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On Optimal Analysis/Synthesis Filters 
for Coding Gain Maximization 

Igor Djokovic and P. P. Vaidyanathan 

Abstract-We consider the use of pre and postfilters in conjunction with 
M-channel, uniform-hand paraunitary (orthonormal) filter banks. We 
show that given any orthonormal filter bank, the pre and postfilters that 
maximize the coding gain are determined entirely by the power spectrum 
of the input process regardless of the details of the orthainormal filter 
bank (which could be FIR, IIR, or even the ideal brickwall filter bank). 
The optimized coding gain, however, depends on the prefilter as well as 
the sandwiched orthonormal filter bank. The coding gain improvement 
due to pre and postfiltering is often significant as we demonstrate with 
numerical examples and comparisons. The validity of our results depends 
strongly on the orthonormality property of the filter bank in between the 
pre and postfilters. In the nonorthonormal case, most of these results are 
not true, as is demonstrated. 

I. INTRODUCTION 
A typical filter bank (FB) used for subband coding is shown in 

Fig. 1. The input signal z (n )  (assumed a discrete time wide sense 
stationary (WSS) random process) is passed through the analysis 
filters HI,  ( z ) .  Subband signals %k (n) are quantized, and then trans- 
mitted or stored. The performance of a subband coding system is 
often expressed in terms of its coding gain, defined bellow. 

Dejinition 1.1: Let the noise variance of a PCM coder be &c.,I, 
and the averaged noise variance of a subband coding system be o:BC. 
Under the constraint of equal total number of bits per sample, the 
coding gain is defined as the ratio G = m ; C . , I / ~ ; B C .  

Several aspects of the coding gain optimization and its connection 
to the so-called energy compaction problem have been addressed 
by a number of authors in the recent literature [1]--[5]. In this 
correspondence, we prove a very specific result that pertains to 
the system shown in Fig. 2. This is a special case of Fig. 1, with 
H k ( z )  = P ( ~ ) P I , ( ~ )  and F k ( z )  = Q k ( z ) / P ( z ) .  Given that 
the "sandwiched filter bank" system { Pk (2). 621, ( z  j }  is; paraunitary 
(PU) or orthonormal [6], we show that the best prefilter P ( z )  that 
maximizes the coding gain is such that IP(eJ")i = [1/S(eJ"j] ' ! '  
(the phase of P ( z )  does not matter). Thus, the solution is independent 
of the details of the sandwiched PU system { P k  ( 2 ) .  Q k  ( z ) } ,  though 
the coding itself depends on both P( z) and { F'k ( 2 ) .  Q k  (z)}. While 
this solution resembles the half-whitening result known to lossy data 
compression experts [7] ,  it should not be regarded as an obvious 
application of that result. In fact, the result does not extend to the case 
where the sandwiched filter bank (Pk ( z )  Q k  (2)) is not orthonormal, 
as we shall show in Section 11. 

11. CODING GAIN OPTIMIZATION 
In order to derive an expression for the coding gain of a biorthog- 

onal FB, the noise sources produced by the subband quantizers are 
assumed white and uncorrelated. This is a reasonable assumption as 
long as the subband signals are not too coarsely quantized. 
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Fig. 1. Uniform filter bank used for subband coding 

A. Coding Gain of a Biorthogonal Filter Bank 

The variances of the subband signals z ~ , ( n )  are 
Consider a uniform perfect reconstruction (PR) FB as in Fig. 1. 

2 1 "  
U Z L  = - 2ir 1" S(e3w) lHk(e3") \2dw,  

k = o , l . . .  .11/f-l (2.1) 

where S(e'" ) is the power spectral density (PSD) function of the 
input random process. The noise PSD function at the output of the 
kth quantizer (see [7]) is 

S q b 4 k ( e J W )  = E [ % ( " )  Y;(.n)l 
= C 2 9 k  .E, 

2 
(2.2) __ 

- i T q h  

where b k  is the number of bits allocated to the kth channel, C is 
some constant that depends on the statistics of .kin), and s k i n )  is 
the noise sequence. After some WSS random process passes through 
an expander, it becomes a cyclo-WSS process (see [SI). The period 
of cyclostationarity is 31. Then we can average the variance over the 
period to get ai,,, ,k = (mZk/M)/lfk('n)1/2. The subband noises are 
uncorrelated and they remain such after passing through the synthesis 
filters. Then the output noise variance is criBc = CE?' mzut ,  k .  

