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from which it follows that r=O. As a consequence,  det[XI - M ( s ) ]  has 
degree no in X ,  which  means that % = m ,  and hence kno= k,=O. This 
contradicts  the conclusion that kno> ko, which  means  that the  case 
cannot occur. 

3) no> 1, and uok > O  for  one value of k E { 1.2,. . . ,no}. Correspond- 
ing  to this uOk we obtain an nth-order Butterworth  configuration.  yield- 
ing n closed-loop  poles at once.  Consequently q = 0 and  r = 0. Since r = 0, 
det[M- M (s)] is of degree no in A, so that no= m, which  in turn implies 
kn,= k,,, = 0. Since U0k can be nonzero for  one value of k only  (otherwise 
several nth-order  patterns of closed-loop  poles  would  result.  which  is 
impossible), we evidently have det[XI-M(s)]= -aX”-’+A”. with 
CI > 0. Unless m = 1, this  implies det[M(s)]=O, which is contrary to 
assumption. The case m =  1, in which a single nth-order Butterworth 
pattern is obtained,  corresponds  to  the single-input  case  where H T ( - s )  
QH(s)= c/+(s)@( - s). with c a  constant. 

Summarizing, we have  demonstrated  that if no=O. one or several 
Butterworth patterns  are  obtained.  The case no= I ,  which  results  in a 
single nth-order Butterworth pattern, only  occurs  when  in  the  single- 
input case H ‘( - s)QH (s) = c/&)+( - s), with c a  constant.  The case 
no> 1 does not occur. 
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On Optimal and Suboptimal  Actuator 
Selection Strategies 

Y. VANBEVEREN .WD M. R. GEVERS, MEMBER, IEEE 

Abstract-Tbis short paper studies a particular  class  of  optimization 
problems  dealing  with  the  selection,  at each instant  of time, of  one out of 
many  actuators  in  order to  obtain a determined  result. A cost is associated 
with each actuator.  The cost function is the  integral  of a weighted 
combination  of  the  achieved  accuracy  on  the state of the  system  and  the 
control  energy.  The  control  energy  term  depends  upon both the selected 
actuator  and  the  magnitude of the  applied  control.  The  problem is to 
design  an  optimal  actuator selection  strategy.  The  analysis is limited to the 
class of  linear  deterministic  systems  with  measurable  states. A discrete 
approach is considered.  The  analytic  solution  to this optimization  problem 
is given f i t .  When  the  number  of  actuators  and  the  number  of stages in 
the  time  interval  become  large  the  optimal  analytic  solution  requires a 
considerable  combinatorial work; a suboptimal algorithm is then  proposed 
to alleviate this defect. 

I. INTRODUCTION 

The problem of selecting, at each instant of time, one  out of many 
available actuators is  presently untreated in the literature. There are, 
however,  applications  in  which  several  different or incompatible actions 
can  be applied on  a process.  Classes of examples are: problems  with a 
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bottleneck  (such as hierarchical  systems  in  which a single  line is to 
transmit  different effects  having the same  potentialities to  the various 
subsystems), or problems  with different zones for the  control (e.g., a 
gearbox). In this  last  example the problem  is both to select the best  gear 
and  to  determine  the pressure on  the accelerator. 

Some  aspects of the  dual problem on  the  optimal selection of sensors 
have been  solved  by Athans  [I].  Herring  and Melsa [2] ,  and Bensoussan 

Athans [ I ]  has considered  the  determination of optimal costly 
measurement  strategies in the  case of finite-dimensional  systems.  At  each 
instant  during  a time  interval, one  out of a finite number of sensors  must 
be selected to minimize a payoff that  depends on two terms: the 
accumulated observation  cost and  the  prediction  accuracy at final  time. 
The accumulated prediction  error  cost  is not considered. 

Herring and Melsa [2]  have  generalized  these  results to allow the 
selection at each  instant  of time of the best combination of a finite 
number of sensors. The payoff depends on the  observatioa cost as 
before, but also on  the accuracy of prediction at each  instant of the time 
interval  considered. 

