
1

Optimal k-Deletion Correcting Codes
Jin Sima and Jehoshua Bruck

Department of Electrical Engineering, California Institute of Technology, Pasadena 91125, CA, USA

Abstract

Levenshtein introduced the problem of constructing k-deletion correcting codes in 1966, proved that the optimal redundancy
of those codes is O(k logN), and proposed an optimal redundancy single-deletion correcting code (using the so-called VT
construction). However, the problem of constructing optimal redundancy k-deletion correcting codes remained open. Our key
contribution is a solution to this longstanding open problem. We present a k-deletion correcting code that has redundancy 8k logn+
o(logn) and encoding/decoding algorithms of complexity O(n2k+1) for constant k.

I. INTRODUCTION

A set of binary vectors of length N is a k-deletion code (denoted by C) iff any two vectors in C do not share a subsequence
of length N −k. The problem of constructing a k-deletion code was introduced by Levenshtein [1]. He proved that the optimal
redundancy (defined as N − log |C|) is O(k logN). Specifically, it is in the range k logN + o(logN) to 2k logN + o(logN).
In addition, he proposed the following optimal construction (the well-known Varshamov-Tenengolts (VT) code [2]):{

(c1, . . . , cN) :

N∑
i=1

ici ≡ 0 mod (N + 1)

}
, (1)

that is capable of correcting a single deletion with redundancy not more than log(N+1) [1]. The encoding/decoding complexity
of VT codes is linear in N . Generalizing the VT construction to correct more than a single deletion was elusive for more than
50 years. In particular, the past approaches [4], [5], [6] result in asymptotic code rates that are bounded away from 1.

A recent breakthrough paper [7] proposed a k-deletion code construction with O(k2 log k logN) redundancy and Ok(N log4N)1

encoding/decoding complexity. For the case k = 2 deletions, the redundancy was improved in [12], [13]. Specifically, the
code in [13] has redundancy of 7 logN and linear encoding/decoding complexity. The work in [14] considered correction
with high probability and proposed a k-deletion code construction with redundancy (k + 1)(2k + 1) logN + o(logN) and
encoding/decoding complexity O(Nk+1/ logk−1N). The result for this randomized coding setting was improved in [8],
where redundancy O(k log(n/k)) and complexity poly(n, k) were achieved. However, finding a deterministic k-deletion code
construction that achieves the optimal order redundancy O(k logN) remained elusive.

Our key contribution is a solution to this longstanding open problem: We present a code construction that achieves O(k logN)
redundancy and O(N2k+1) encoding/decoding computational complexity (note that the complexity is polynomial in N). The
following theorem summarizes our main result. We note that in this paper, the optimality of the code is redundancy-wise rather
than cardinality-wise, i.e., the result focus on asymptotic rather than exact size of the code. The problem of finding optimal
cardinality k deletion code appears highly nontrivial even for k = 1.

Theorem 1. For any integer n > k and N = n+8k log n+o(log n), there exists an encoding function E : {0, 1}n → {0, 1}N ,
computed in O(n2k+1) time, and a decoding function D : {0, 1}N−k → {0, 1}n, computed in O(nk+1) time, such that for
any c ∈ {0, 1}n and subsequence d ∈ {0, 1}N−k of E(c), we have that D(d) = c.

Recently, an independent work [9] proposed a k deletion code with O(k log n) redundancy and better complexity of poly(n, k).
Compare to the constant 8k log n in this paper, the constant in [9] is not explicitly given and is at least 200k log n. Moreover,
the approaches in [9] and this paper are different.

Next we identify and describe our key ideas. The key building blocks in our code construction are: (i) generalizing the
VT construction to k deletions by considering constrained sequences, (ii) separating the encoded vector to blocks and using
concatenated codes and (iii) a novel strategy to separate the vector to blocks by a single pattern.

In our previous work for 2-deletions codes [13], we generalized the VT construction. In particular, we proved that while
the higher order parity checks

∑n
i=1 i

jci mod (nj + 1), j = 0, 1, . . . , t might not work in general, those parity checks work
in the two deletions case when the sequences are constrained to have no adjacent 1’s. In this paper we generalize this idea,
specifically, the higher order parity checks work for k = t/2 deletions when the sequences we need to protect satisfy the
following constraint: The distance between any two adjacent 1’s is at least k.

