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The problem of how to compromise between speed and accuracy in decision-making faces
organisms at many levels of biological complexity. Striking parallels are evident between
decision-making in primate brains and collective decision-making in social insect colonies: in
both systems, separate populations accumulate evidence for alternative choices; when one
population reaches a threshold, a decision is made for the corresponding alternative, and this
threshold may be varied to compromise between the speed and the accuracy of decision-
making. In primate decision-making, simple models of these processes have been shown,
under certain parametrizations, to implement the statistically optimal procedure that
minimizes decision time for any given error rate. In this paper, we adapt these same analysis
techniques and apply them to new models of collective decision-making in social insect
colonies. We show that social insect colonies may also be able to achieve statistically optimal
collective decision-making in a very similar way to primate brains, via direct competition
between evidence-accumulating populations. This optimality result makes testable predic-
tions for how collective decision-making in social insects should be organized. Our approach
also represents the first attempt to identify a common theoretical framework for the study of
decision-making in diverse biological systems.
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1. INTRODUCTION

Animals constantly make decisions. Habitat selection,
mate selection and foraging require investigation of,
and choice between, alternatives that may determine
an animal’s reproductive success. For example, many
animals invest considerable time and energy in finding a
safe home (Hazlett 1981; Seeley 1982; Hansell 1984;
Franks et al. 2002). Similarly, an animal may frequently
have to deal with ambiguous sensory information in
deciding whether a predator is present or not (Trimmer
et al. 2008).

There has been ongoing speculation as to whether
decision-making mechanisms in brains and in colonies
of social insects might be closely related to each other,
beginning at least with Hofstadter (1979) and gener-
ating continued interest (Seeley & Buhrman 2001;
Visscher 2007; Passino et al. 2008). In this paper, we
examine a model of decision-making in the primate
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brain (Usher & McClelland 2001) and compare it with
three new models of collective decision-making during
house-hunting by social insect colonies. These models
are based on a proposed model for emigration in the
rock ant Temnothorax albipennis (Pratt et al. 2002),
and two models proposed for nest-site selection in the
honeybee Apis mellifera (Britton et al. 2002). The
similarities are striking: both systems are modelled
with mutually interacting populations; in both systems,
a decision is made when one population exceeds some
threshold; and in both systems, this threshold can be
varied to mediate between the speed and the accuracy
of the decision-making process. As well as examining
the structural similarities and differences between the
neuron model and social insect models, we examine
optimality criteria for decision-making in the social
insect models. Bogacz et al. (2006) showed how the
model of decision-making in the brain proposed by
Usher & McClelland (2001) can be parametrized to
implement the statistically optimal strategy for choos-
ing between two alternatives. Here, we analyse to what
extent each of the social insect models can implement or
doi:10.1098/rsif.2008.0511
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Figure 1. The diffusion model of decision-making can be
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approximate this statistically optimal strategy. This
gives testable predictions for how social insects should
behave when house-hunting in order to optimize their
decision-making. The analysis we present represents
the first step in establishing a common theoretical
framework for the study of decision-making in bio-
logical systems, i.e. based on the interactions between
their components rather than the details of the
components themselves. Hence, this framework should
prove applicable to diverse biological systems at many
levels of biological complexity.
thought of as a random walk with normally distributed step
size (Wiener process or Brownian motion) along a line where
the positive direction corresponds to increasing evidence for
one of the available alternatives, and the negative direction to
increasing evidence for the other alternative. The random
walk is subject to a constant driftA, a tendency to move along
the line towards the better alternative, whose strength is the
difference between the expectations of the incoming data on
the available alternatives. The variance in the random walk
(proportional to s2) represents the uncertainty in these
incoming data. The diffusion model of decision-making
implements the statistically optimal sequential probability
ratio test, and by varying the decision threshold z can
compromise between speed and accuracy of decision-making.
Inset. A sample trace of the diffusion model: at time tZ0 when
decision-making starts, there is no evidence in favour of either
alternative. As time passes evidence accumulated so far varies
stochastically, but consistently tends to increase in favour of
one of the two alternatives. At approximately time tZ90, the
positive decision threshold is reached and the corresponding
alternative is chosen.
2. OPTIMAL DECISION-MAKING

Decision-making is a process in which uncertain
information must be processed in order to make a
choice between two or more alternatives. We can
illustrate decision-making with a simple perceptual
choice task, in which a primate subject is presented
with a display filled with moving dots. The subject is
required to decide whether the majority of dots move to
the left or the right and to make an eye movement in the
same direction. The proportion of the displayed dots
that move in a coherent direction can be varied to make
the decision task easier or harder, and the rewards for
correct choices can be modified to vary the optimal
compromise between the speed and the accuracy of
the decision.

The above description is just one example of
a decision-making problem, but diverse organisms
face a wide variety of decision problems exhibiting the
key features of variable difficulty, and a dynamic
tension between the speed and the accuracy of the
decision-making process (Edwards 1965; Chittka et al.
2003). Based on the analysis of human reaction-time
distributions in decision tasks, psychologists proposed
the ‘diffusion model’ of decision-making (Stone 1960;
Ratcliff 1978), which represents the process abstractly
as Brownian motion on a line representing relative
evidence for the two alternatives, with constant drift
towards the correct hypothesis (figure 1).

The diffusion model of decision-making is, in fact,
a special case of the more general sequential probability
ratio test (SPRT).1 The SPRT provably achieves
optimal decision-making over two alternatives (Wald &
Wolfowitz 1948), as it makes use of the Neyman–Pearson
(1933) lemma familiar to statisticians and scientists.
The SPRT works by continuing to gather evidence for
the two alternative hypotheses until the log of their
likelihood ratio exceeds a positive or negative threshold;
this is the test that, among all possible tests, minimizes
decision time for any desired decision error rate. Through
an adjustment of this threshold, the test can achieve
the optimal trade-off between decision accuracy and
decision speed.

