ideal generated by F in F ′′. It follows that T ′′x ∈ B(F ). In
particular, if F is a KB-space, it follows that each positive and therefore each regular
(difference of two positive operators) operator is of strong type B. It also follows from this
observation that if an operator T : E → X factors over a KB-space as R ◦ S where the
first factor S is order bounded, then T is of strong type B. As a result of this observation
and [1, Theorem 14.15], we see that if T : E → X is an operator from a Banach lattice E

into a Banach space X which does not contain a copy of c0, then T admits a factorization
through a KB-space F as T = S ◦Q where Q is a lattice homomorphism. Since a lattice
homomorphism is a positive operator, it follows that T is of strong type B.

Utilizing [18, Theorem 3.5.8], we see that if T : E → X is an operator for which T ′′ is
order weakly compact, then T factors over a KB-space F as T = S ◦Q, where Q : E → F

is an interval preserving lattice homomorphism and S ∈ L(F,X). Therefore if T ′′ is
order weakly compact, then T is of strong type B.

Finally, let E,F be Banach lattices and X a Banach space. Let T : E → F, S : F → X

be two operators. If F has order continuous norm and S is b-weakly compact, then S

factors over a KB-space [8]. Consequently, the operator S ◦ T is of strong type B.

We close this section with an intrinsic characterization of operators of strong type

B. Let E be a Banach lattice and I(E) the closed order ideal in E′′ generated by E.
According to the main Theorem in [17], T is of strong type B if and only if the restriction

of T ′′ to I(E) does not preserve c0. This enables us to give the following:

2.2. Proposition. The operator T : E → X is of strong type B if and only if (T ′′xn) is

convergent for each increasing sequence (xn) in I(E) with ||xn|| ≤ 1 for all n.

Proof. =⇒ If T is of strong type B, then T ′′|
I(E) does not preserve a copy of c0. Hence,

by [18, Theorem 3.4.11], (Txn) is convergent for each increasing sequence in B
I(E), where

B
I(E) is the closed unit ball of I(E).

⇐= If T ′′(xn) is convergent for each increasing sequence in B
I(E), then T ′′|

I(E) does

not preserve a subspace isomorphic to c0 and consequently T is of strong type B. �

3. When is Wsb(E,X) = W (E,X) ?

The following result was claimed for b-weakly compact operators in [11]. In one part
of the proof the authors were misguided by an erroneous part of [5, Proposition 2].
However, their claim is still true for operators of strong type B. We now state and prove
this result. The proof follows the same lines as in [11]. In order to identify when we have
W (E,X) = Wsb(E,X), we need a lemma which is a combination of theorems 116.1 and
116.3 in [20].

3.1. Lemma. Suppose E′ does not have order continuous norm. Then there exist a

disjoint sequence (un) of positive elements in E with ||un|| ≤ 1 for all n, 0 ≤ φ ∈ E′ and

ǫ > 0 satisfying φ(un) > ǫ for all n. Moreover, the components φn of φ in the carriers

Cun
form an order bounded disjoint sequence in E′

+ such that φn(un) = φ(un) for all n

and φn(um) = 0 if n 6= m. �
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3.2. Proposition. Let E be a Banach lattice and X a Banach space. The following are

equivalent:

1) W (E,X) = Wsb(E,X).
2) One of the following hold:

a) E′ has order continuous norm,

b) X is reflexive.

Proof. 2a =⇒ 1 Let T be an operator of strong type B and let B(E) be the band generated
by E in E′′. Then T ′′B(E) ⊆ X. Since E′ has order continuous norm E′′ = B(E) and
T ′′(E′′) ⊆ X. Thus T is weakly compact.

2b =⇒ 1 In this case each operator T : E → X is weakly compact.