The fact that we can correct k deletions using the generalization of the VT construction on constrained sequences, enables
a concatenated code construction, which separates the sequence c into small blocks. Each block is protected by an inner

This work was presented in part at the IEEE International Symposium on Information Theory, Paris, France, July 2019.
1The notion Ok denotes parameterized complexity, i.e., Ok(N log4 N) = f(k)O(N log4 N) for some function f .

2

code, usually a k-deletion code. All the blocks together are protected by an outer code, for example, a Reed-Solomon code.
Separating and identifying the boundaries between blocks is one of the main challenges in the concatenated code construction.
The work in [10], [11] resolved this issue by inserting markers between blocks. In [7], an approach that uses occurrences of
short subsequences, called patterns, as markers was proposed. The success of decoding in existing approaches requires that
the patterns can not be destroyed or generated by k deletions / insertions.

Here, we improve the redundancy in [7] by using a single pattern to separate the blocks and allowing it to be destroyed
or generated by deletions / insertions. The pattern, which we call synchronization pattern, is a length 3k + dlog ke + 4
sequence a = (a1, . . . , a3k+dlog ke+4) satisfying
• a3k+i = 1 for i ∈ [0, dlog ke+ 4], where [0, dlog ke+ 4] = {0, . . . , dlog ke+ 4}.
• There does not exist a j ∈ [1, 3k − 1], such that aj+i = 1 for i ∈ [0, dlog ke+ 4].

Namely, a synchronization pattern is a sequence that ends with dlog ke+5 consecutive 1’s and no other 1 run with length dlog ke+
5 exists. For a sequence c = (c1, . . . , cn), define a synchronization vector 1sync(c) ∈ {0, 1}n by

1sync(c)i =

{
1, if (ci−3k+1, ci−3k+2, . . . , ci+dlog ke+4) is a synchronization pattern,
0, else.

Note that 1sync(c)i = 0 for i ∈ [1, 3k − 1] and for i ∈ [n − dlog ke − 3, n]. It can be seen from the definition that any two
consecutive 1 entries in 1sync(c) have distance at least 3k.

Now we are ready to describe our construction that is a generalization of the VT code. Define the integer vectors

m(`) , (1`, 1` + 2`, . . . ,

n∑
j=1

j`)

for ` ∈ [0, . . . , 6k], where the i-th entry of m(`) is the sum of the `-th powers of the first i entries. Given a sequence c ∈ {0, 1}n
we compute a (VT like) redundancy of dimension 6k + 1 as follows:

f(c)` , c ·m(`) mod 3kn`+1, (2)

for ` ∈ [0, 6k]. It will be shown that the vector f(1sync(c)) helps protect the synchronization vector 1sync(c) from k deletions
in c.

The rest of the paper is organized as follows. Section II provides an outline of our construction and some of the basic lemmas.
Section III presents our VT generalization for recovering the synchronization vector. Section IV explains how to correct k
deletions based on the synchronization vector, when the synchronization patterns appear frequently. Section V describes an
algorithm to transform a sequence into one with dense synchronization patterns. Section VI presents the encoding and decoding
of the code. Section VII concludes the paper.

II. OUTLINE AND PRELIMINARIES

In this section we give an overview of the ingredients that constitute our code construction and the existing results that will
be used. For a sequence c ∈ {0, 1}n, define its deletion ball Bk(c) as the collection of sequences that share a length n − k
subsequence with c. We first present a lemma showing that the synchronization vector 1sync(c) can be recovered from k
deletions with the help of f(1sync(c)). Its proof will be given in Section III-A.

Lemma 1. For integers n and k and sequences c, c′, if c′ ∈ Bk(c) and f(1sync(c)) = f(1sync(c
′)), then 1sync(c) = 1sync(c

′).