The diffusion model of decision-making has recently
been shown to fit reaction-time data better than the
models that do not implement statistically optimal
decision-making (Ratcliff & Smith 2004). Moreover,
1This special case is obtained when information gain over time
becomes continuous: the standard SPRT works with discrete
evidence samples.
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neural recordings from cortical regions in monkeys
undertaking the moving-dots decision task are better
described by the diffusion model than by other, non-
optimal models (Ratcliff et al. 2003). This suggests that
neural decision networks can be parametrized in a way
that allows optimal decision-making, as we shall discuss
in §§3 and 4.
3. DECISION-MAKING IN THE CORTEX

The neural bases of decision-making are typically
studied in the context of the moving-dots experiment
described in §2. Neuronal activity recordings from
single cells in the monkey cortex suggest that decision-
making during this task involves two main brain areas.

First, the neurons in the medial temporal (MT) area
process the motion present in the visual field. Each of
the MT neurons responds proportionally to the
magnitude of motion in a particular direction (Britten
et al. 1993). Hence, the neurons in the MT area that are
selective for motion in different directions provide
sensory evidence supporting the corresponding alterna-
tives. However, this sensory evidence is uncertain
owing to the noise present in the stimulus and the
neural representation itself.

Second, the neurons in the lateral intraparietal (LIP)
area and the frontal eye field are concerned with
controlling eye movement. These neurons are selective
for the direction of eye movement. During the motion
discrimination task, it has been observed that the
neurons corresponding to the correct alternative
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Figure 2. In the Usher–McClelland model of decision-making
in the primate visual cortex, neural populations represent
accumulated evidence for each of the alternatives. These
populations y1 and y2 integrate noisy inputs I1 and I2, but leak
accumulated evidence at rate k. Each population also inhibits
the other in proportion to its own activation level, at rate w.
When wZk and both are large, the Usher–McClelland model
reduces to the diffusion model of decision-making (figure 3).
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gradually increase their firing rate (Schall 2001;
Shadlen & Newsome 2001; Roitman & Shadlen 2002).
Detailed studies of their activity provide strong
evidence that the LIP neurons integrate input from the
corresponding MT neurons over time (Huk & Shadlen
2005; Hanks et al. 2006). Hence, as time progresses in the
task, the sensory evidence accumulated in the LIP
neurons becomes more and more accurate.

It has been observed that when the activity of the
LIP neurons exceeds a certain threshold, the decision is
made and an eye movement in the corresponding
direction is initiated (Schall 2001; Shadlen & Newsome
2001; Roitman & Shadlen 2002). This arrangement
of neural populations with decision thresholds lends
itself to representation through a simple model, as
described in §4.
0 2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Figure 3. The expected dynamics of the Usher–McClelland
model, plotted as the activation of population y1 against the
activation of population y2. When decay equals inhibition
(wZk), the system converges to a line (bold arrow) and
diffuses along it, until a movable decision threshold is reached
(dashed lines). Along the attracting line, theUsher–McClelland
model is equivalent to the optimal diffusion model of decision-
making (figure 1).
4. THE USHER–MCCLELLAND MODEL

The Usher–McClelland model represents decision-
making using neural populations that act as mutually
inhibitory, leaky integrators of incoming evidence
(figure 2). In the moving-dots decision task described
above, these integrator populations would represent the
LIP neural populations corresponding to the different
possible eye movement decisions. Each population of
integrator neurons receives a noisy input signal that it
integrates, subject to some constant loss. Each popu-
lation also inhibits the activation of the other to a
degree proportional to its own activation. So, as one
population becomes highly activated, the suppression it
exerts on the activation of the other grows stronger. For
a binary choice, the linearized version of the system is
formally described as a pair of coupled stochastic
ordinary differential equations

_y1 Z I1 Cch1Ky1kKy2w;

_y2 Z I2 Cch2Ky2kKy1w;

(
ð4:1Þ

where yi is the activity of population i; _y1 is the change
in that activity over time; Ii is the strength of the input
signal for alternative i; chi is the noise in that input
signal described as a Wiener process with mean zero
and standard deviation proportional to c; w is the rate
at which one population inhibits the activation of the
other; and k is the rate at which a population’s
activation level decays. The decision is made by the
model if the activity of either of the populations reaches
a threshold value.

Choosing different coordinates, x1Zðy1Ky2Þ=
ffiffiffi
2

p

and x 2Zðy1Cy2Þ=
ffiffiffi
2

p
, the model can be decoupled

into two independent random processes

_x1 Z ðwKkÞx1 C
I1KI2ffiffiffi

2
p Cch10 ;

_x2 Z ðKkKwÞx 2 C
I1 CI2ffiffiffi

2
p Cch20 ;
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ð4:2Þ

where h10Zðch1Kch2Þ=
ffiffiffi
2

p
, and similarly for ch2 0. If

wZk, then x1 simply undergoes a biased random walk.
Moreover, taking both these parameters to be large,
x2 quickly converges to a limiting value (figure 3).
J. R. Soc. Interface (2009)
Since x2 quickly converges, the decision is made
when the difference between integrated evidence, x1,
exceeds a positive or negative threshold (Bogacz et al.
2006). This corresponds to the statistically optimal
diffusion model of decision-making (figure 1). Thus,
when wZk and both of these parameters are relatively
high, the Usher–McClelland model approximates
optimal decision-making.
5. DECISION-MAKING IN SOCIAL INSECT
COLONIES