Using (2.2) and (2.1), we get 

The average bit rate is b = l/.M CE;' b k .  If we quantized the input 
signal to this number of bits, without any subband decomposition, i.e., 
just PCM coding, the noise variance would be [7] 

So the coding gain, defined as the ratio of the above variances, is 

1 I "  J. S(e3") jHk(eJ")12dru  

One of the optimization steps is an optimal bit allocation. We can 
make this step now and minimize the denominator. The optimal bit 
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PU filter bank 

Fig. 2. Filter bank with pre and postfilters 

allocation (see [2]) turns the sum in the denominator into a product. 
So we have the following expression for the coding gain under 
optimal bit allocation. 

This coding gain formula is valid as long as the subband noises are 
white and uncorrelated. 

B. Prejlters for PU Filter Banks 
Consider the class of prefiltered paraunitary (PPU) filter banks ob- 

tained by putting pre and postfilters around a PU FB { Pk (2). Q k  (.)} 
(see Fig. 2). The aim of this subsection is to find a PPU FB that 
maximizes coding gain. 

First, notice that maximization of the coding gain is the same as 
minimization of the denominator of (2.5). From the Cauchy-Schwarz 
inequality it follows that 

When { p k ( z ) ,  & k ( z ) }  is an orthonormal filter bank, then 
&k(eJw) = P;c*(e3") for perfect reconstruction [6]. Therefore, the 
condition (2.8) for equality reduces to 

and is independent of I C .  The coding gain (2.5) becomes 
. n* 

(2.10) 

Summarizing, we have proved the following theorem. 
Theorem 2.1: Consider the class of all PR FB's that can be 

obtained from the structure in Fig. 2, where { P k ( z ) .  Q k ( z ) }  is a 
PU FB. Then, the prefilter that maximizes coding gain will satisfy 

Summarizing our main point, if we wish to find an optimal filter 
bank of the form in Fig. 2, where { Pk (2). Q k  ( z ) }  is orthonormal, we 
construct P ( e J w )  according to (2.9, and construct {Pk(z). Qlc(z)}  
to be the orthonormal filter bank that maximizes the coding gain 
for an input with power spectrum v'W. Then the coding gain 
with the optimal prefilter is given by (2.10). The orthonormal filter 
bank that maximizes this coding gain is the one that has maximum 
coding gain for an input with the power spectrum d m .  There 
are techniques to identify such a system based on the work by Unser 
[ 3 ] ;  also, see [9]. We shall not go into details of this here. From the 
above, we see that the optimization of P(  z )  has been decoupled from 
that of { P k  ( z ) .  Q k  (2)). This establishes the following corollary. 

Corollary 2.1: Putting pre and postfilters as given by (2.9) around 
any PU FB {Pk(z ) ,  Q k ( z ) }  will not decrease its coding gain. It 
will strictly increase the coding gain if the input spectrum is not 
piecewise constant. 

An insightful way to understand the above corollary is as follows. 
If we put A(?)") = &(eJu ' )  and H k ( e J " )  = Pk(e3")  into (2.5), 
and use the fact that PU filters have unit energy, then after optimal bit 
allocation we get the coding gain of { P k ( z ) ,  & k ( z ) }  with input x(7i )  

(2.9). 0 

with equality achieved if and only if 

l ~ k ( e ~ ~ ) l J m  = AklFk(eJw)l for o 5 k 5 M - 1. 

(2.7) 

for arbitrary choice of Xk # 0 (e.g., Xk = 1 V k ) .  Notice that the 
PSD function is S ( e J w )  2 0, so that its square root is well defined. 