Lemma 1 implies that 1sync(c) can be protected using O(k2 log n) bit redundancy f(1sync(c)). To further reduce the
redundancy and get it down to O(k log n), we apply modulo operations on f(1sync(c)). For an integer vector v = (v0, . . . , v6k)
that satisfies 0 ≤ ve < 3kne+1, e ∈ [0, 6k], let

M(v) =

6k∑
e=0

ve

e−1∏
i=0

3kni+1 (3)

be a one-to-one mapping that maps the vector v into an integer M(v) ∈ [0, (3k)6k+1n(3k+1)(6k+1) − 1]. Then we have the
following lemma, which will be proved in Section III-B.

Lemma 2. For integers n and k, there exists a function p : {0, 1}n → [1, 22k logn+o(logn)], such that if M(f(1sync(c))) ≡
M(f(1sync(c

′))) mod p(c) for two sequences c ∈ {0, 1}n and c′ ∈ Bk(c), then 1sync(c) = 1sync(c
′). Hence if

(M(f(1sync(c))) mod p(c), p(c)) = (M(f(1sync(c
′))) mod p(c′), p(c′))

and c′ ∈ Bk(c), we have that 1sync(c) = 1sync(c
′).

3

Lemma 2 presents a 4k log n + o(log n) bit hash for correcting 1sync(c). With the knowledge of the synchronization
vector 1sync(c), the next lemma shows that the sequence c can be further recovered using another 4k log+o(log n) bit hash,
when c satisfies a ”k dense” property. The proof of Lemma 3 will be given in Section IV.

A sequence c ∈ {0, 1}n is said to be k dense if the lengths of the 0 runs in 1sync(c) is at most

L , (dlog ke+ 5)2dlog ke+9dlog ne+ (3k + dlog ke+ 4)(dlog ne+ 9 + dlog ke).

For k dense c, the distance between two consecutive 1 entries in 1sync(c) is at most L+ 1.

Lemma 3. For integers k and n > k, there exists a function Hashk : {0, 1}n → {0, 1}4k logn+o(logn), such that every k
dense sequence c ∈ {0, 1}n can be recovered, given its synchronization vector 1sync(c), its length n − k subsequence d,
and Hashk(c).

Finally, to encode for arbitrary sequence c ∈ {0, 1}n, a mapping that transforms any sequence to a k dense sequence is
given in the following lemma. The details will be given in Section V-A.

Lemma 4. For integers k and n > k, there exists a map T : {0, 1}n → {0, 1}n+3k+3dlog ke+15, computable in poly(n, k)
time, such that T (c) is a k dense sequence for c ∈ {0, 1}n. Moreover, the sequence c can be recovered from T (c).

The next lemmas are from existing results. Lemma 5 gives a k deletion correcting hash function for short sequences. It is
an extension of the result in [7]. Lemma 6 is a slight variation of the result in [1]. It shows the equivalence between correcting
deletions and correcting deletions and insertions. Lemma 7 (See [15]) gives an upper bound on the number of divisors of a
positive integer n. Lemma 6 and Lemma 7 will be used in proving Lemma 2.

Lemma 5. Let k be a fixed integer. For integers w and n, there exists a hash function H : {0, 1}w →
{0, 1}d(w/dlogne)e(2k log logn+O(1)), computable in Ok((w/ log n)n log

2k n) time, such that any sequence c ∈ {0, 1}w can be
recovered from its length w − k subsequence d and the hash H(c).

Proof. We first show that there exists a hash function H ′ : {0, 1}dlogne → {0, 1}2k log logn+O(1), computable in Ok(n log
2k n)

time, that protects a sequence c′ ∈ {0, 1}dlogne from k deletions. Note that |Bk(c
′)| ≤

(dlogne
k

)2
2k ≤ 2dlog ne2k. Hence it

suffices to use brute force and assign hash values for each possible c′, and compare with all sequences in Bk(c
′). The total

complexity is Ok(n log
2k n) and the size of the hash value H(c′) is log(|Bk(c

′)|+ 1) ≤ 2k log log n+O(1).
Now split c into d(w/dlog ne)e blocks c(i−1)dlogne+1, . . . , cidlogne, i ∈ [1, d(w/dlog ne)e] of length dlog ne. If the length

of the last block is less than dlog ne, add zeros to the end of the last block such that its length is dlog ne. Assign a hash
value hi = H ′((c(i−1)dlogne+1, . . . , cidlogne)), i ∈ [1, d(w/dlog ne)e] for each block. Let H(c) = (h1, . . . ,hd(w/dlogne)e)
be the concatenation of hi for i ∈ [1, d(w/dlog ne)e]. The length of H(c) is d(w/dlog ne)e(2k log log n + O(1)) and the
complexity of H(c) is Ok((w/ log n)n log