The rock ant T. albipennis lives in colonies of up to a
few hundred individuals, inhabiting small enclosed
cavities such as rock crevices, which break down over
time. Colonies of the honeybee A. mellifera are
substantially larger, often comprising more than
50 000 workers nesting in large cavities in hollow
trees. For both species, the need to hunt for a new
nest site arises when the nest degrades or is destroyed,
or when the colony propagates. To minimize exposure,
colonies must minimize the duration of the emigration,
while still gathering substantial information about
potential nest sites. ‘Scout’ individuals leave the old
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Figure 4. In the direct-switching model of decision-making
during emigration by the honeybee A. mellifera, populations
of scouts y1 and y2 discover two alternative potential sites and
compete with each other to recruit uncommitted scouts s and
scouts committed to the other alternative. If there is no decay
from commitment (kZ0), then once all scouts are committed to
one alternative or the other subsequent decision-making is
exactly equivalent to the statistically optimal diffusionmodel of
decision-making (based on a model by Britton et al. (2002)).
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nest (or the bee swarm) to search for new suitable sites.
When an individual has located a new site, this is
thoroughly inspected according to multiple criteria
(Mallon & Franks 2000; Franks et al. 2003b, 2005,
2006b, 2007a).

A unanimous decision among the discovered nest
sites is required, and the highest quality site should be
identified to maximize future success. To achieve all of
this, both rock ants and honeybees use a process of
quality-dependent recruitment to nest sites, causing
positive feedback, coupled with quorum sensing,
ultimately leading to a collective decision.

In T. albipennis, scouts recruit nest-mates to a site
they have discovered by tandem running, teaching
others the route (Möglich & Hölldobler 1974; Möglich
1978; Franks & Richardson 2006; Richardson et al.
2007). The recruiters pause for longer before recruiting
to poor nests than they do for good nests (Mallon et al.
2001). Recruits inspect the new nest and also start
recruiting, leading to a positive feedback, with more
ants arriving faster at higher quality nest sites. When
a certain number of ants, a quorum, have accumu-
lated in the new site, all ants that are committed to it
switch from tandem running to carrying nest-mates.
This represents a switch to decision implementation, as
brood items and passive ants are carried to the chosen
nest site. The colony’s collective decision for a new nest
is thus usually for the site that first attracts the quorum
number of ants. By adjusting this number, the ants opt
for a quick but error-prone, or a slower but more
accurate decision, depending on their group size and
external conditions (Franks et al. 2003a; Dornhaus
et al. 2004; Dornhaus & Franks 2006).

In A. mellifera, scouts similarly start recruiting
to discovered nest sites, here using the honeybee
waggle dance (Lindauer 1955; von Frisch 1967; Seeley
1982). The probability of performing waggle dances, as
well as their duration, depends on the quality of the
discovered site. Positive feedback thus arises only if
recruits become recruiters, which happens only for
superior sites (Seeley & Buhrman 1999, 2001). Even-
tually all recruitment is for a single site, which is
then chosen by the honeybee swarm (Seeley 2003).
Honeybees may also use a quorum at the new site
to determine whether this decision has been made
(Seeley & Visscher 2004b).

Both of these decision-making mechanisms operate
without central control, and individuals use only local
information (Mallon et al. 2001). Both species can select
the best nest site even if news of it arrives late in the
decision-making process (Britton et al. 2002; Franks
et al. 2007b). However, there are some differences
between the two collective decision-making systems. In
the bees, the decision-making process is separated
from the execution of the decision: the flight of the
swarm to the new site occurs after the decision has been
made, and is guided by a small number of informed
individuals (Beekman et al. 2006; see also Couzin et al.
2005). In the ants, these processes are integrated,
introducing a logistics problem into the decision
problem (Planqué et al. 2007). Note that the decision
problem solved by colonies during emigration is one
of optimal consensus decision-making, and thus differs
J. R. Soc. Interface (2009)
from the problem of distributed resource intake
maximization that colonies tackle during foraging
(e.g. Seeley 1995).
6. MODELS OF HOUSE-HUNTING BY SOCIAL
INSECT COLONIES

In this section and §7, we will examine how social insect
colonies might implement optimal decision-making,
through formal analysis and numerical simulations of
mathematical models. We propose three new models
based on one published model of house-hunting by
T. albipennis (Pratt et al. 2002) and two published
models of house-hunting by A. mellifera (Britton et al.
2002). Our aim is to examine which model or models
can implement optimal decision-making, and use this to
generate testable hypotheses about how social insects
should behave if they are to decide optimally.

To understand how collective decision-making may
be optimized in situations characterized by uncer-
tainty, our models are stochastic differential equations,
as in the neural case. This departs from previous
modelling efforts using deterministic differential
equations (Britton et al. 2002; Pratt et al. 2002),
population matrix models (Myerscough 2003) or
individual-based models (Pratt et al. 2005; Marshall
et al. 2006). All the models represent flows between
populations of individuals having different behavioural
states. The structure of all of these models is very
similar, and one such model is presented by way of
illustration in figure 4; the models differ however in the
details of the rates at which individuals flow between
these populations.
6.1. House-hunting in T. albipennis

We begin with the model of emigration by T. albipennis
(Pratt et al. 2002). The full model considers the
complete emigration process both before and after the
quorum threshold is satisfied at a potential site: thus
the model includes both tandem-running behaviour and
carrying. In accordance with current biological under-
standing, we model only the decision-making process
up to quorum satisfaction, considering that after this
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point a collective decision has been made and all
that remains is its implementation (Pratt et al. 2002).
This view is not without its problems (Franks et al.
2007b; Planqué et al. 2007), but is an acceptable
simplification for our purposes. We further simplify
the original model by removing the intermediate class
of assessor ants: ants thus switch directly from
uncommitted to committed.

