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Abstract—Energy efficiency is becoming increasingly impor-
tant for mobile devices because battery technology has not
kept up with the growing demand of ubiquitous multimedia
communications. Since multi-user multiple-input multiple-output
(MU-MIMO) is a key technology in next-generation wireless
communications, this paper addresses optimal energy-efficient
design for MU-MIMO. The energy efficiency is measured by a
classic metric, “throughput per Joule”, while both RF transmit
power and device electronic circuit power are considered. We
define the energy efficiency (EE) capacity for MU-MIMO and
study the power allocation that achieves this capacity. We show
that user antennas should be used only when the corresponding
subchannels are sufficiently good and using them improves the
overall network EE. Based on theoretical analysis, we further de-
velop low-complexity yet globally optimal energy-efficient power
allocation algorithms that converge to the optimum exponen-
tially. Finally comprehensive simulation results are provided to
demonstrate the significant gain in network energy efficiency.

Index Terms– energy efficiency, multi-user MIMO, power
allocation, SDMA

I. INTRODUCTION

Energy efficiency is becoming increasingly important for
mobile devices because battery technology has not kept up
with the growing demand of ubiquitous multimedia communi-
cations [1]. In addition to energy saving, energy-efficient com-
munications have the benefit of reducing interference to other
co-channel users as well as lessening environmental impacts,
e.g., heat dissipation and electronic pollution. Therefore, recent
research has focused on energy-efficient wireless communi-
cation techniques [2]–[6]. When the transmission bandwidth
approaches infinity, the minimum received signal energy per
bit for reliable communication over additive white Gaussian
noise (AWGN) channels approaches −1.59 dB [2]. Energy
dissipation of both transmitter circuits and radio-frequency
(RF) output is investigated in [7], where the modulation level
is adapted to minimize the energy consumption based on
simulation observations. In [3]–[6], optimal energy-efficient
orthogonal frequency-division multiple access (OFDMA) is
designed to balance the circuit power consumption as well
as the transmit power consumption on all OFDM subchannels.
Furthermore, it is shown in [8], [9] that energy-efficient power
control in multi-cell networks improves not only energy effi-
ciency but also spectral efficiency uniformly for all users be-
cause of the conservative nature of power optimization, which
reduces other-cell interference to improve the overall network
throughput. On the other hand, multiple-input multiple-output
(MIMO) has been a key technology for wireless systems
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because of its potential to achieve high capacity, increased
diversity, and interference suppression. In a multi-user sce-
nario, multi-user multiple-input multiple-output (MU-MIMO)
systems can provide a substantial gain in networks by allowing
multiple users to communicate in the same frequency and time
slots [10], [11]. MU-MIMO takes the advantage of both high
capacity achieved with MIMO processing and the benefits of
space-division multiple access and has been accepted by major
wireless standards like IEEE 802.16m and 3GPP Long Term
Evolution (LTE). While there has been extensive research on
improving the spectral efficiency of MU-MIMO, little effort in
literature is focused on energy-efficient MU-MIMO systems.

In this paper, we address the energy-efficient design of MU-
MIMO. We account for both circuit and transmit powers when
designing power allocation schemes and emphasize energy
efficiency over peak rates or throughput. The proposed scheme
balances the energy consumption of circuit operations and RF
transmissions of all users to achieve the maximum network
energy efficiency, which is defined as the number of bits
transmitted per Joule of energy across the whole network. We
demonstrate the existence of a unique globally optimal power
allocation that achieves the energy efficiency capacity. We also
provide a one-dimensional algorithm to obtain this optimum.

The rest of the paper is organized as follows. In Section II,
we formulate the problem and define energy-efficient MU-
MIMO. In Section III and IV, we investigate the optimal
condition and develop an algorithm to obtain the globally
optimal solution. Simulation results are provided in Section
V to demonstrate the performance improvement. Finally, we
conclude the paper in Section VI.
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Fig. 1: System Diagram of a Multi-User System
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II. ENERGY-EFFICIENT MU-MIMO

In this section, we introduce energy-efficient MU-MIMO.
Throughout the paper, denote matrices by capital boldface
letters, vectors by lowercase boldface, and scalars by either
upper or lowercase letters without boldface.