2k n)
Let d be a length n− k subsequence of c. Then d(i−1)dlogne+1, . . . , didlogne−k is a length dlog ne − k subsequence of the

block c(i−1)dlogne+1, . . . , cidlogne. Hence the i-th block c(i−1)dlogne+1, . . . , cidlogne can be recovered from hi and
d(i−1)dlogne+1, . . . , didlogne−k. Therefore, c can be recovered given d and H(c) and the proof is done.

Lemma 6. Let r, s, and k be integers satisfying r+s ≤ k. For sequences c, c′ ∈ {0, 1}n, if c′ and c share a common resulting
sequence after r deletions and s insertions in both, then c′ ∈ Bk(c).

Lemma 7. For a positive integer n ≥ 3, the number of divisors of n is upper bounded by 21.6 lnn/(ln lnn).

The proofs of Lemma 1, Lemma 2, Lemma 3, and Lemma 4 rely on several propositions that will be presented in the next
sections. For convenience, a dependency graph for the theorem, lemmas and propositions is given in Fig. 1.

III. PROTECTING THE SYNCHRONIZATION VECTORS

In this section we present a hash function to protect the synchronization vector 1sync(c) from k deletions and prove Lemma 2.
We first prove Lemma 1, based on Proposition 1 and Proposition 2. In Proposition 1 we present a bound on the radius of
the Bk ball for the synchronization vector. In Proposition 2, we prove that the higher order parity check helps correct multiple
deletions for sequences in which the distance between two consecutive 1’s is at least 3k. Since 1sync(c) is such a sequence,
we conclude that the higher order parity check helps recover 1sync(c). After proving Lemma 1, we finally use Lemma 7 to
further compress the size of the hash function that protects 1sync(c) and thus prove Lemma 2.

Proposition 1. For c, c′ ∈ {0, 1}n, if c′ ∈ Bk(c), then 1sync(c
′) ∈ B3k(1sync(c)).

Proof. Since c′ ∈ Bk(c), the sequences c′ and c share a common subsequence after k deletions in both. We now show that
a single deletion in c causes at most two deletions and one insertion in its synchronization vector 1sync(c). We first show
that a deletion in c can destroy or generate at most 1 synchronization pattern. This is because the deletion occurs within the
synchronization pattern destroyed or generated. Otherwise the synchronization pattern is not destroyed or generated by the
deletion. Therefore, we need to consider four cases in total. Let d′ be the subsequence of c after a single deletion.

4

Lemma 6

Prop. 1 Prop. 2

Lemma 1 Lemma 7 Lemma 5 Prop. 3 Prop. 4 Prop. 5

Lemma 2 Lemma 3 Lemma 4

Thm. 1

Fig. 1. Dependencies of the claims in the paper.

1) The deletion destroys a synchronization pattern (ci+1, . . . , ci+3k+dlog ke+4) for some i and no synchronization pattern is
generated. Then the sequence 1sync(d

′) can be obtained by deleting the 1 entry 1sync(c)i+3k in 1sync(c).
2) The deletion generates a new synchronization pattern (c′i′+1, . . . , c

′
i′+3k+dlog ke+4) for some i′ and destroys a synchroniza-

tion pattern (ci+1, . . . , ci+3k+dlog ke+4). The sequence 1sync(d
′) can be obtained by deleting the 1 entry 1sync(c)i+3k

and the 0 entry 1sync(c)i+3k−1 in 1sync(c) and inserting a 1 entry at 1sync(c)i′+3k.
3) The deletion generates a new synchronization pattern (c′i′+1, . . . , c

′
i′+3k+dlog ke+4) for some i′ and no synchronization

pattern is destroyed. Then the 1sync(d
′) can be obtained by deleting two 0 entries 1sync(c)i′+3k and 1sync(c)i′+3k+1

in 1sync(c) and inserting a 1 entry at 1sync(c)i′+3k.
4) No synchronization pattern is generated or destroyed. Then 1sync(d

′) can be obtained by deleting a 0 entry 1sync(c)j ,
where j is the location of the deletion.