Our simplified version of the Pratt et al. (2002)
model thus considers only ants discovering nest sites
and recruiting to them through tandem running. Ants
leave the class of uncommitted scouting ants s, discover
and become recruiters yi for nest site i at rate qi: this
rate is proportional to the nest site’s quality and ease of
discovery, and is subject to noise chqi. Recruiters for a
site recruit uncommitted scouts in class s at noisy,
quality-dependent rate r 0i ðsÞ where

r 0i ðsÞZ
r 0i Cchr 0i ; if sO0;

0; otherwise:

(
ð6:1Þ

Finally, recruiters for a site spontaneously switch to
recruiting for the other site at rate ri, or switch to being
uncommitted to any site at rate ki. These rates are
subject to noise chri and chk i, respectively. In this
model, as in the other stochastic models below, we
consider only stochasticity in any process related to
quality assessment of the available alternatives. This
enables our analysis to concentrate on how this relevant
noise is processed by the system. This strategy has
already been used implicitly in the Usher–McClelland
model: there decay and inhibition are modelled
deterministically, yet corresponding neural processes
in the real world will of course be noisy.

Thus the ants’ decision-making process is described
by the following equations:

_y1ZðnKy1Ky2Þðq1Cchq1ÞCy1r
0
1ðsÞ

Cy2ðr2Cchr2ÞKy1ðr1Cchr1ÞKy1ðk1Cchk1Þ;
_y2ZðnKy1Ky2Þðq2Cchq2ÞCy2r

0
2ðsÞCy1ðr1Cchr1Þ

Ky2ðr2Cchr2ÞKy2ðk 2Cchk2Þ;

8>>><
>>>:

ð6:2Þ

where as population size is constant sZnKy1Ky2, and
hence the equation for _s is redundant.

In the (x1, x2) variables, we seek to parametrize the
model so that the random process _x1 is independent of
the random process _x2, and is identical to the diffusion
model of decision-making. It can easily be shown that
this paramerization requires the decay parameters and
switching rate parameters to be set according to the
qualities of both the alternative nest sites under
consideration (see the electronic supplementary
material). In other words, optimal decision-making
can only be achieved under this model if individuals
have global knowledge about the alternatives available.
Given our understanding of social insects’ house-
hunting mechanisms, we do not expect all committed
individuals to have quantitative knowledge of the qualities
of both alternatives. Hence, optimal parametrization of
our model of house-hunting in T. albipennis seems
biologically unrealistic.
J. R. Soc. Interface (2009)
6.2. House-hunting with indirect switching
in A. mellifera

In this section and §6.3, we now consider two models of
house-hunting in A. mellifera due to Britton et al.
(2002). These models differ only in whether or not they
allow scouts committed to one site to switch directly to
commitment to the alternative site. First, we consider
the case in which scouts cannot directly switch: that is,
they can only change their commitment by first
becoming completely uncommitted.

We adapt the model of Britton et al. (2002) so that,
as in the Pratt et al. model, we have one population of
uncommitted scouts, s, and two populations of recrui-
ters, y1 and y2, for the two alternative sites under
consideration. This is a simplification of the full Britton
et al. model, in that we dispense with their populations
of committed but inactive recruiters. We make a
further small modification to the Britton et al. model
by adding spontaneous discovery of alternative sites by
uncommitted scouts at rates q1 and q2. We make these
rates independent of site quality, to agree with the
modelling approach of Britton et al. and with the
current biological understanding of A. mellifera (Seeley
2003); however, they may vary according to how
distant, or how hard to discover, a potential nest site is.

Using the same notation as in equations (6.2), our
indirect-switching model of house-hunting by
A. mellifera is described by the following equations:

_y1 Z ðnKy1Ky2Þðq1 Cchq1ÞKy1ðk1 Cchk1Þ
Cy1ðnKy1Ky2Þðr 01 Cchr 0

1
Þ;

_y2 Z ðnKy1Ky2Þðq2 Cchq2ÞKy2ðk2 Cchk2Þ
Cy2ðnKy1Ky2Þðr 02 Cchr 02Þ:

8>>><
>>>:

ð6:3Þ

It is easy to show that the indirect-switching model
can neither be reduced to two independent random
processes, nor does it asymptotically converge to the
diffusion model of decision-making (see the electronic
supplementary material). Thus, the indirect-switching
model of decision-making in A. mellifera cannot be
(asymptotically) reduced to one dimension and there-
fore cannot be made exactly or approximately
equivalent to the diffusion model of decision-making.
This does not rule out the possibility that indirect
switching may be an effective decision-making strategy,
but it does rule out it being a statistically optimal
decision-making strategy.
6.3. House-hunting with direct switching
in A. mellifera

We now consider the Britton et al. model in which the
scouts can directly switch their commitment between
alternative sites (figure 4). The equations for this
decision-making system are

_y1 Z ðnKy1Ky2Þðq1 Cchq1ÞCy1ðnKy1Ky2Þ
!ðr 01 Cchr 0

1
ÞKy1kCy1y2ðr1Kr2 Cchr1Kchr2Þ;

_y2 Z ðnKy1Ky2Þðq2 Cchq2ÞCy2ðnKy1Ky2Þ
!ðr 02 Cchr 02ÞKy2kKy1y2ðr1Kr2 Cchr1Kchr2Þ:

ð6:4Þ
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Figure 5. Results from numerical simulation of the
A. mellifera direct-switching model. When decay kO0,
decision-making is more strongly affected by the difference
in discovery rates and recruitment rates from the home nest
(q1Kq2 and r 01Kr 02); if these differences are in favour of the
superior alternative site (site 1), then decision time (DT) can
be reduced by increasing k; however, if the differences favour
the inferior alternative, then increasing k increases decision
time. Inset. If all differences are equally likely, then mean
decision time (y-axis) is minimized when k (x-axis) equals zero.
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The key differences between the model described above
for A. mellifera and the T. albipennis model of
equations (6.2) are in the nature of the recruitment
mechanism. In the T. albipennis model of §6.1, the
number of ants recruited per unit time is a linear
function of the number of recruiters (as long as recruits
are still available). In the honeybee, recruitment occurs
through waggle dancing, which is a process in which
both parties meet (von Frisch 1967); thus in the
A. mellifera model, the number of bees recruited per
unit time depends on the numbers of both recruiters
and potential uninformed recruits. If either is small, the
growth of new recruiter numbers is limited.

