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On operators T such that f(T) is hypercyclic
by

GERD HERZOG ad CHRISTOPH SCHMOEGER (Karlsruhe)

Abstract. A bounded linear operator 4 on a complex, separable, infinite-dimensional
Banach space X is called hypercyclic if there is a vector = € X such that {x, Az, A%z, ...}
is dense in X. Let T be a bounded linear operator on X such that 7" is surjective and its
generalized kernel |, N(T™) is dense in X . In the present paper we show that for some
admissible functions f without zeros in the spectrum of T the operator f(T') is hypercyclic
(Theorem 1}. If f has zeros in the spectrum of T and if X is a Hilbert space then f(T) is
the limit of ypercyclic operators (Theorem 2).

I. Introduction. Throughout this paper X denotes a complex, sep-
arable, infinite-dimensional Banach space and £(X) the Banach algebra
of all bounded linear operators on X. T € L(X) is called hypercyclic if
{&, Tz, T?2,...} is dense in X for some 2 € X. We denote by HC(X) the
set of all hypercyclic operators in L(X). If T € HC(X), then the set of all
z € X with {z,Tz,T?z,...} dense in X is a dense Gg-set (see [8]). It is still
an open problem whether there are hypercyclic operators in every separable
infinite-dimensional Banach space {if dim X < oo, HC(X) = 0; see [20]).
Hypercyclic operators were studied by several authors (cf., e.g., [1]-[5], [8],
[9]= [12]”[14]7 [16]: [20]a E22]).

For X =172 (p € [I,00)) or X = ¢, consider the shift operator 9,
defined by S((x,)3%,) = (#n41)2%;. By [20], u§ ¢ HC(X) for p € C,
|| > 1. 'We shall state a theorem from which it follows that, for example,
e, cos(9) &€ HC(X). We first need some definitions:

Let T & C£(X). The kernel of T is denoted by N(T) and its general-
ized kernel by K (T) = Jie, N(T*). We denote by H(T) the set of all
complex-valued functions which aré analytic in a neighborhood of the spec-
trum. o (1) of 7. We write o(T") for the resolvent set C\ o(T'). For f € H(T),
the operator f(T') is defined by the well known analytic calculus {see [17],
[21]). We write M~ for the norm-closure of M, where M is a subset of X
(or L(X)).
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If T € £{X) is surjective and K(T)~ = X, then we shall see that o(T)
1s connected (Proposition 3). The main results of this paper read:

THEOREM 1. Suppose that T € L£(X) is surjective, K- =X fe
H(T) is not constant, O ¢ f(o(T)) and |f(0)] = 1. Then f(T) e HC(X).

THEOREM 2. Let X be a Hilbert space. Suppose that T € L(X) 45 sur-
jective, K(T)™ = X, f € H(T) is not constant and [F{A0)] = 1 for some
Ao € o(T). Then f(T) € HO(X)™.

If T satisfies the conditions of Theorem 1, it follows that e is hypercyclic.
The shift operator Son X =1I* (p € [1, 00)) or X = ¢ is surjective, and we
have K (S8)~ == X (the finite sequences are dense in X). Since o(8) = {) &
C: Al €1}, cos(8) € HO(X).

The proofs of Theorems 1 and 2 will be given in Section ITI. For these
proofs, we need some preliminary results which we collect in Section II. An
operator 7' in L{X) is called supercyclic if the set of scalar multiples of
{z,T%,T?z,...} is dense in X for some z € X.

In Section IV we shall prove the following

THEOREM 3. Suppose that X is a Hilbers space, T € L(X) is surjective,
K(T)™ = X and f € H(T) is not constant. Then F(T) 4s in the norm-
closure of the set of all supercyclic operators in L{X)

A result closely related to Theorem 3 can be found in 9, Theorerm 4.11]:

Suppose that X is a Banach space and T ¢ L(X) is a surjective backward
shift, t.e., K(T)~ = X and dimN(T) = 1. If f € H(T) is not constant,
then f(T') has a dense invariant supercyclic manifold (hence is supercyclic).

There are operators satisfying the hypotheses of Theorem 3 which are
not powers of a backward shift:

Exampre. Take X = {f € C[0,1] : f(0) = 0} with the maxirmum norm,
fix A € (0,1} and define T € £(X) by (Tf)(t) = F(At) (t e [0,1)).