In a summary, in each of the above cases, a single deletion in c causes at most two deletions and one insertion in 1sync(c).
Hence k deletions in c and c′ cause at most 2k deletions and k insertions in 1sync(c) and 1sync(c

′) respectively. According
to Lemma 6, we have that 1sync(c

′) ∈ B3k(1sync(c)) when c′ ∈ Bk(c). Hence Proposition 1 is proved.

Let Rm be the set of length n sequences in which the 0 runs have length at least m−1, meaning that any two consecutive 1
entries in a sequence c ∈ Rm have distance at least m.

Proposition 2. For c, c′ ∈ R3k, if c′ ∈ B3k(c) and c · m(e) = c′ · m(e) (recall that f(c)e = c · m(e) mod 3kne+1)
for e ∈ [0, , 6k], then c = c′.

Proof. We first compute the difference c ·m(e) − c′ ·m(e). Since c′ ∈ B3k(c), there exist two subsets δ = {δ1, . . . , δ3k} ⊂
{1, . . . , n} and δ′ = {δ′1, . . . , δ′3k} ⊂ {1, . . . , n} such that deleting bits with indices δ and δ′ respectively from c and c′ result in
the same length n−3k subsequence, i.e., (ci : i /∈ δ) = (c′i : i /∈ δ′). Let ∆ = {i : ci = 1} and ∆′ = {i : c′i = 1} be the indices
of 1 entries in c and c′ respectively. Let S1 = ∆∩δ be the indices of 1 entries that are deleted in c. Then Sc

1 = ∆∩ ([1, n]\δ)
denotes the indices of 1 entries that are not deleted. Similarly let S2 = ∆′ ∩ δ′ and Sc

2 = ∆′ ∩ ([1, n]\δ′) be the indices of
1 entries that are deleted and not in c′ respectively. Let the elements in δ ∪ δ′ be ordered by 1 ≤ p1 ≤ p2 ≤ . . . ≤ p6k ≤ n.

5

Denoting p0 = 0 and p6k+1 = n, we have that

c ·m(e) − c′ ·m(e) =
∑
`∈∆

m
(e)
` −

∑
`∈∆′

m
(e)
`

=
∑
`∈∆

(
∑̀
i=1

ie)−
∑
`∈∆′

(
∑̀
i=1

ie)

=

n∑
i=1

(
∑

`∈∆∩[i,n]

ie)−
n∑

i=1

(
∑

`∈∆′∩[i,n]

ie)

=

n∑
i=1

(|∆ ∩ [i, n]| − |∆′ ∩ [i, n]|)ie

=

n∑
i=1

(|S1 ∩ [i, n]|+ |Sc
1 ∩ [i, n]| − |S2 ∩ [i, n]| − |Sc

2 ∩ [i, n]|)ie

=

6k∑
j=0

pj+1∑
i=pj+1

(|S1 ∩ [i, n]| − |S2 ∩ [i, n]|+ |Sc
1 ∩ [i, n]| − |Sc

2 ∩ [i, n]|)ie

(1)
=

6k∑
j=0

pj+1∑
i=pj+1

(|S1 ∩ [pj+1, n]| − |S2 ∩ [pj+1, n]|+ |Sc
1 ∩ [i, n]| − |Sc

2 ∩ [i, n]|)ie, (4)

where (1) holds since there is no 1 entry in interval (pj , pj+1). In the following we show
1) −1 ≤ |Sc

1 ∩ [i, n]| − |Sc
2 ∩ [i, n]| ≤ 1 for i ∈ [1, n].

2) For each interval (pj , pj+1], j = 0, . . . , 6k, we have either |Sc
1 ∩ [i, n]| − |Sc

2 ∩ [i, n]| ≤ 0 for all i ∈ (pj , pj+1] or
|Sc

1 ∩ [i, n]| − |Sc
2 ∩ [i, n]| ≥ 0 for all i ∈ (pj , pj+1].