Unlike the T. albipennis model, it is not possible to
make the random process _x1 independent of the random
process _x2. However, we can analyse how _x1 behaves in
the limit when x2 converges. By setting the decay rate
kZ0, all scouts will become recruiters over time so x2
approaches n=

ffiffiffi
2

p
. In this limit, the dynamics of _x1 are

described as

_x1 Z
n2

2
Kx21

� �
r1Kr2ffiffiffi

2
p Cchr

� �
: ð6:5Þ

In this random process, both noise and strength of
drift vary quadratically with x1. Choosing an appro-
priate nonlinear coordinate transformation to x (see the
electronic supplementary material), we find by the
chain rule that the random process can be expressed as

_x Z
dx

dx1

dx1
dt

ZACch; ð6:6Þ

where AZðr1Kr2Þ=
ffiffiffi
2

p
.

Thus when kZ0, decision-making asymptotically
converges to the diffusion model (figure 1), a decision-
making process that is exactly equivalent to the
statistically optimal strategy. We therefore describe
the direct-switching model without decay as asympto-
tically optimal.

Optimal decision-making in themodel occurs when no
uncommitted scouts remain in the colony. For honey-
bees, we presume that this usually occurs, as swarms
typically take hours or days to reach a decision. As the
emigration progresses more and more honeybees enter
the decision-making process, and the number of sites
considered by the colony reduces as known alternatives
are eliminated and new alternatives are discovered less
and less frequently (Seeley & Buhrman 1999; Visscher &
Camazine 1999b). Before this full-commitment stage is
reached, decision-making will be governed by differences
in discovery (qi) and recruitment rates ðr 0i Þ for the
available alternatives, and by the availability of infor-
mation on the alternatives. These rates can depend not
only on the quality of the available sites, but also on their
distance, or the difficulty of their discovery. Thus an easy
to discover, close but inferior site may attract more
recruitment effort early on owing to positive feedback
than a more distant, hard to discover but superior site.
Once all scouts are committed, however, no new
information on other alternatives can arrive (as there
are no scouts searching), and decision-making between
the available alternatives is made optimally, solely on
the basis of their relative quality. The only deviation
from purely optimal diffusion decision-making will be
J. R. Soc. Interface (2009)
bias in the starting point of the decision-making process
on the line x2Zn=

ffiffiffi
2

p
, resulting as just described. This

will either tend to favour or disfavour selection of the
best available alternative, depending on the relative ease
of discovery, and distance, of the available alternatives.
Nevertheless, we expect that setting decay kZ0 will
lead robustly to faster, more accurate decision-making,
regardless of how easy or hard nest sites are to find and
recruit to. In §7, we undertake numerical simulation of
the model to test this optimality hypothesis.
7. NUMERICAL SIMULATION

To test whether decision-making in the A. mellifera
direct-switching model is optimized by setting decay
kZ0, we conducted a numerical sensitivity test of the
model (see the electronic supplementary material): we
simultaneously varied the differences in the initial
discovery and recruitment rates, q1Kq2 and r 01Kr 02,
respectively, so that they either favoured or disfa-
voured the selection of the superior nest site (site 1).
The difference in the recruitment rates between the two
populations of committed scouts, r1Kr2Z2, reflects the
true relative qualities of the two alternatives. We then
simulated the model with decay k varying between
0 and 1. The results (figure 5) show that, although the
benefit or cost of increasing k for decision time varies
according to whether the superior site is easier or
harder to find than its inferior alternative, setting kZ0
is robustly optimal as it minimizes expected decision
time across all scenarios considered.
8. DISCUSSION

We have presented the first optimality hypothesis for
collective decision-making during emigration for social
insect colonies. We have also presented the first formal



2These rates were despite the physical proximity of the nests (10 cm
apart), which reduces the need for recruitment processes to augment
independent discovery and switching (Pratt 2008).
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investigation of similarities between certain neural
decision-making processes, and collective decision-
making in social insect colonies, similarities which
others have previously discussed (Hofstadter 1979;
Seeley & Buhrman 2001; Visscher 2007; Passino et al.
2008). In both brains and social insect colonies,
mutually interacting populations must reach an acti-
vation threshold to precipitate a decision. We argue
that the interaction patterns between populations are
the crucial part of the decision-making process at both
these levels of biological complexity, organismal and
super-organismal. Notwithstanding their impressive
individual abilities (Koch 1999), neurons are simple in
comparison with individually sophisticated social
insects (Giurfa et al. 2001; Chittka et al. 2003; Franks
et al. 2003b; Franks & Richardson 2006; Richardson
et al. 2007). Simple interaction patterns in both these
systems, however, may implement robust, efficient
decision-making regardless of how sophisticated their
individual components are.

Of the models presented here, only one approximates
statistically optimal decision-making in a biologically
plausible manner. This is the direct-switching model of
house-hunting by the honeybee A. mellifera, based on a
model proposed by Britton et al. (2002) in which scouts
switch their commitment between alternatives owing to
direct recruitment by others. Thus, our optimality
hypothesis is that such direct switching through
recruitment should occur in social insect colonies if
they are to implement optimal decision-making. Lack
of direct switching does not imply ineffective decision-
making, but does imply departure from statistical
optimality, and also weakens the analogy between
cross-inhibition in neural decision-making circuits and
in social insect colonies. We do not expect natural
selection necessarily to result in optimal behaviour, but
we do expect natural selection to achieve the optimal
compromise between benefits of optimal behaviour, and
costs of overcoming developmental or other constraints
on that behaviour. Of course our optimality hypothesis
remains useful in this case, by providing a gold standard
of optimal behaviour that we can use to quantify
theoretically the cost a real biological system incurs
by deviating from optimality, and set against this the
cost of overcoming any constraints on that system
(Parker & Maynard Smith 1990).