1 =⇒ 2 Suppose E′ is not a KB-space and X is not reflexive. Then we construct an
operator of strong type B which is not weakly compact. Since E′ is not a KB-space, it
follows from the preceding lemma that there exist a disjoint sequence (un) in E+ with
||un|| ≤ 1 for all n and some φ ∈ E′

+, ǫ > 0 such that φ(un) > ǫ for all n. The components
φn of φ in the carriers Cun

of un form an order bounded disjoint sequence in E′

+ such
that φ(un) = φn(un) and φm(un) = 0 if n 6= m. Note that we have 0 ≤ φn ≤ φ for all n.
Let us define T1 : E → l1 by

T1(x) =

(

φn(x)

φ(un)

)

for each x ∈ E. Since
∞
∑

n=1

∣

∣

∣

∣

φn(x)

φ(un)

∣

∣

∣

∣

≤
1

ǫ

∞
∑

n=1

φn(|x|) ≤
1

ǫ
φ(|x|)

the operator T1 is well-defined, positive and as l1 is a KB-space, it is of strong type B.

On the other hand, since X is not reflexive, the closed unit ball BX of X is not weakly
compact. Hence we can find a sequence (yn) in BX without any weakly convergent
subsequences. Let us define the operator T2 : l1 → X by T2(αn) = Σαnyn. Since
Σ||αnyn|| ≤ Σ|αn|, T2 is well-defined. We consider the operator T = T2◦T1 : E → l1 → X

defined by

T (x) =
∑

n

φn(x)

φ(un)
yn

for each x ∈ E. As T factors over the KB-space l1, and the first factor T1 is positive,
T is of strong type B. However as T (un) = yn and since (yn) is chosen not to have any
weakly convergent subsequences, T is not weakly compact. �

The preceding theorem cannot be extended to b-weakly compact operators. There is
a Banach lattice E with E′ a KB-space and a non-weakly compact operator T : E → c0
which is b-weakly compact [4].

We now give some consequences of the preceding result.

3.3. Corollary. Let E,F be Banach lattices. The following are equivalent:

1) Each strong type B operator T : E → F is weakly compact.

2) Each positive strong type B operator T : E → F is weakly compact.

3) One of the following holds:

a) E′ is a KB-space.

b) F is reflexive. �

The next result yields a characterization of the order continuity of the dual norm.
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3.4. Corollary. The following are equivalent:

1) Each strong type B operator T on E is weakly compact.

2) Each positive strong type B operator on E is weakly compact.

3) E′ is a KB-space. �

3.5. Corollary. Let E be an infinite dimensional AL-space. Then the following are

equivalent:

1) Each strong type B operator T : E → F is weakly compact.

2) F is reflexive.

The proposition above enables us to recapture a recent result proved in [15].

3.6. Corollary. Let X be a non-reflexive Banach lattice. Then the following are equiv-

alent:

1) Wo(E,X) = W (E,X).
2) One of the following holds:

a) E has the positive Grothendieck property.

b) E′ is a KB-space and c0 is not embeddable in X.

Proof. 2a =⇒ 1 This is [18, Theorem 5.3.13].

2b =⇒ 1 This follows from [1, Theorem 5.27].

1 =⇒ 2 We first show that E′ has order continuous norm. If this is not the case then
there exists an operator T : E → X which is of strong type B but is not weakly compact.
As T is order weakly compact, this is a contradiction to (1).

Assume now that c0 is embeddable in X and let S : c0 → X be this embedding. We
have to show that for each (x′

n) in E′

+ which is σ(E′, E) convergent to 0 in E′, (x′

n) is
σ(E′, E′′) convergent to zero. Let (x′

n) be such a sequence and define T : E → c0 by
T (x) = (x′

n(x)) for each x ∈ E. As c0 has order continuous norm and T is positive,
T is order weakly compact. Hence the operator S ◦ T : E → c0 → X is also order
weakly compact and consequently, weakly compact. As S is an embedding, it follows
that T : E → c0 is also weakly compact. Therefore its adjoint T ′ : l1 → E′ is weakly
compact. As T ′(αn) = Σnαnx

′

n for each (αn) ∈ l1, the subset (x′

n) in T ′(Bl1) is relatively
weakly compact, where Bl1 is the closed unit ball of l1. Thus x′

n → 0 in σ(E′, E′′). �

The proof of the following is similar.