Since H k ( z )  = P k ( z ) P ( z )  and Fk(z) = & k ( z ) / P ( z ) ,  we have 
Hk ( z )  Fk ( z )  = P k  ( z )  ( z ) .  So the right-hand side in (2.6) depends 
only on the product pk ( z )  Q k ( z ) ,  and is independent of the prefilter 
P( z ) .  Thus, if the prefilter P( z )  can be chosen to achieve equality in 
(2.6) for all k ,  it will maximize the coding gain for a fixed filter bank 
{ P k  ( z ) ,  Q k  ( z ) } .  This observation is true whether the sandwiched 
system { f'k ( z ) ,  Q k  ( z ) }  is orthonormal or biorthogonal. However, 
when {Pk(z ) ,  Q k ( z ) }  is orthonormal, equality in (2.6) is achievable 
for all k .  To see this, note that (2.7) can be rewritten as 

The ratio of the two coding gains 

G P P U  

GPU 
q = -  

satisfies rl 2 1. This is because for each k ,  we have 

with equality if and only if S(e3'") is a constant over the support 
of Pk (eJw). This follows from the Cauchy-Schwarz inequality, and 
the fact that the energy of P ( e J u )  is unity. We see that this simple 
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system always outperforms any PU system, as long as S(e3") is not 
constant where Pk(eJw) # 0. This improvement in the performance 
is more significant as S(e3" ) has more nonconstant behavior. 

Relation to Half- Whitening: A well-known data compression 
technique called half-whitening is described in [7]. Here, a signal 
~ ( n )  is first prefiltered with a filter H ( z ) ,  then quantized and 
postfiltered with 1/H(z). Under mild assumptions on the joint 
statistics of the signal z (n )  and the quantizer noise, the best 
prefilter (to maximize the output signal to noise ratio) is such 
that lH(eJw) l  = [l/S(e")]l'/". Our result in Theorem 2.1 shows 
that a similar result is true if the quantizer is replaced with a 
paraunitary subband coder. If the filter bank { P k  ( z ) .  Q k  ( 2 ) )  is not 
orthonormal, then the preceding results are not true. For example, 
if { P k  (z), Q k  (2)) were biorthogonal rather than orthonormal, then 
the insertion of P ( z )  and l / P ( z )  with P ( z )  as in (2.9) could even 
decrease the coding gain. Here is a way to visualize such a situation: 
suppose { Pk (2). Q k  ( z ) }  is itself a biorthogonal filter bank obtained 
by sandwiching an orthonormal filter bank between an optimal 
prefilter (2.9) and a postfilter. If we now insert another pair of P ( z )  
and 1 /P (z )  (with P ( z )  still given as in (2.9)), it can only decrease 
the coding gain! Theorem 2.1 and Corollary 2.1 should not, therefore 
be regarded as a simple extension of the half-whitening result. 

Relation to Prediction Gain: In order to better understand why 
this scheme works, let us look at the following expression: 

Notice that when p = 1, this is the denominator in (2.11) (the case of 
PU FB); and when p = 1/2,  it is the denominator in (2.10) (the case 
of PPU). Now consider the theoretical bound on the coding gain, 
namely the prediction gain. 

. (2.15) aE G,  = 

exp {; [, log, [S(eJW)l  dw} 

The denominator here can be obtained from the expression (2.14) as 
the limit whenp i 0. For this, note that 1/(27r) j" jPk(e3w)\2 dui = 
1 and CL;' IPk(e3"")l" = M ,  since { P , ( z ) ,  Q k ( z ) }  is a PU FB. 
Then (see [lo]) we get 

k=O log, [S(eJ")] dw 

=1 

k=O log, [S(eJ")] dw 

=1 

(2.16) 

Therefore, we improved the coding gain of a PU system (which 
corresponds to p = 1) by finding the structure in which p = 1/2. If 
there existed a structure corresponding to p < l / 2 ,  it would further 
improve the coding gain.' The examples below will demonstrate that 
our technique approximately halves the gap between the performance 
of a PU system and the prediction gain bound (2.15) on a decibel 
scale. 

' I t  can be shown using Jensen's inequality (see [lo]) that, as p decreases, 
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Fig. 3. Plots of S-'l4(e3") for a test example (dotted curve) and a rational 
approximation /Pa (d")] (solid curve). The approximation filter Pa (dW) is 
a second-order IIR filter. 
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Example 3.1. Coding gain of DCT filter banks as a function of the Fig. 4. 
number of channels, with and without prefilters. 
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Fig. 5. 
of the number of channels, with and without prefilters. 