IL. Preliminary results. Our first result will be needed in the proof of
Theorem 1.

PROPOSITION 1. If A € L(X) is invertible and if the sets
D:{meX:AkmﬁO(kﬁoo)}
and
D={zeX:47% =0 (k- oo)}
are both dense subsets of X, then A € HC(X).

This is a special case of [9, Corollary 1.5] (see also [11, Proposition]).
For a related result see [5, Proposition 2.2].
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For the proofs in Section IIT we need some concepts from the theory of
semi-Fredholm operators, The reader is referred to [17] for the definitions
and properties of Fredholm operators, semi-Fredholm operators and the? in-
dex ind(A) of a semi-Fredholm operator A € £{X). The following notations
will be important.

For T € L(X) we define

o (T) = {\ € C: M — T is Fredholm},

2u-r(T) = {A € C: Al - T is semi-Fredholm},
ew(T) = {A € gu(T) : ind(Al — T) = 0}

and
ew(T) =C\pow(T) (the Weyl spectrum of T).

Note that pr(T), ge-r(T) and pow(T) are open subsets of C.
PROPOSITION 2. Suppose that T € L(X) and (oo, T™(X) = {0}. Then:

(a) T(Y) # Y for each closed T-invariant subspace YV # {0}.
{b) N(AI — T) = {0} for all X0.
(¢) o(T) is connected.
() o(T) = ow(T). ' o .
(e) If T s semi-Fredholm, N(T) = {0} and if (an)px; @5 a sequence in
0s-7(T) \ {0} with limnoo n =0, then
o0
() (end = T)(X) = {0}
n=1
Proof. (a) fT(Y) =Y, then Y = T™(V) for each n € N. Thus ¥ &
Moo, T™(X) = {0}, hence ¥ = {0}.00
"Th) Clear, since N(A — T) € (%2, TH(X) for A # 0. N
(¢) Suppose that o(T) is not connected. Therefore o(T) = ¢ U 7 wit
o, T closed, 0,7 % § and o N r = 0. We choose a function f € H(T') such
tl;at f=1onoand f=0on7 Put P = f(T) By (17, Satz 100.1],
we have P2 = P, P(X) and N(P) are closed, T-invariant subspaces .f;md
o(T|P(X)) = o, o(T|N(P)) = 7. By (a), this gives 0 € o7, a contradiction,
since & N7 = (.
" (d) We first show that 0 € ow(T). To this end assume that 0 € ow (1.
Denote by C the connected component of gr(T) w1lth 0 € C. .Now 17, Sa,t:,z
104.6a)] and (b) show that C < o(7"), hence T' is 1pvert1ble in £(X). This

contradicts 0 € o(T). Therefore we have

) T oeewm. o
The inclusion Q(Tj C ow(T) is clear. Let A € ow(T). By‘ (1), A# 0. Tli(_ﬂ
definition of pw (T} and (h) show that ind(AL—T) = — codim(AL ~-THX) =
0, thus A & o(T). g S
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(e) This is a special case of [18, Proposition 1.4]. For the convenience of
the reader we shall give a proof. It is related to that employed in [19, Proposi-
tion 2.7]. Since T is semi-Fredholm, each 7" (n € N) is semi-Fredholm, thus
T™(X) is closed for each n € N. Moreover, T~ : T(X) — X is bounded.
Let z € (12, (2tnd — T)H(X). Then there exists a sequence (z,) in X with,

=T ~opD)z, (ne N),
hence T'z,, = anz, + z, therefore
Ty = T“l(Tmn) = T"l(anmn +z).
It follows that
lznll < ATl + fonl flanll)
80

' cadN/E

ool < T qa i)

for n sufficiently large. This shows that (zn) is bounded. It follows from
T2y = antp + x that Tz, — 2 (0 — oo). Since T(X) is closed, we get z €
T(X), hence (x,) C T(X). Since T2(X) is closed and (Tz,) C T?(X), we
derive = € T%(X). The process continues to givew € ()2, T™(X) = {0}. w

Let X™* denote the conjugate space of the Banach space X. The adjoint
of a linear operator T in £(X) is denoted by T,

PROPOSITION 3. Suppose that T & L(X) is surjective and K(T')‘ =X.
Then:

() N(T* — AI*) = {0} for all A5 0,
(b) o(T) = ow(T) is connected.
{¢) If (an) is a sequence in pg-p(T) \ {0} with limy, o cu, = 0, then

X = [g Nl - 1))

(where [M] denotes the linear span of M C X).
Proof. It is easy to check that

1 oQ
X =K@ ="(@ree),
n==1
thus (772, (T*)*(X*) = {0}. Now (a) follows from Proposition 2(b). Since

o(T) = o(T™) and ow(T) = ow(T™), (b) follows from Proposition 2(c),(d).
(c) is true since (7% | (a, I* T*)(X™) = {0} (by Proposition 2(e)), thus

X = L( ﬁ (anl” = T*)(X")) = [ @ N(an] — T)] i

n=1

Operators with f(T) hypercyeclic 213

Our final result in this section is of crucial importance for the proofs of
Theorems 2 and 3.

PROPOSITION 4. Suppose that T ¢ LX) is surjective and K(T)~ = X .
If f € H(T) is not constant, then.

(a) ind(Al —~ f(T)) 2 0 for all A€ os-r(f(T)),

(b) ow (F(T)} = f(ow{T)),

() a(f(T)) = aw(f(T)) is connected.

Proof (a) Since N(T* — AI*) = {0} for all A # 0 (Proposition 3(a)),
I™ has the single-valued extension property, i.e., for any analytic function
w: D — X*, D C C open, with (\I* — T )p(A) = 0, it follows that
o(A) = 0. By [6, Theorem 1.5], #(T)* = f {T™) has the single-valued exten-

sion property. Therefore ind(Al — f(7)) > 0 for all A & es-r(f(T)), by [7,
Corollary 12].

(b) Applying (a), we get ind(A7-T) > 0 for all A € os-7(1"). Thus
Theorem 3.6 in [23] shows that f(ow(T)) = ow (f(T)).

(c) follows from (b), Proposition 3(b) and the continuity of f. m

Remark. In general, a spectral mapping theorem for the Weyl spectrum
does not hold (see [10, p. 23] or [23, Example 3.3]). Ifind(AI—T) > 0 for all
A € or(T) or ind{AI -T) < 0 for all A € gp(T), then How (D) = ow (£(T))
for each f e H(T) (see 28, Theorem 3.6]).

ITI. The proofs of Theorems 1 and 2

Proof of Theorem 1. Since f is not constant and | (0} = 1, there
are sequences (An )52 and (un)32, in g5-r(T) \ {0} such that

dm A, =0, [f(An)] <1 forallneN,

(2) nli»frrgo b =0, |f{pn)|>1 forallneN and
AiFE Xy, piEpy forigy.

Proposition 3(c) shows that o

3  X=K(T)" = [QN(,\NI- T)]._ = [ chunz—zﬂ)]". .

By hypothesis, 0 ¢ f(o(T)) = o(f(T)), thus F(T) is invertible in £(X). Put
D={zeX:(f{T)f'z -0}, D={zeX: (f(I))*z—0}.
Let z € N(ApI — T). Then Tz = Ay, hence . -
(F(T)ex = (f(M))fo foreach ke N .
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(see [21, Theorem 10.33]). Since |f(An)| < 1, we have (f(T))Fz — 0 (kb —
o0}, hence ¢ € D, thus N{A,I —T) C D. (3) now shows that

X = [DN(ARI—T)]”=D-.

In the same way we derive
Jim (F(T)) oz = Jim (Flun)) Pz =0 forze N(p,d-T)

and X = (15)‘ Now use Proposition 1 to complete the proof.

For the proof of Theorem 2 we need some further notations: the set of all
isolated points in o(7) which are contained in gp(T) is denoted by oo (T).
8D denotes the boundary of the unit dise I

In [12], D. A. Herrero proved the following description of HO{X )™, X a
separable, infinite-dimensional complex Hilbert space:

4) Ae HC(X)™ if and only if
(4) (X)
(I) ow(A)U 0D is connected,

(IT} 6o{A) =0 and
(I} ind(M ~ A) > 0 for all X € g5p(A).