Consider a MU-MIMO system, as illustrated in Fig. 1,
where one access point (AP) is serving K users. Both the AP
and all users desire energy-efficient communications. The AP
has N antennas. User i has ki antennas and

∑K
i=1 ki ≤ N . The

channel between the AP and users are predetermined earlier
through either training pilots as in a time-division duplex
system or a feedback channel as in a frequency-division duplex
system. In a flat-fading propagation environment, the received
signal at the AP is denoted by

y = H ·Q ·P · x + n =
K∑

i=1

Hi ·Qi ·Pi · xi + n, (1)

where y = [y1, y2, ..., yN ]T . xi = [xi1, xi2, ..., xiki
]T , is the

transmitted symbols of User i and E[|xij |2] = 1, where E is
the expectation. Here []T is the transpose of a vector. Pi =
diag{√pi1,

√
pi2, ...,

√
piki
} is the power allocation matrix of

User i. Qi is the precoding matrix of User i. Hi is the N×ki

channel matrix of User i and is assumed to have rank ki. n is
the length-N noise vector, which is Gaussian distributed with
a zero mean and a covariance matrix σ2IN , where IN is the
identity matrix of size N .

x = [x1,x2, ...,xK ]T ,

P = diag{P1,P2, ...,PK},
Q = diag{Q1,Q2, ...,QK},

and
H = [H1,H2, ...,HK ].

With a linear detector, the decision vector for the transmitted
symbols is

x̂ = w · y = w ·H ·Q ·P · x + w · n. (2)

Using singular value decomposition (SVD),

Hi=Ui

[
Λi

0

]
VH

i = [U̇iÜi]
[
Λi

0

]
VH

i = U̇iΛiVH
i , (3)

where Ui and Vi are N × N and ki × ki unitary matrices.
U̇i consists of the first ki columns of Ui.

Λi = diag{λi1, λi2, ..., λiki
}

where λij ≥ 0.
With local channel knowledge Hi, User i sets the precoding

matrix Qi = Vi. Denote

U = [U̇1, U̇2, ..., U̇K ]

and
Λ = diag{Λ1,Λ2, ...,ΛK}.

It is easy to see the decision vector at the AP is

x̂ = w ·U ·Λ ·P · x + w · n. (4)

While there are many ways of designing the linear receiver
w, we focus on the zero-forcing receiver [12], i.e.,

w = (UHU)−1UH , (5)

for its simplicity. Then the decision vector is

x̂ = Λ ·P · x + n̂, (6)

where n̂ = (UHU)−1UH · n, which is also Gaussian dis-
tributed with a zero mean and a covariance matrix

E[n̂n̂H ] = σ2[
(
UHU

)−1
]H , (7)

with all elements in the diagonal to be σ2.

From (6), the transmissions of different users are uncou-
pled. The AP can detect each symbol independently and the
achieved signal-to-noise ratio (SNR) of all the symbols for
User i is

ηi =

[
pi1λ

2
i1

σ2
,
pi2λ

2
i2

σ2
, ...,

piki
λ2

iki

σ2

]T

. (8)

Given the transceiver structure and the channel state, each
user determines the optimal data rate and power on each
antenna. Denote the data rate vector of User i, Ri =
[ri1, ri2, ..., riki

]. Correspondingly, the overall data rate is

Ri =
ki∑

k=1

rik. (9)

Denote B as the system bandwidth. The achievable data
rate rik is determined by [13]

rik = B log(1 +
ηik

Γ
), (10)

where ηik = pikλ2
ik

σ2 and Γ is the SNR gap that defines the
gap between the channel capacity and a practical coding and
modulation scheme. The SNR gap depends on the modulation,
coding, and the target probability of error. For a coded
quadrature amplitude modulation (QAM) system, the gap is
given by [13]

Γ = 9.8 + γm − γc (dB), (11)

where γm is the system design margin and γc is the coding
gain. For Shannon capacity [14], Γ = 0 dB. Denote the overall
transmit power of User i to be PTi and

PTi =
∑ki

k=1 pik

ζ
, (12)

where ζ ∈ [0, 1] is the power amplifier efficiency and depends
on transmitter design and implementation.