Bensoussan [3] has  extended Athans’  results (but with different 
methods) to mfinite-dmensional spaces  in order to optimize the  location 
of sensors  in a  distributed  parameter system. He uses the same  payoff as 
Athans. Aidarous,  Gevers, and Installe have derived a numerically 
implementable  algorithm for the  optimal allocation of sensors [7] and 
actuators [8 ]  in a  distributed  parameter system. 

In this short paper the problem of desigmng an optimal  actuator 
selection  strategy is solved  using the optimality  principle. The cost 
function is not  the  dual of any of the measurement  strategy  problems 
mentioned above,  since it includes an instantaneous cost depending 
upon  both  the chosen actuator  and the control energy. The problem is 
stated in  Section 11, and  the N-stage optimization problem is solved in 
Section 111. Two criteria are presented for the a priori  elimination of 
certain “bad”  sequences. For the remaining  sequences the solution 
depends on the initial state. For a long  time  interval (N large) or a large 
amount of actuators.  the  computational effort  required to find the 
optimal  actuator policy can become  prohibitive.  Therefore, a  suboptimal 
algorithm has been  developed that drastically  reduces  the computation 
time.  This  “forward-backward”  algorithm is presented in Section IV. All 
the simulations  performed so far show that  the “forward-backward” 
algorithm is near optimal;  some numerical  results are given  in  Section V. 

[31. 

11. hOBLEh1 STATWIEhT 

Consider a time-invariant  linear dynamic system 

X( i+l )=AX(i )+BU(i )  (1) 

where X is an n X 1 state vector and U is an mq X 1  control vector. A and 
B are n X n and n X mq matrices. B will be represented as follows: 

B = [ b l  6,  ... b,,,] 

where 4 is an n X q matrix  corresponding to  thejth actuator. m actuators 
are available, but only one  actuator  can  be used at any given  time. 
Therefore. 

Hence, if thejth actuator is  chosen at time i, u,(i) may take  any real 
value,  whde uk (i) = 0, k = j .  

It is assumed that  each pair [A ,$ ]  is completely  controllable, and  that 
the  state X ( i )  is  exactly  measurable. The cost function  to  be minimized 
for  a N-stage  problem  is 

J N =  [ X ‘ ( i +  l ) Q X ( i + l ) +  U ‘ ( i ) R U ( i ) l  
x- 1 

(3) ;=o 
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where Q is a positive definite  symmetric matrix and R is a positive 
definite  blockdiagonal  matrix; R =diag{rl; . . ,rm}, with 5 a q x  q 
symmetric positive definite matrix. 

At each instant of time, the optimal regulator  must therefore decide 
what  actuator should be used, and what value should be given to the 
control. Intuitively one  can expect the following results. 

Certain  actuators or sequences of actuators  may be rejected once and 
for all because whatever the initial  state  may be, they increase the payoff 
more than others. 

For the remaining p  actuators  or sequences of actuators  the regulator 
divides the state space into  p zones: S, ,S , ; .  . ,Sp. If the initial state 
belongs to the zone 5, then the sequence % will be chosen. 

111. N-STAGE F’ROBLEM 

The payoff to  be minimized is now  given  by (3). We shall first 
compute the global  cost for a predetermined sequence. The fixed actua- 
tor cae,  in  which no selection is  to be made, is classically solved  using 
Bellman’s optimality principle. In the present case, the formulation is not 
much different. We shall call V N - J j j ]  the optimal cost resulting from the 
optimization of the last N - i stages of an N-stage problem with a given 
sequence [ j j ] I  of chosen  actuators. Therefore, by the classical theory of 
optimal control 

where 

In the same way 

with 

Clearly the optimal choice of an  actuator  at the ith  stage  depends on the 
future behavior of the system, and so does the regulator gain. For  a 
given sequence [io] the optimal global c o s t  can  be written as 

For the N-stage problem, the optimal strategy consists in selecting a 
sequence of N  actuators. In most cases the optimal sequence will  be a 
function of the initial state X(0) .  But it may happen  that  certain 
sequences or subsequences can be eliminated a priori, because they are 
dominated by others that  are less  expensive, whatever the initial state 
may be. 

From (6) it follows immediately  that in a N-stage problem the 
sequence (k , .  . . ,k.v- can  be rejected apriori [i.e., for all X(O)] if there 
exists a sequence Go; . . ,jN- I )  such that 

~~(k,‘.‘,kh,-l)>Mo(jo,’.’,j~-l). 