Example 3.2. Coding gain of tree-structured filter hanks as a function 

Realizability: In practice, we have to approximate P(e3") and 
1/P(e3")  with rational filters. The phase of pre and postfilters does 
not matter, but stability does. As long as S(eJw) is bounded, we 
can find a good (stable) approximation of S1/" (eJ") ,  and use it as 
the postfilter l / P ( e J W ) .  In order to ensure stability of the prefilter 

the coding gain can only increase. P ( e J w ) ,  we have to make sure that l / P ( e J " )  is a minimum phase 
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approximation of S1/4(e3”)  (one obvious way of doing this is by 
autoregresive (AR) modeling of S1/4(eJW)). If S(eJa) = 0 on 
some interval, it can be shown that both pre and postfilters can be 
chosen to be zero on the same interval, so that there are no stability 
problems. The AR modeling approach not only insures stability of 
the pre and postfilters, but it also offers a computationally very 
efficient way of obtaining rational approximations of optimal pre and 
postfilters. In order to obtain a minimum phase stable approximation 
of S- ’ /4(eJ”) ,  all we have to do is compute ,,/m (using the fast 
Fourier transform, for example), and then use Levinson’s recursion 
to find a polynomial approximation of S-1/4(eJ”). 

In. EXAMPLES 
Example 3.1-DCT Filter Bank with Prejiltering: The above de- 

veloped technique will be applied to a very simple PU FB. Let 
{P~(z)> Q k ( z ) }  be a DCT FB, i.e., the one in which the polyphase 
matrix E(z) is the DCT IV matrix [Il l .  The DCT filters have poor 
attenuations. Fig. 3 shows [ l /S(e3w)]1/4,  the test function chosen 
for this example (dotted curve). The solid curve is its second-order 
rational approximation (i.e., Pa ( z )  is a second-order filter). The 
input PSD function S ( e J w )  was the lowpass AR(5) model of speech 
[7]. Fig. 4 shows the coding gain for different FB’s. We can see 
that even prefilter alone (without any FB) gives some coding gain 
(see [7], Ch. 7). The coding gain changes only slightly if the ideal 
prefilter [l/S( eJw) ]1 ’4  is approximated by a second-order rational 
filter. Notice that the coding gain of PPU FB approximately halves 
the gap (on a dB scale) between the coding gain achieved with the 
PU FB and the prediction gain bound on the coding gain given by 
(2.15). The next example is striking in the sense that a finite-order 
FB performs better than a brick-wall FB. 

Example 3.2-Tree-Structured Filter Bank with Prejiltering: In the 
previous example, the DCT filters had poor frequency responses. In 
this example, we design tree structured FB’s (number of channels 
M is a power of 2) using a two-channel PU FB as a basic building 
block. The filter length of each filter in the two-channel module is 
eight (SA from [12]). We use the same second-order approximation 
of [ l /S(~”)]l’/~ as in Fig. 3. Now we can see in Fig. 5 that the 
PPU finite order FB’s (for d.I = 2, 4) perform better than the 
corresponding ideal brick-wall FB’s, which shows that an ideal brick- 
wall FB does not necessarily maximize the coding gain for a given 
number of channels. 

IV. CONCLUSION 
We showed how to optimally design the filters in a prefiltered 

paraunitary filter bank. It was shown that the coding gain of any 
PU FB can be improved by prefiltering. The choice of the prefilter 
and PU FB were shown to be independent of each other, depending 
only on the input PSD. The theory was demonstrated on two simple 
examples. The problem of finding the optimal FB over the class of 
all biorthogonal FB’s is still open. 
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A B-Wavelet-Based Noise-Reduction Algorithm 

Phillip L. Ainsleigh and Charles K. Chui 

Abstract-A wavelet-based method is introduced for removing struc- 
tured noise (e.g., impulsive spikes or unwanted harmonic components) 
from data. For this type of noise, the time- and frequency-localization 
capabilities of wavelets provide better noise detection and less signal 
distortion than direct filtering of data. The procedure is applied to time- 
series data with impulsive noise and transfer-function data with multipath 
interference. 

I. INTRODUCTION 
The desire to eliminate structured noise from data arises in a 

variety of signal processing and statistical applications. For example, 
noise-reduction methods can be used to remove impulsive noise 
from musical or image data [I], and to remove unwanted harmonic 
components such as multipath interference in transfer function mea- 
surements [2] or seasonal variations in econometric trend analyses 
[3]. In these examples, parametric estimation cannot be used either 
for lack of an a priori model or because parametric modeling would 
constrain the analysis in an undesirable way. Previously, moving 
average and median filters have been applied to noisy data (e.g., 
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