In addition to transmit power, mobile devices also incur
additional circuit power consumption owing to inevitable
electronic operations which is relatively independent of the
radio frequency (RF) transmission [7], [15]. While the transmit
power models all the power used for reliable data transmission,
the circuit power represents the average energy consump-
tion of operating device electronics, such as mixers, filters,
and digital-to-analog converters, and this portion of energy
consumption excludes that of the power amplifier and is
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independent of the transmission state. Denote the circuit power
of User i as PCi, the overall power consumption of User i will
be

Pi = PCi + PTi. (13)

In addition to the energy consumption at the user side,
the AP also consumes electronic circuit energy to receive
and decode signals. Denote the receiving power to be Pr.
Similar to the circuit power, Pr models the average energy
consumption of AP device electronics, such as mixers, filters,
and analog-to-digital converters.

It is desirable to maximize the amount of data sent with a
given amount of energy. The amount of energy �e consumed
in a small duration, �t, is

�e = �t

(
α
∑

i

Pi + βPr

)
,

where the weights α ∈ [0, 1] and β ∈ [0, 1] characterize the
priorities of transmitter and receiver power consumptions. For
example α = 1 and β = 0 indicate that the receiver power
consumption is not considered.

The MU-MIMO system wants to send a maximum amount
of data by choosing the optimal power allocation to maximize∑

i Ri � t

�e
, (14)

which is equivalent to maximizing

U(P) =
∑

i Ri

α
∑

i Pi + βPr
. (15)

U is called the energy efficiency of MU-MIMO. The unit
of the energy efficiency is bits per Joule, which has been
frequently used in literature for energy-efficient communi-
cations [2], [16]–[19]. With metric (15), the energy used
for sending each information bit is minimized. The energy
efficiency capacity of MU-MIMO is defined as

U∗ = max
P

∑
i Ri

α
∑

i(PTi + PCi) + βPr
, (16)

and the optimal energy-efficient power allocation achieving
the energy efficiency capacity is

P∗ = arg max
P

U = arg max
P

∑
i Ri

α
∑

i(PTi + PCi) + βPr
.

(17)
Note that when K = 1, (16) and (17) give the energy
efficiency capacity and the optimal power allocation for a
point-to-point MIMO system. Therefore the results in this
paper are also applicable to MIMO systems.

III. PRINCIPLES OF ENERGY-EFFICIENT MU-MIMO
POWER ALLOCATION

In the following, we demonstrate that a unique globally
optimal power allocation always exists and give the necessary
and sufficient conditions for a power allocation scheme to
achieve the energy efficiency capacity.

The concept of quasi-concavity is defined as [20].

Definition 1. A function f , which maps from a convex set
of real n-dimensional vectors, D, to a real number, is called

strictly quasi-concave if for any x1,x2 ∈ D and x1 �= x2,

f(λx1 + (1− λ)x2) > min{f(x1), f(x2)}, (18)

for any 0 < λ < 1.

Any strictly concave function is strictly quasi-concave but
the reverse may not be true. An example is given in Fig. 2.

Fig. 2: An example of strictly quasi-concave function.

It is proved in Appendix I that U has the following
properties.

Lemma 1. U is strictly quasi-concave in P.

Fig. 2 is indeed an example of U when P is a 2×2 diagonal
matrix.

For a strictly quasi-concave function, if a local maximum
exists, it is also globally optimal [20]. Hence, a unique globally
optimal power allocation always exists and is summarized in
Theorem 1 according to the proof in Appendix I.

Theorem 1. There exists a unique globally optimal energy-
efficient power allocation P∗ that achieves the energy effi-
ciency capacity, where p∗ik is given by

p∗ik =

{
Bζ

αU∗ − Γσ2

λ2
ik

if Bζλ2
ik

αΓσ2 > U∗,
0 otherwise,

(19)

Correspondingly, the energy efficiency capacity is

U∗ = U(P∗). (20)

Theorem 1 says that the the kth antenna of User i should be
used only when the corresponding subchannel, characterized
by λ2

ik, is sufficiently good such that using it improves the
overall network energy efficiency. The power allocation is in-
deed a water-filling solution and the water level is determined
by the energy efficiency capacity. The relative difference
of power allocation of different users on different antennas
depends on the channel gains of those subchannels.