But  what can we say  in an N-stage problem  about  an r-subsequence 
that  can be rejected a  priori in an r-stage problem?  The following rules 
provide an answer to this question. 

Lemma: In  a one-stage optimization problem the kth  actuator  can  be 
eliminated a  priori if there exists j P k such that 

chosen actuators. 
‘h‘orazion: In this h’-stage problem b,] refers to the sequence (jijj+,,. . . J N - ] )  of 

Proof: For N =  1, and using the matrix inversion lemma, (6) can 
rewritten as 

VI ( j )=X’(O)A‘[  Q-’+b,q-’bj’]-IAX(O). 

Therefore the kth  actuator  can  be rejected a priori if, for  some j #  k ,  

This is equivalent with (7). 
Roughly speaking the  term bkrclbi is the  ratio of the “power of the 

kth  actuator”  to  the cost resulting from its use. Intuitively condition (7) 
means  that if the cost of the  kth  actuator is large and its influence on the 
state of the system is weak, then this actuator  can be suppressed. This 
criterion should be  compared with the dual  condition  obtained by 
Bensoussan [3] in the measurement  context, in  which the  quantity 
bkr; ’bi is replaced by what  Athans [ I ]  interprets  as  a “signal-to-noise” 
ratio related to the kth  measurement device. 

Proposition I :  Let the sequence (k , .  . . , k r - l )  be eliminated apriori in 
an r-stage problem, 1 < r G N. Then  any sequence terminating by the 
subsequence ( k 0 ; . - , k r - J  can be eliminated a  priori in an N-stage 
problem. 

Prooj The whole cost to  go from stage 0 to stage N may be broken 
up  into the cost to go from  stage 0 to N- r +  1 plus the cost to  go  from 
stage N - r +  1  to N. Proposition 1 is then stated using the principle of 
optimality [4]. Indeed if a sequence is eliminated for all possible initial 
states  in  an r-stage optimization problem, it is a fortiori eliminated in  the 
r  last stages of an N-stage problem. 

Proposition 2: In an N-stage problem  one  can eliminate a priori  any 
sequence  containing  an  actuator  that would be eliminated in  a one-stage 
problem. (i.e., if the kth  actuator is eliminated a priori in a one-stage 
problem, then  any sequence containing k can  be  apriori eliminated in  an 
N-stage problem, whatever  the position of k in this sequence). 

Prooj Assume that the “bad”  actuator k appears  at  the (N - r + 1) 
th position of an N-stage sequence, and  that  the last r actuators selected 
in this N-sequence  are (k , j , , j , , . .  - ,jr-,). We shall show that all N- 
sequences ended by (k , j lJ2 , .  * -  J r - l )  can  be eliminated. We first show 
that this r-sequence can be rejected apriori in an r-stage problem. By 
hypothesis, there exists a j # k  such that (7) is true. Therefore, 

Equivalently, 

Therefore, (k&; . ,jr- can  be eliminated in an r-stage problem. By 
Proposition 1 it can  be eliminated in  the  last  r stages of an N-stage 
problem, which concludes the proof. 

Assume that  after  a  priori elimination of certain sequences or sub- 
sequences, p admissible sequences remain, with p < m ,. The selection of 
an optimal sequence of actuators  among  thesep admissible sequences is 
now  a  funtion of the initial  state X(0) .  The  state space is divided into 
subspaces; the sequence [k,] = (k, , .  . . ,kN- is optimal if X ( 0 )  belongs 
to the subspace S,, defined as ..” 

The  separation surfaces are pieces of hyperplanes. 
The selection of an  optimal sequence for the state X(O) ,  therefore, 

requires the solution of a  combinatorial problem, that  can  be solved  by 
the “decision tree” method, since the number of admissible sequences is 
finite. In the worst  case, the solution of an N-stage optimal  control 
problem  leads  to the examination of m N  different sequences. For  a large 
number of actuators or a long time interval, the computation time could 
become prohibitive. It was, therefore, necessary  to develop a  suboptimal 
but much faster  algorithm. 
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IV. THE “FORWARD-BACKWARD” ALGOMTHM TABLE I 

The  control problem  is  now  considered as a discrete dynamic  pro- Strategies  Considered Global cost 
gramming  problem. The N-stage  problem  consists  in  finding  the 
sequence { U(O), U(l);.. ,U(n- 1)} that minimizes  the  payoff  (3). 
Equivalently, it is required to find the functional  solutions of the follow- 

considered;  the actuator selection is optimized 

ing  set of equations: 
at each  stage. 

used. 