Considerable discussion has focused on whether
direct recruited switching, or indirect switching via
decay to being uncommitted, is more biologically
plausible, both for A. mellifera and T. albipennis. In
both species, significant numbers of scouts have
been observed to visit more than one alternative site
(Seeley & Buhrman 1999; Mallon et al. 2001), yet
experimentation and argument have suggested
that direct comparison is not necessary (Visscher &
Camazine 1999a; Britton et al. 2002; Pratt et al. 2002).
More recently, further evidence on the ability of
T. albipennis scouts to directly switch commitment
has been presented (Franks et al. 2007b). While the
optimal direct-switching model of equations (6.4) was
proposed by Britton et al. (2002) as a model of honeybee
decision-making, experimental evidence now suggests
that honeybees may not be influenced in their switching
J. R. Soc. Interface (2009)
by the activities of recruiters for other alternatives
(Seeley 2003), but may simply decay from their
commitment to a site over time as in the indirect-
switching models of Britton et al. (2002) and this paper.
However, researchers have recently observed the
production of the ‘stop signal’ during decision-making
by honeybee swarms (Seeley & Visscher 2004a). This
signal inhibits the production of waggle dances (Nieh
1993), and it has been suggested that this could serve
the same purpose as the inhibitory connections stated
by the Usher–McClelland neuronal model (Visscher
2007). Inhibition followed by recruitment is function-
ally similar to direct recruited switching. This
hypothesis may be tested empirically by observing
whether the targets of stop signals subsequently might
follow dances for, and become committed to, alterna-
tive sites. The direct-switching nonlinear model also
seems to be a plausible description of pre-quorum
decision-making in T. albipennis. We reanalysed the
experimental data of Pratt et al. (2002) from a binary
emigration experiment with T. albipennis, and found
that 14 per cent of commitment switches from poor to
good nest occurred through recruitment, compared
with 3.8 per cent of switches from good to poor nest.2

Such relative levels of switching are consistent with the
optimal parametrization of our direct-switching model
presented here in that, while switching occurs in both
directions, more individuals switch from poor to good
sites, as they would if the colony were implementing a
diffusion process in reaching its decision. In general, for
both species the data available on direct switching are
sparse yet very interesting, and deserve closer exami-
nation supplemented by additional experiments inves-
tigating mechanisms such as the honeybee’s stop signal.
If such an examination conclusively shows that direct
switching does occur in either species, then our
optimality hypothesis will be supported. If, however,
direct switching is shown definitely not to occur, then
our optimality hypothesis will enable us to quantify
theoretically the cost of deviation from optimality, in
terms of speed and accuracy of decision-making.

In this paper, we have considered only the binary
decision case, for which the SPRT is provably optimal.
Much experimental work undertaken with social insect
colonies involves binary choice experiments. However,
in the real world, it seems unlikely that a colony will
ever be faced with a choice between only two
alternatives. Optimal decision-making becomes more
difficult in the presence of more than two alternatives,
and a provably optimal strategy is not known.
However, a decision-making strategy that is asympto-
tically optimal (as required error rate goes to zero) is
known in the form of the multihypothesis SPRT
(Veeravalli & Baum 1995), and it has recently been
proposed that the vertebrate basal ganglia could
implement this test (Bogacz & Gurney 2007). Other
work has shown that the simple SPRT applied to
multiple alternatives can be very effective when some of
the alternatives are much better than the others
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(Bogacz et al. 2007), a scenario that may be common in
nature, and under which both T. albipennis (Franks
et al. 2003b, 2006a) andA. mellifera (Seeley & Buhrman
2001) colonies have been experimentally demonstrated
to perform well.

One complicating factor for our analysis is that in
social insect colonies, decision-making is conflated with
decision implementation. In T. albipennis colonies,
once the quorum is satisfied, only those scouts that
know the location of the new site will be able to
undertake the transportation of the remainder of the
colony: ants transported by carrying are carried in a
pose unsuitable for learning the route. Hence, the
quorum threshold must be optimized not just for
optimality of decision-making, but for the efficiency of
decision implementation (Planqué et al. 2007). This
may account for other authors’ observations of a
reduced effect of quorum threshold on emigration
time during computer simulations of Temnothorax
emigrations (Pratt & Sumpter 2006). A similar, but
arguably less acute, situation occurs in A. mellifera
colonies, where a sufficiently large minority of informed
scouts must guide the entire swarm to the new nest site
(Couzin et al. 2005). To increase confidence in the
theoretical predictions from our models, which are
necessarily simplified for analytical tractability, it could
be interesting to attempt to validate these predictions
using more biologically plausible individual-based
models, such as those of Pratt et al. (2005), Marshall
et al. (2006) and Passino & Seeley (2006).

An additional complication arises because, in real
emigrations, news about all the alternatives is not
available to the colony from the beginning: discovery of
potential nest sites by scouts is a stochastic process, and
the best available alternative may not be discovered
until quite late in the decision-making process. Experi-
mental (Franks et al. 2007b) and theoretical (Britton
et al. 2002) work has examined the robustness of social
insects’ collective decision-making to this kind of late
information. Our analysis shows how such robustness
might be understood because under the direct-switching
model, once all scouts are committed and no further
information on new alternatives can arrive, decision-
making proceeds optimally between the available
alternatives based on their quality: the only departure
from optimality is the bias in the starting point of the
decision process based on the relative discovery times of
the alternatives.