Proof of (1): Since deleting bits with indices δ in c and deleting bits with indices δ′ in c′ result in the same subsequence.
Hence for every i ∈ Sc

1, there is a unique corresponding index i′ ∈ Sc
2 such that the two 1 entries ci and c′i′ end in the same

location after deletions, i.e., i − |δ ∩ [1, i − 1]| = i′ − |δ′ ∩ [1, i′ − 1]|. This implies that |i′ − i| ≤ 3k. Fix integers i and i′.
Then by definition of i and i′, for every x ∈ Sc

1 ∩ [i + 1, n] there is a unique corresponding y ∈ Sc
2 ∩ [i′+, n] such that the

two 1 entries cx and c′y end in the same location after deletions. Hence we have that |Sc
1 ∩ [i+ 1, n]| = |Sc

2 ∩ [i′ + 1, n]| and
that |Sc

1 ∩ [i, n]| = |Sc
2 ∩ [i′, n]|. Without loss of generality assume that i′ ≥ i. Then,

|Sc
1 ∩ [i, n]| − |Sc

2 ∩ [i, n]| = |Sc
1 ∩ [i, n]| − |Sc

2 ∩ [i′, n]| − |Sc
2 ∩ [i+ 1, i′]|

= −|Sc
2 ∩ [i+ 1, i′]|

(a)

≥ −|Sc
2 ∩ [i+ 1, i+ 3k]|

(b)

≥ −1,

where (a) follows from the fact that |i′ − i| ≤ 3k and (b) follows from the fact that c, c′ ∈ R3k. Similarly, when i′ ≤ i, we
have that |Sc

1 ∩ [i, n]| − |Sc
2 ∩ [i, n]| ≤ 1. This completes the proof of (1)

We now prove (2) by contradiction. Supposed on the contrary, there exist i1, i2 ∈ (pj , pj+1] such that i1 < i2 and

(|Sc
1 ∩ [i1, n]| − |Sc

2 ∩ [i1, n]|)(|Sc
1 ∩ [i2, n]| − |Sc

2 ∩ [i2, n]|) < 0

By symmetry it can be assumed that |Sc
1∩ [i1, n]|−|Sc

2∩ [i1, n] = −1 and |Sc
1∩ [i2, n]|−|Sc

2∩ [i2, n]| = 1. Note that |Sc
1| = |Sc

2|
and there exists a one-to-one correspondence between the elements in Sc

1 and the elements in Sc
2. Hence from |Sc

1 ∩ [i1, n]| −
|Sc

2 ∩ [i1, n] = −1, there exist two integers x ∈ Sc
1 ∩ [i1 − 1, n] and y ∈ Sc

2 ∩ [i1, n] such that the two 1 entries cx and c′y are
in the same location after deletions, i.e., x− |δ ∩ [1, x− 1]| = y − |δ′ ∩ [1, y − 1]|. Therefore, we have that

i1 − |δ ∩ [1, i1 − 1]| >i1 − 1− |δ ∩ [1, i1 − 1]|
≥x− |δ ∩ [1, x− 1]|
=y − |δ′ ∩ [1, y − 1]|
≥i1 − |δ′ ∩ [1, i1 − 1]|,

which implies that

|δ ∩ [1, i1 − 1]| < |δ′ ∩ [1, i1 − 1]|. (5)

6

Similarly, from |Sc
1 ∩ [i2, n]| − |Sc

2 ∩ [i2, n]| = 1 we have that

|δ ∩ [1, i2 − 1]| > |δ′ ∩ [1, i2 − 1]|. (6)

Eq. (5) and Eq. (6) implies that

|δ ∩ [1, i2 − 1]| − |δ ∩ [1, i1 − 1]| ≥|δ′ ∩ [1, i2 − 1]|+ 1− |δ′ ∩ [1, i1 − 1]|+ 1

≥2. (7)

However, since i1, i2 ∈ (pj , pj+1], we have that |δ ∩ [1, i1]| = |δ ∩ [1, i2 − 1]| and |δ′ ∩ [1, i1]| = |δ′ ∩ [1, i2 − 1]|, which
implies that

|δ ∩ [1, i2 − 1]| − |δ ∩ [1, i1 − 1]| ≤|δ ∩ [1, i2 − 1]| − |δ ∩ [1, i1]|+ 1

=1.

contradicting to Eq. (7). Hence there do not exist different integers i1, i2 ∈ (pj , pj+1] such that

(|Sc
1 ∩ [i1, n]| − |Sc

2 ∩ [i1, n]|)(|Sc
1 ∩ [i2, n]| − |Sc

2 ∩ [i2, n]|) < 0.