Proof of Theorem 2. By Proposition 4(a) and (4), it only remaing
to show that ow(f(1)) U OD is connected and o(f(T")) = @. We have
|£(A0)| = 1 for some Ag € o(T), hence f{Xg) € 8D and f(Xg) = f(c(1)) =
o(f(T)) = ow(f(T)) (Proposition 4(b)), thus f(Ao) € ew(f(T))NID. Since
ow(f(T)) and 8D are connected, ow(f(7")) U 8D is connected.

Suppose that u € oo (f(T)) for some p € C, thus p is an isolated point
in o(f(T)). But o(f(T")) is connected, hence o(f(T)) = {u}. Since u €
or(f(T)), we have gr(f(T)) = C. This gives dim X < oo [17, Satz 104.9), a
contradiction. m

IV, Proof of Theorem 3 and final remarks

Proof of Thecrem 3. Proposition 4 shows that

(5) o(f(T))UB(rD) = ow (f(T)) UB{FD) is connected
{for some r > 0) and

(6) ind(A — F(T)) =0 for all A € ge-p(F(T).

As in the proof of Theorem 2 we have

™ oo (£(T)) = 0.

The combination of (5)—(7) and [12, Theorem 3.3] completes the proof. w

We close the paper with some remarks:
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1. As a consequence of Theorem 1 we get the following

PROPOSITION 5. Let T' satisfy the hypotheses of Theorem 1. Then there is
zy € X such thai the solution CF : y = y(t), ¢t > 0, of the linear initial value
problem y' = Ty, y(0) = mq, has X as the set of w-limit points 2(CT).

The proof follows from Theorem 1 and the fact that €T, t € R, is a
fundamental system for y' = Ty,

2. It is not known if there are hypercyclic oprators on every infinite-
dimensional separable Banach space. It is shown in [15] that supercyclic
operators oxist on every complex separable Banach space X with dim X < 1
or dim X = 0.

3. Most questions concerning hypercydlic operators can also be studied in
separable locally convex spaces. In the Fréchet space of all complex sequences
hypercyclic operators can be characterized by algebraic properties of their
adjoints (see [16]).
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On quasi-multipliers
by

ZI¥YA ARGUN (Ankeara) and K. ROWLANDS (Aberystwyth)

Abstract. A quasi-multipliers is a generalization of the notion of a left (zight, double}
muléiplier. The first systematic account of the general theory of quasi-multipliers on a
Banach algebra with a bounded approximate identity was given in a paper by McKennon
in 1977. Further developments have been made in more recent papers by Vasudevan and
Gloel, Kassern and Rowlands, and Lin. In this paper we consider the guasi-multipliers
of algebras not hitherto considered in the literature. In particular, we study the quasi-
multipliers of A*-algebras, of the algebra of compact operators on a Banach space, and
of the Padersen ideal of a C™-algebra. We also consider the strict topology on the quasi-
multiplier space QM (A) of a Banach algebra A with a hounded approximate identity. We
prove that, it Mj(A) (resp. My(A)) denotes the algebra of left (right) multipliers on A, then
M{A) + Mn(A) is strictly dense in QM (A), thereby genetalizing a theorem due to Lin.

1. Introduction. A quasi-multiplier is a generalization of the notion of
a left (right, double) multiplier, and was first introduced by Akemann and
Pedersen in ([1], §4). The first systematic account of the general theory of
quasi-multipliers on a Banach algebra with a bounded approximate iden-
tity was given in a paper by McKennon [14] in 1977. Further developments
have heen made as a result of more recent contributions by Vasudevan and
Goel [21], 22], Kassem and Rowlands [11], and Lin [13]. In this paper we
study the quasi-multipliers of algebras not hitherto considered in the liter-
ature.

‘We begin by outlining the necessary background results on quasi-multi-
pliers nnd then proceed to consider the quasi-multipliers QM(A4) of an A*-
algehra, A; in particular, we improve a result due to Vasudevan and Goel
([21], Theorem 3.4) on extending a quasi-multiplier from an A*-algebra to
its auxiliary norm completion. The result enables us to define an “auxiliary”
norm on QM (A) and, in the special case when QM (A) is a Banach algebra,
we prove that under certain conditions @M (A} is an A*-algebra. In the
literature topologies other than the norm topology have been defined on the
quasi-multiplier space and properties established for the resulting 1oca,lly‘
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