The previous point brings us to one final obser-
vation, that social insect colonies may face a subtly
different decision problem to neural circuits in the
vertebrate brain. A social insect colony must actively
acquire information from its environment, whereas in
the visual decision-making task considered in this paper
information on both alternatives arrives at an equal and
unvarying rate. Scouts stochastically discover alter-
native sites, but once some potential sites are known
the colony is faced with the traditional explore/exploit
dilemma: should the colony send more scouts to assess
the known alternatives and gain a better estimate of
their quality, or should it allocate scouts to attempt the
discovery of unknown, potentially better, alternatives?
As previously noted (Marshall et al. 2006), the colony is
J. R. Soc. Interface (2009)
thus faced with a decision problem that is a hybrid of
the ‘bandit’ problem, in which trials must be allocated
across noisy alternatives of unknown quality in order to
maximize long-term gain, and the minimal decision
time problem that the SPRT addresses. To our knowl-
edge, no attempt has previously been made to formalize
or analyse such a problem. We believe that analysis of
the social insects’ behaviour, and models thereof, could
provide a fruitful avenue for tackling this new decision
problem. We expect that this problem will also reveal
further similarities between collective and neural
decision-making processes, leading to further extension
of the general decision-making framework outlined here.
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Hofstadter, D. R. 1979 Gödel Escher Bach: an eternal golden
braid. New York, NY: Basic Books.

Huk, A. C. & Shadlen, M. N. 2005 Neural activity in macaque
parietal cortex reflects temporal integration of visual
motion signals during perceptual decision making.
J. Neurosci. 25, 10 420–10 436. (doi:10.1523/JNEUR-
OSCI.4684-04.2005)

Koch, C. 1999 Biophysics of computation: information
processing in single neurons. New York, NY: Oxford
University Press.

Lindauer, M. 1955 Schwarmbienen auf wohnungssuche.
J. Comp. Physiol. A: Sensory Neural Behav. Physiol.
37, 263–324. (doi:10.1007/BF00303153)

Mallon, E. B. & Franks, N. R. 2000 Ants estimate area using
Buffon’s needle. Proc. R. Soc. B 267, 765–770. (doi:10.
1098/rspb.2000.1069)

Mallon, E. B., Pratt, S. C. & Franks, N. R. 2001 Individual
and collective decision-making during nest site selection by
the ant Leptothorax albipennis. Behav. Ecol. Sociobiol. 50,
352–359. (doi:10.1007/s002650100377)
J. R. Soc. Interface (2009)
Marshall, J. A. R., Dornhaus, A., Franks, N. R. & Kovacs, T.
2006 Noise, cost and speed–accuracy trade-offs: decision-
making in a decentralized system. J. R. Soc. Interface
3, 243–254. (doi:10.1098/rsif.2005.0075)
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Planqué, R., Dechaume-Moncharmont, F. X., Franks, N. R.,
Kovacs,T.&Marshall, J.A.R. 2007Whydohouse-hunting
ants recruit in both directions? Naturwissenschaffen
94, 911–918. (doi:10.1007/s00114-007-0273-8)

Pratt, S. C. 2008 Efficiency and regulation of recruitment
during colony emigration by the ant Temnothorax
curvispinosus. Behav. Ecol. Sociobiol. 62, 1369–1376.
(doi:10.1007/s00265-008-0565-9)

Pratt, S. C. & Sumpter, D. J. T. 2006 A tunable algorithm for
collective decision-making. Proc. Natl Acad. Sci. USA 103,
15 906–15 910. (doi:10.1073/pnas.0604801103)

Pratt, S. C., Mallon, E. B., Sumpter, D. J. T. & Franks, N. R.
2002 Quorum sensing, recruitment, and collective
decision-making during colony emigration by the ant
Leptothorax albipennis. Behav. Ecol. Sociobiol. 52,
117–127. (doi:10.1007/s00265-002-0487-x)

Pratt, S. C., Sumpter, D. J. T., Mallon, E. B. & Franks, N. R.
2005 An agent-based model of collective nest choice by the
ant Temnothorax albipennis. Anim. Behav. 70, 1023–1036.
(doi:10.1016/j.anbehav.2005.01.022)

Ratcliff, R. 1978 A theory of memory retrieval. Psychol. Rev.
85, 59–108. (doi:10.1037/0033-295X.85.2.59)

Ratcliff, R. & Smith, P. L. 2004 A comparison of sequential
sampling models for two-choice reaction time. Psychol.
Rev. 111, 333–367. (doi:10.1037/0033-295X.111.2.333)

Ratcliff, R., Cherian, A. & Segraves, M. A. 2003 A comparison
of macaque behavior and superior colliculus neuronal
activity to predictions from models of two choice deci-
sions. J. Neurophysiol. 90, 1392–1407. (doi:10.1152/
jn.01049.2002)

Richardson, T., Sleeman, P., McNamara, J., Houston, A. I. &
Franks, N. R. 2007 Teaching with evaluation in ants.Curr.
Biol. 17, 1520–1526. (doi:10.1016/j.cub.2007.08.032)

Roitman, J. D. & Shadlen, M. N. 2002 Response of neurons in
the lateral intraparietal area during a combined visual
discrimination reaction time task. J. Neurosci. 22,
9475–9489.