7776  different  sequences  must  be  considered). 

1) Four successive  “one-stage  problems” are 60 081 

2) The suboptimal  “forward-backward”  strategy  is 39 723 

39  698 1 V(X(i),i)=rnin{F(~(i+I),U(i))+V(~(i+l),i+1)IX(i)}, i=o,.. . , x -  1 (8) 
V(X(N),N)=O (9) 

U(1) 3) The  optimal strategy is used  (in  this  case, 64= 

subject  to the  constraint (1)  with a given  X(O), and with TABLE I1 

~ ( ~ ( i + l ) , ~ ( ; ) ) ~ X ’ ( i + l ) p ~ ( ; + l ) + ~ ’ ( i ) ~ ~ ( i ) .  

Let us recall that two types of information are necessary to construct 
U(i) .  the  selected actuator, sayj,,  and the value of the gain,  say q,; the 
pair (ji,q,) completely  determines U ( i )  for a given X(;). 

To solve (8) and (9)  recursively, we apply an iterative  “forward- 
backward” algorithm that is  closely  related to Bellman’s  “approximation 
in policy  space” procedure [5]. . 

Given an initial approximation [ Uo(0). UO(1); . . . U o ( N -  I ) }  for  the 
control policy, the  state trajectory {Xo(]).-. . ,Xo(,V)} is computed using 
(1) and the  given initial state  X(0). A new control sequence U ’ ( i ) ,  
i =  N -  1. N -2; . . .O is  then computed backwards by applying N times 
the following  one-step  minimization procedure. 

~ { ~ ( ~ ( i + l ) , ~ ( i ) ) + ~ ~ ( ~ ~ ( i + 1 ) , i + 1 ) ~ X ~ ( i ) } ,  
U ( r )  

i=?v-I;’.,o (10) 

3 Stages 4 Stages 12 Stages 

Suboptimal algorithm 0.03  min 0.04 min 0.20 min 
ODtimal  algorithm 0.13 min 0.90  min ? 

equations of the form (8H9) yields a  bounded change  in its solution. 
This is, as Lew points  out. a stability  property: approximation  methods 
can therefore be expected to result  in bounded errors. It is  reasonable to 
expect  that the sequences Vk(X(0),O) will be  closer and closer to  the 
optimal cost function,  but this can not.  in  general,  be  proved. The 
algorithm  is  therefore suboptimal.  Notice  that if the  cost function 
converges  close to the optimal cost. it does  not  imply that  the selected 
actuator strategy  converges to  the  optimal sequence.  However,  in  most 
cases  this is unimportant, since the only  objective  is to minimize  the  cost. 

If the optimal  actuator sequence is reached,  then,  by  construction,  the 
optimal regulator  gains are  also  obtained,  and  the strategy  is  optimal. 

with 
V. NLMENCAL EXAMPLE 

V O ( X O ( N ) , N ) = O  (I1) In this  section, the  subophmal “forward-backward”  algorithm  is  com- 
Vo(Xo(i).i)=[F(X(i+l),U’(i))+ Vo(Xo(i+l) , i+l) lXo(i)] .  pared  with the  optimal solution and with an other stratew.  The follow- 

ing system has been  simulated: 
(12) 

The minimizing control sequence {U’(0):..,U1(N-l)} defines a X ( ; + l ) = [  - b  i - ! ] X ( i ) + [ A  -; ;]U(i), 
new state trajectory {X ,(I); . . ,XI(N)}.  and, by  application of the 1 - 1 5   2 6 1  - - .  
backward  minimization  procedure, a new  sequence V’(X’(i).i), and so on. The forward-backward algorithm therefore requires steps that i.e.,  there are six  possible input vectors b,: . . .be It is desired to design a 
may be repeated  until no significant decrease in the function is four-stage control strategy  with a scalar control,  that minimizes the 

obtained: following  payoff: 

-a backward  minimization  step that consists  in computing the U k ( i -  1) 
in terms of the Vk-l(Xk-l(i),i). 
-a forward  reconstruction step  that consists  in computing the state 
trajectories X k ( i )  in  terms of U k ( i -  1); these state trajectories are 
necessary to compute the new V k ( X k ( i ) . i ) .  