3.7. Corollary. Let F be a non-reflexive Banach lattice. Then the following are equiv-

alent:

1) Wo(E,F ) = W (E,F ).
2) One of the following holds:

a) E has the positive Grothendieck property.

b) E′ and F are KB-spaces. �

3.8. Corollary. Consider the scheme of operators

E
S1−−→ F

S2−−→ G
S3−−→ H

between Banach lattices where E′ has order continuous norm. If S1 is dominated by an

operator of strong type B, S2 is compact, and S3 is dominated by an order weakly compact

operator, then S3 ◦ S2 ◦ S1 is a compact operator.

Proof. By the proposition S1 is weakly compact, therefore S2 ◦S1 factors over a reflexive
Banach lattice X as T1 ◦T2, where T2 : X → G is positive and is dominated by a positive
compact operator. By [1, Theorem 19.14], S3 ◦ T2 is a Dunford-Pettis operator. Then
S3 ◦ S2 ◦ S1 = (S3 ◦ T2) ◦ T1 is a compact operator. �
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The square of an operator of strong type B need not be weakly compact. Consider
for example the identity operator on L1[0, 1].

To this end we have the following:

3.9. Corollary. The following are equivalent:

1) Let 0 ≤ S, T : E → E, 0 ≤ S ≤ T, T ∈ Wsb(E,E), then S is weakly compact.

2) Let 0 ≤ T : E → E be of strong type B, then T is weakly compact.

3) If 0 ≤ T : E → E is of strong type B, then T 2 is weakly compact.

4) E′ is a KB-space.

Proof. 3 =⇒ 4 Suppose E′ is not a KB-space. Then we construct a positive operator
of strong type B, say T , such that T 2 is not weakly compact. There exist a disjoint
sequence (un) in E+ with ||un|| ≤ 1 and φ ∈ E′

+ with ǫ < φ(un) for some ǫ and all n.
The components φn of φ in the carriers Cun

of un form a disjoint sequence in E′

+ such
that φn(un) = φ(un) for all n and φn(un) = 0 if n 6= m. Clearly, (un) does not have
any weakly convergent subsequences as φ(un) > ǫ for all n. Let us define the operator T

on E by T (x) =
∑

n

φn(x)
φ(un)

un for all x ∈ E. Then the operator T admits a factorization

through l1 and is therefore of strong type B. However since T (un) = un, T
2 is not weakly

compact. �

3.10. Definition. Let E,F be Banach lattices. An operator T : E → F is called
semi-compact if for each ǫ > 0, there exists u ∈ F+ such that T (BE) ⊆ [−u, u] + ǫBF .

3.11. Corollary. Suppose E′ is a KB-space and that E has the Dunford-Pettis property.

Then each positive operator of strong type B is semi-compact.

Proof. Let T : E → F be of strong type B. Then T is weakly compact. As E has the
Dunford-Pettis property, T is a Dunford-Pettis operator. Semi-compactness of T follows
from the order continuity of the norm in E′ by [14, Theorem 2.2]. �

The following was stated as Theorem 2.3 in [13]. We offer a generalization. It is a
generalization since operators of strong type B are b-weakly compact.

3.12. Proposition. Let E,F be Banach lattices. If each positive strong type B operator

is compact, then one of the following is true:

1) E′ is a KB-space.

2) F is finite dimensional.

Proof. Suppose that the statements are not true. We construct a positive strong type B
operator which is not compact.

As the norm of E′ is not order continuous, E contains a sublattice which is isomorphic
to l1 and there exists a positive projection P : E → l1 by [1, Theorem 14.21].

On the other hand, since F is infinite dimensional, there exists a disjoint norm bounded
sequence (yn) in F+ which does not converge to zero in norm. Let us consider the operator
S : l1 → F defined by S(λn) =

∑

∞

i=1 λnyn for each (λn) in l1. Since S(en) = yn for each

n, S is not compact. Consider the operator T = S ◦ P : E → l1 → F . Since T factors
over a KB-space where the first factor is positive, it is of strong type B. However, T is
not compact. Because if it were, then S = T ◦ i would also be compact, where i is the
inclusion operator i : l1 → E, which is obviously not true. �
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