Schall, J. D. 2001 Neural basis of deciding choosing and
acting. Nat. Rev. Neurosci. 2, 33–42. (doi:10.1038/
35049054)

http://dx.doi.org/doi:10.1098/rstb.2002.1066
http://dx.doi.org/doi:10.1098/rstb.2002.1066
http://dx.doi.org/doi:10.1098/rspb.2003.2527
http://dx.doi.org/doi:10.1098/rspb.2003.2527
http://dx.doi.org/doi:10.1006/anbe.2002.2032
http://dx.doi.org/doi:10.1006/anbe.2002.2032
http://dx.doi.org/doi:10.1098/rsbl.2005.0302
http://dx.doi.org/doi:10.1016/j.anbehav.2005.11.019
http://dx.doi.org/doi:10.1098/rspb.2005.3312
http://dx.doi.org/doi:10.1098/rspb.2005.3312
http://dx.doi.org/doi:10.1016/j.anbehav.2006.05.020
http://dx.doi.org/doi:10.1007/s11721-007-0007-8
http://dx.doi.org/doi:10.1007/s11721-007-0007-8
http://dx.doi.org/doi:10.1038/35073582
http://dx.doi.org/doi:10.1038/nn1683
http://dx.doi.org/doi:10.1146/annurev.es.12.110181.000245
http://dx.doi.org/doi:10.1146/annurev.es.12.110181.000245
http://dx.doi.org/doi:10.1523/JNEUROSCI.4684-04.2005
http://dx.doi.org/doi:10.1523/JNEUROSCI.4684-04.2005
http://dx.doi.org/doi:10.1007/BF00303153
http://dx.doi.org/doi:10.1098/rspb.2000.1069
http://dx.doi.org/doi:10.1098/rspb.2000.1069
http://dx.doi.org/doi:10.1007/s002650100377
http://dx.doi.org/doi:10.1098/rsif.2005.0075
http://dx.doi.org/doi:10.1007/BF02224742
http://dx.doi.org/doi:10.1155/1974/25763
http://dx.doi.org/doi:10.1098/rspb.2002.2293
http://dx.doi.org/doi:10.1098/rsta.1933.0009
http://dx.doi.org/doi:10.1007/BF00164346
http://dx.doi.org/doi:10.1007/BF00164346
http://dx.doi.org/doi:10.1038/348027a0
http://dx.doi.org/doi:10.1038/348027a0
http://dx.doi.org/doi:10.1007/s00265-005-0067-y
http://dx.doi.org/doi:10.1007/s00265-007-0468-1
http://dx.doi.org/doi:10.1007/s00114-007-0273-8
http://dx.doi.org/doi:10.1007/s00265-008-0565-9
http://dx.doi.org/doi:10.1073/pnas.0604801103
http://dx.doi.org/doi:10.1007/s00265-002-0487-x
http://dx.doi.org/doi:10.1016/j.anbehav.2005.01.022
http://dx.doi.org/doi:10.1037/0033-295X.85.2.59
http://dx.doi.org/doi:10.1037/0033-295X.111.2.333
http://dx.doi.org/doi:10.1152/jn.01049.2002
http://dx.doi.org/doi:10.1152/jn.01049.2002
http://dx.doi.org/doi:10.1016/j.cub.2007.08.032
http://dx.doi.org/doi:10.1038/35049054
http://dx.doi.org/doi:10.1038/35049054


On optimal decision-making J. A. R. Marshall et al.1074
Seeley, T. D. 1982 How honeybees find a home. Sci. Am. 247,
158–169.

Seeley, T. D. 1995 The wisdom of the hive: the social
physiology of honey bee colonies. Cambridge, MA: Harvard
University Press.

Seeley, T. D. 2003 Consensus building during nest-site
selection in honey bee swarms: the expiration of dissent.
Behav. Ecol. Sociobiol. 53, 417–424.

Seeley, T. D. & Buhrman, S. C. 1999 Group decision making
in swarms of honey bees. Behav. Ecol. Sociobiol. 45, 19–31.
(doi:10.1007/s002650050536)

Seeley, T. D. & Buhrman, S. C. 2001 Nest-site selection
in honey bees: how well do swarms implement the ‘best-
of-N’ decision rule? Behav. Ecol. Sociobiol. 49, 416–427.
(doi:10.1007/s002650000299)

Seeley, T. D. & Visscher, P. K. 2004a Group decision making
in nest-site selection by honey bees. Apidologie 35,
101–116. (doi:10.1051/apido:2004004)

Seeley, T. D. & Visscher, P. K. 2004b Quorum sensing during
nest-site selection by honeybee swarms. Behav. Ecol.
Sociobiol. 56, 594–601. (doi:10.1007/s00265-004-0814-5)

Shadlen, M. N. & Newsome, W. T. 2001 Neural basis of a
perceptual decision in the parietal cortex (area lip) of the
rhesus monkey. J. Neurophysiol. 86, 1916–1936.

Stone, M. 1960 Models for choice reaction time. Psychometrika
25, 251–260. (doi:10.1007/BF02289729)
J. R. Soc. Interface (2009)
Trimmer, P., Bogacz, R., Houston, A. I., Marshall, J. A. R.,
McNamara, J., Mendl, M. & Paul, E. 2008 Mammalian
choices: combining fast-but-inaccurate and slow-
but-accurate decision-making systems. Proc. R. Soc. B
275, 2353–2361. (doi:10.1098/rspb.2008.0417)

Usher, M. & McClelland, J. L. 2001 The time course of
perceptual choice: the leaky, competing accumulator
model. Psychol. Rev. 108, 550–592. (doi:10.1037/0033-
295X.108.3.550)

Veeravalli, V. V. & Baum, C. W. 1995 Asymptotic efficiency
of a sequential multihypothesis test. IEEE Trans. Inf.
Theory 41, 1994–1997. (doi:10.1109/18.476323)

Visscher, P. K. 2007 Group decision making in nest-site
selection among social insects. Annu. Rev. Entomol. 52,
255–275. (doi:10.1146/annurev.ento.51.110104.151025)

Visscher, P. K. & Camazine, S. 1999aCollective decisions and
cognition in honeybees. Nature 397, 400. (doi:10.1038/
17047)

Visscher, P. K. & Camazine, S. 1999b The mystery of
swarming honeybees: from individual behaviours to
collective decisions. In Information processing in social
insects, pp. 355–378. Basel, Switzerland: Birkhäuser.
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