The practical  implementation of the  “forward-backward”  algorithm  in 
the  actuator selection  problem is as follows. 

I )  Inirializarion step: Starting  from  the  given X (0). a first sequence of 
pairs { jp. q!}, i =  0; . . , N- 1, is obtained by solving .V times a one- 
stage  optimization  problem. as shown  in  Section 111. This defines a first 
state trajectory ( ~ ~ ( 1 ) : .  . .x~(,?.)}. 

2) Backward srep: The following  step is performed N times  in  the 
backward  sense starting with W,::.= Q. given Xo(i), j ) ,  and 5,’ are 
computed using the one-stage  minimization  procedure of Section 111, 
with Q replaced by W,: , [j)+ ,I: Mi’ [j!] and W;I[j,’] are then computed 
from W,Ll[j ,’+,]  and K,‘ using (5) .  Notice that  this  requires  only one 
iteration of the  Riccati  equation (5 ) .  

3) Forward s r q :  Using  the  pairs {j!,q,’) a new state trajectory 
{XI(l); . * , X ’ ( N ) )  is computed by  solving  (1)  in the forward  sense. 

Steps 2) and 3) are  repeated until the pairs { j,k, 3;) converge to  a 
stable sequence { j : , q } .  

Numerical computations have  shown that this  algorithm  converges 
very fast, and that the number of iterations necessary  for the sequence to 
converge to  the stable  sequence (j:,Kf} is always  smaller than N .  The 
convergence can be  accelerated by using  the  results of Proposition 2. 
Lew  [6] has shown that  a  bounded  perturbation of discrete functional 

4 

J =  x (X‘(i)QX(i)+ U’(i-  l )RU(i- l ) )  
I =  1 

with Q=diag{3,5.2}  and R=diag{20,15.15.5,20.10}. The initial state 
of the  system is X(0) =( - 1. + 50. + 60). Several  strategies  have been 
considered.  (See Table  I.) 

The difference  between the costs of the  two last strategies  is  only 0.063 
percent.  which  is  negligible. 

Table I1 compares  the computation times  necessary for a 3-stage, 
4-stage. and 12-stage  problem.  respectively.  with the optimal and  the 
suboptimal algorithms,  using an IBM 370/ 158 computer. 

The time  saving is appreciable  when  the suboptimal algorithm  is  used. 
I t  increases of course  with the  number of stages. From the  viewpoint of 
precision.  the  comparison  with  other  nonoptimal  strategies  shows that 
considerable  sabings can be  achieved  when  using the  suboptimal “for- 
ward-backward” algorithm as is  evidenced by Table I .  Several other 
numerical  simulations  have  shown  this  to  be  true. 

VI. CONCLUSION 

The problem of the optimal selection of one  out of many  available 
actuators  has been treated.  Our study  leads to  optimal  control strategies 
that  can be obtained only by combinatorial  methods. I t  has been  shown 
how certain  actuators or sequences of actuators  can sometimes  be 
rejected apn’ori. However.  when  the number of actuators or the length of 
the time  interval  become  large.  the  “curse of dimensionality”  makes  the 
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use of combinatorial  methods all but impossible. For such  cases a 
suboptimal “forward-backward”  algorithm has  been proposed,  which 
has been  shown to  be  computationnally very  attractive. It is much  faster 
than  other algorithms that  have been  proposed for  the solution of similar 
optimal selection  problems. 
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p e  Asymptotic  Behavior of Constant-Coefficient 
Riccati Differential Equations 

T.  KAILATH, FELLOW, IEEE, A N D  L. HUNG, MEMBER,  IEEE 

Abstract-A simple  and  self-contained  proof is given  of a general 
theorem on the convergence  of a constant coefficient Riccati differential 
equation  to a unique  limiting  value. In particular our result, which includes 
(strictly) previous resdts, does not require any analysis of the algebraic 
Riccati  equation. 