Based on Theorem 1, we have the following basic properties
of power allocation.

Proposition 1. The energy efficiency capacity decreases
strictly, while the optimal allocated power on each subchannel,
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if nonzero, increases strictly with the circuit power of any user.

Proof: Denote P∗ to be the optimal power allocation
given a set of circuit power conditions {PCi

}. The achieved
energy efficiency is U∗. Suppose any PCi

decreases a certain
amount to be PCi

− ΔPC . With the same power allocation
P∗, the energy efficiency is higher than U∗. Hence the en-
ergy efficiency capacity increases. Therefore energy efficiency
capacity decreases strictly with circuit power. Furthermore,
according to (19), the optimal power on each subchannel, if
nonzero, decreases strictly with energy efficiency capacity. The
proposition follows immediately.

The main intuition behind Proposition 1 is that as circuit
power increases, higher power should be allocated to achieve
higher data rate such that each information bit can be trans-
mitted faster and less circuit energy is consumed. Similarly
we have Proposition 2.

Proposition 2. When receiving power is considered (β > 0),
the energy efficiency capacity decreases strictly, while the
optimal allocated power on each subchannel, if nonzero,
increases strictly with the receiving power.

IV. A ONE-DIMENSIONAL LOW COMPLEXITY

ALGORITHM

Theorem 1 provides the necessary and sufficient condition
for a power allocation to be the unique and globally optimum
one. However, it is difficult to directly solve the joint nonlinear
equations in Theorem 1. Therefore, we develop an iterative
method to search the optimal P∗ based on the analysis of the
optimal power allocation in Theorem 1.

Denote pik(μ) =
[
μ− Γσ2

λ2
ik

]+
, where [x]+ = max(x, 0),

and the corresponding power allocation matrix to be P(μ).
Clearly when μ = Bζ

αU∗ , P(μ) = P∗. Denote

f(μ) = U(P(μ)) (21)

and it is easy to see that the optimal μ∗ that maximizes f(μ)
equals Bζ

αU∗ . Therefore we only need to find μ∗ such that

μ∗ = arg max
μ

f(μ). (22)

As shown in Appendix II, when f(μ) > 0, f(μ) is strictly
quasi-concave in μ. Hence a unique globally optimal μ∗ exists
such that for any μ < μ∗, f ′(μ) > 0, and for any μ > μ∗,
f ′(μ) < 0. Assume μ1 ≤ μ∗ ≤ μ2. To determine μ∗, let
μ̂ = μ1+μ2

2 . If f ′(μ)|μ̂ = 0, μ∗ is found. If f ′(μ)|μ̂ < 0, then
μ1 < μ∗ < μ̂ and replace μ2 with μ̂; otherwise, replace μ1

with μ̂. This iteration continues until in one iteration, μ2 −
μ1 is sufficiently small to meet the convergence requirement.
This energy-efficient MU-MIMO power allocation (EMMPA)
algorithm is summarized in Table I.

The global convergence to the optimal power allocation of
EMMPA is guaranteed by the strict quasi-concavity of f(μ)
[21] and it can be easily proved that the convergence rate is
characterized by Proposition 3.

Proposition 3. EMMPA converges to the globally optimal μ∗.
Any μ, which satisfies |μ − μ∗| ≤ ε, can be found within at
most 	log2(

(α−1)μ∗

ε − 1)
 iterations.

Algorithm Energy-Efficient MU-MIMO Power Allocation
1. μ1 ← mini,j

Γσ2

λ2
ij

, α← 10
2. μ2 ←μ1 ∗ α
3. while f ′(μ2) > 0
4. do μ1 ←μ2, μ2 ←μ2 ∗ α
5. while no convergence

(∗ search the optimum iteratively ∗)
6. do μ←μ2+μ1

2 ;
7. if f ′(μ) > 0
8. then μ1 ← μ;
9. else μ2 ← μ

10. return μ and pik ←
[
μ− Γσ2

λ2
ik

]+
.

TABLE I: Energy-Efficient MU-MIMO Power Allocation

V. SIMULATION RESULTS FOR ENERGY-EFFICIENT

MU-MIMO

The proposed energy-efficient MU-MIMO can be applied in
different types of wireless networks to improve the network
energy efficiency. In this section, we provide simulation results
for a single-cell cellular network to demonstrate the perfor-
mance of energy-efficient MU-MIMO. System parameters are
listed in Table II. In each trial, users are dropped uniformly
within 250 meters from the AP. The performance below is the
average over all trials. Each user consumes a fixed amount,
100 mW, of circuit power.

Fig. 3 gives the average energy efficiency capacity when
there are two users in the network and each user has 1, 2, 3,
or 4 antennas. The average energy efficiency capacity is an
average of multiple user droppings and channel realizations.
The number of AP antennas is varied to observe its impact on
energy efficiency capacity. On the other hand, Fig. 4 compares
the average energy efficiency capacity when the AP has 64
antennas. We can see that without circuit management, more
users and more antennas always help improve the energy
efficiency capacity of MU-MIMO. Fig. 5 compares the energy
efficiency of EMMPA and that of the fixed power allocation
(FPA). With the fixed power allocation, each user employs
a fixed amount of transmit power, given by the value in
the x axis, and allocates it equally on all subchannels. Two
scenarios are considered. In one scenario, there are four users
in the network, each with two antennas, and the AP has eight
antennas. In the second scenario, there is only one user with
four antennas in the network and the AP has eight antennas.
As shown in Fig. 5, significant gain in energy efficiency can be
observed by using EMMPA. The gain is even larger when there
are multiple users because EMMPA effectively exploits multi-
user diversity in the network to improve energy efficiency.

VI. CONCLUSION

In this paper, we investigated the optimal energy-efficient
MU-MIMO. Both electronic circuit and RF transmit power
consumptions are considered. We first analyzed an MU-MIMO
system based on distributed SVD decomposition of the chan-
nels of all users and derived the achieved SNR conditions for
all users. Then we proposed the concept of energy-efficient
MU-MIMO and defined the energy efficiency capacity for
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Fig. 3: Relationship between energy efficiency capacity, trans-
mit antennas, and receive antennas.

2 4 6 8 10 12 14 16
0

20

40

60

80

100

120

Number of Users

E
ne

rg
y 

E
ffi

ci
en

cy
 C

ap
ac

ity
 (

kb
its

/J
ou

le
)

 

 

ki = 1

ki = 2

ki = 3

ki = 4

User Antennas
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MU-MIMO. We demonstrated the existence of a uniquely
globally optimal power allocation that could achieve this
energy efficiency capacity. A one-dimensional low-complexity
algorithm was developed to obtain the globally optimal power
allocation and this algorithm converges to the global optimum
at an exponential speed. Comprehensive simulation results
were provided to demonstrate the algorithm performance and
the significant gain in energy efficiency for a cellular network.

APPENDIX I
PROOF OF LEMMA 1

Proof: According to Section II,

U(P) =
∑

i Ri

α
∑

i(PTi + PCi) + βPr

=

∑K
i=1

∑ki

k=1 B log
(
1 + pikλ2

ik

Γσ2

)
α
∑K

i=1 PCi + βPr + α
ζ

∑K
i=1

∑ki

k=1 pik

.

(I.23)
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Fig. 5: Comparison between EMMPA and Fixed Power Al-
location (Scenario 1: N = 8, K = 4, ki = 2; Scenario 2:
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TABLE II: Simulation Parameters
Carrier frequency 1.5 GHz
System bandwidth 10 kHz

Thermal noise power, No -141 dBW/MHz
User antenna height 1.6 m
BS antenna height 40 m

Environment Macro cell in urban area
Receiver power, Pr 1000 mW
Propagation Model Okumura-Hata model

Shadowing 10 dB lognormal
Fading Rayleigh flat fading

Power amplifier efficiency, ζ 0.5
SNR gap, Γ 0 dB

α 1
β 1

Denote the upper contour sets of U(P) as

Sμ = {P � 0|U(P) ≥ μ}, (I.24)

where symbol � denotes matrix inequality and P � 0 means
each element of P is nonnegative. According to Proposition
C.9 of [20], U(P) is strictly quasi-concave if and only if Sμ is
strictly convex for any real number μ. When μ < 0, no points
exist on the contour U(P) = μ. When μ = 0, only 0 is on the
contour U(0) = μ. Hence, Sμ is strictly convex when μ ≤ 0.
Now we investigate the case when μ > 0. Sμ is equivalent to

Sμ =

{
P � 0|μα

K∑
i=1

PCi + μβPr +
μα

ζ

K∑
i=1

ki∑
k=1

pik

−
K∑

i=1

ki∑
k=1

B log
(

1 +
pikλ2

ik

Γσ2

)
≤ 0

}
.