I. INTRODUCTION 

The behavior as ~+CO of the solution P ( t )  of the (filtering)  Riccati 
equation with constant coefficients, 

dP(t)=FP(r)+P(t)FT-P(r)HTHP(t)+GGT, dt t > O  (1) 

with initial condition 

has been  the object of considerable  investigation  since the  appearance of 
the first results of Kalman  and Bucy. The reason  is  the importance of 
such  results  in  ensuring the numerical  well  behavior of the estimation 
and control problems  in  which  the  solution of the  Riccati equation is 
used. Our theorem  in  this short  paper strictly  includes all previous  results 
on this  problem and is  established  in a direct and self-contained manner. 
Perhaps the  best  known  earlier  results are those of Wonham [I], from 
whose  work it follows  that if 

( H , F )  is detectable (3) 

and 

( F ,  G) is stabilizable, (4) 
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then 

for all ll> 0 (5 ) ’  

P ( t ) + P a s  r+co (6) 

where P is the  unique nonnegative  definite solution of the so-called 
algebraic Riccati equation (ARE) 

O= FF+ P F T -  P H T H F +  GG’. (7) 

Wonham  actually  had  the stronger assumption  than (3) that 

( H ,  F )  is  observable, (8) 

the weakening to (3)  being due  to  Kucera [2]. Now  while the  condition 
(5 )  that II > 0 is of course  very  reasonable  since II is the  covariance of 
the initial error,  due to numerical errors  it may happen  that II is not 
necessarily nonnegative definite, and therefore it is of interest to investi- 
gate convergence  for more general initial conditions. Here  the best 
results  seem to be  those of Willems  [3]  (see also Rodriguez-Canabal 141 
and Bucy and Rodriguez-Canabal 151). Under  the stronger  assumptions 
(8) and 

( F ,  G ) is controllable (9) 

Willems [3, theorem 81 showed that convergence took place  for all 

n>P- ( 10) 

where  (with the usual ordering relationship for symmetric  matrices) 

P -  =the infimum  over all solutions  to the ARE (7). (1 la) 

(Canabal 151, defines a  quantity 

P- =the infimum of all matrices P such  that 

F P + P F T - P H T H P + G G T > O .  ( l lb)  

If P- exists it follows [5 ]  that it is equal  to P- . )  
In view  of (lo), (1  1) it was natural  that Willems’  proof  relied  heavily 

on a close study of the properties of the ARE, but  actually so did  the 
proofs of Wonham  and  Kucera for the case El > 0. In this short  paper we 
shall present a more  direct  proof of convergence of P ( - )  that  does  not 
first require a close study of the limiting  solution P. This is not  only 
philosophically  more  satisfying, but as will  become  clear  in  this short 
paper,  it also  enables us to obtain somewhat  more  general  results than 
can be obtained by the  methods of [3],  [4]. In particular we can  handle 
situations where P -  may not exist (as, for example, if ( H , F )  is not 
observable).  Incidentally, we note  that  our results also apply to some- 
what more  general Riccati  equations  than (1): where,  in particular, GGT 
is  replaced  by a possibly  indefinite  matrix Q. To simplify the  presenta- 
tion,  however,  discussion of these  extensions is deferred to Section 111. 
Furthermore, we believe that  our proof  is  simpler than  any known so far 
and uses  some  simple  identities that  further  elaborate  the properties of 
the Riccati equation (1). 

Three Useful Identities 

The first of these  identities  is just  the  statement of the  fact  that if we 
know a solution of the Riccati equation (RDE) for one initial condition, 
then under certain  conditions  solutions  for  other initial conditions  can 
be expressed  in  terms of the first solution. This  approach  to  studying a 
family of solutions  to  the RDE in  terms of one “special  solution” is 
apparently due  to Sandor [6] and Reid [7], though of course it had long 
been widely  used to  study  scalar Riccati  equations. The precise  result is 
the following. 

Let P(.) and P I ( . )  be  solutions of (1) for initial conditions II and II,. 

‘A > B means that A - B is nonnegative definite. 