(I.25)

It is easy to see that Sμ is strictly convex. Hence, we have the
strict quasi-concavity of U(P).

It is easy to see that at the local maximum of U(P), which is
also the global maximum because of the strict quasi-concavity,
all pik < ∞ as otherwise U(P) = 0. Hence at the local
maximum, pik is positive or pik = 0. If pik is positive, it
can be obtained by setting the partial derivative of U(P) with
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respect to pik to be zero, i.e.,

∂U(P)
∂pik

∣∣∣∣
P=P∗

= 0, (I.26)

and we have

p∗ik =
Bζ

αU∗ −
Γσ2

λ2
ik

, (I.27)

Hence, the unique optimal energy-efficient power allocation is
given by

p∗ik =

{
Bζ

αU∗ − Γσ2

λ2
ik

if Bζλ2
ik

αΓσ2 > U∗,
0 otherwise.

(I.28)

Lemma 1 and Theorem 1 are readily obtained.

APPENDIX II
PROOF OF QUASI-CONCAVITY OF f(μ)

Proof: Similar to the proof in Appendix I, denote the
upper contour sets of f(μ) as

Sν = {μ > 0|f(μ) ≥ ν}. (II.29)

We need to show Sν is strictly convex for any real number ν,
which is obvious when ν ≤ 0. When ν > 0, Sν is equivalent
to

Sν =

{
μ > 0

∣∣∣∣∣να

K∑
i=1

PCi + νβPr +
να

ζ

K∑
i=1

ki∑
k=1

[
μ− Γσ2

λ2
ik

]+

−
K∑

i=1

ki∑
k=1

B log

⎛
⎜⎝1 +

[
μ− Γσ2

λ2
ik

]+
λ2

ik

Γσ2

⎞
⎟⎠ ≤ 0

⎫⎪⎬
⎪⎭

� {ν > 0|M(μ) ≤ 0} .
(II.30)

The second order derivative of M(μ) is

M ′′(μ) = −d2
K∑

i=1

ki∑
k=1

B log

⎛
⎜⎝1 +

[
μ− Γσ2

λ2
ik

]+
λ2

ik

Γσ2

⎞
⎟⎠
/

dμ2

=
∑

i,k:μ> Γσ2

λ2
ik

Bλ4
ik[

Γσ2 + λ2
ik(μ− Γσ2

λ2
ik

)
] .

(II.31)

At lease one antenna of one user should have positive power
allocation as otherwise f(μ) = 0, which is clearly not optimal.
Therefore there exists at lease one i and k such that μ > Γσ2

λ2
ik

.
Hence M ′′(μ) > 0 for all feasible μ of interest and Sν is
strictly convex and we have the strict quasi-concavity of f(μ)
when f(μ) > 0.

APPENDIX III
PROOF OF QUASI-CONCAVITY OF f(μ)

Proof: ∂f(pij)
∂pij

= − λ2
ij

Γσ2
α
ζ

(
Ro

ij + B log(1 + pijλ2
ij

Γσ2 )
)

<

0. Therefore f(pij) is strictly decreasing. It is easy to see that
as pij → +∞, f(pij) → −∞. If when pij → 0, f(pij) > 0,

then there exists a unique pij > 0 such that f(pij) = 0.
Otherwise, Antenna (i, j) should be turned off.

lim
pij→0

f(pij) = B
λ2

ij

Γσ2
(P o

ij + PCu(ko
i ))− α

ζ
Ro

ij > 0.

Therefore, Antenna (i, j) should be turned on when
λ2

ij

σ2 >
Ro

ijΓα

(P o
ij+PCu(ko

i ))Bζ .
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