Hence (2) is proved.
Denote

si , |S1 ∩ [i, n]| − |S2 ∩ [i, n]|+ |Sc
1 ∩ [i, n]| − |Sc

2 ∩ [i, n]|

Note that |S1 ∩ [i, n]| − |S2 ∩ [i, n]| = |S1 ∩ [pj+1, n]| − |S2 ∩ [pj+1, n]| for i ∈ (pj , pj+1]. Hence from (1) and (2) it
follows that for each interval (pj , pj+1], j ∈ {0, . . . , 6k}, either si ≥ 0 for all i ∈ (pj , pj+1] or si ≤ 0 for all i ∈ (pj , pj+1].
Let x = (x0, . . . , x6k) ∈ {−1, 1}6k+1 be a vector defined by

xi =

{
−1, if sj < 0 for some j ∈ (pi, pi+1]

1, else.
.

Then from Eq. (4) we have that

c ·m(e) − c′ ·m(e) =

6k∑
j=0

(

pj+1∑
i=pj+1

|si|ie)xj (8)

Let A be a 6k+1× 6k+1 matrix with entries defined by Ae,j =
∑pj

i=pj−1+1 |si|ie−1 for e, j ∈ {1, . . . , 6k+1}. If c ·m(e) =

c′ ·m(e) for e ∈ [0, 6k], we have the following linear equation

Ax =


∑p1

i=p0+1 |si|i0 . . .
∑p6k+1

i=p6k+1 |si|i0
...

. . .
...∑p1

i=p0+1 |si|i6k . . .
∑p6k+1

i=p6k+1 |si|i6k


 x0...
x6k

 = 0 (9)

We show that this is impossible unless A is a zero matrix. Suppose on the contrary that A is nonzero, let j1 < . . . < jQ be
the indices of all nonzero columns of A. Let B be a submatrix of A, obtained by choosing the intersection of the first Q rows
and columns with indices j1, . . . , jQ. Then we have that

Bx′ =


∑pj1

i=pj1−1+1 |si|i0 . . .
∑pjQ

i=pjQ−1
+1 |si|i0

...
. . .

...∑pj1
i=pj1−1+1 |si|iQ−1 . . .

∑pjQ

i=pjQ−1
+1 |si|iQ−1


 x0

...
xQ−1

 = 0 (10)

By the multi-linearity of the determinant,

det(B) =
∑

i1∈(pj1−1,pj1
],...,iM∈(pjQ−1,pjQ

]

det

 |si1 |i01 . . . |siQ |i0Q
...

. . .
...

|si1 |i
Q−1
1 |siQ | . . . iQ−1Q


=

∑
i1∈(pj1−1,pj1],...,iQ∈(pjQ−1

,pjQ
]

[

Q∏
q=1

|siq |
∏

1≤m<`≤Q

(i` − im)] (11)

7

is positive since i` > im for m > ` and for i1 ∈ (pj1−1, pj1], . . . , iQ ∈ (pjQ−1, pjQ]. Note that all the columns of B are
nonzero. Therefore, the linear equation Bx′ = 0 does not have nonzero solutions, contradicting to the fact that x′ ∈ {−1, 1}Q.
Hence A is a zero matrix, meaning that

|S1 ∩ [i, n]| − |S2 ∩ [i, n]|+ |Sc
1 ∩ [i, n]| − |Sc

2 ∩ [i, n]|
=|∆ ∩ [i, n]| − |∆′ ∩ [i, n]| = 0

for i ∈ {1, . . . , n}. This implies ∆ = ∆′ and thus c = c′. Hence Proposition 2 is proved.

A. Proof of Lemma 1

From Proposition 1 we have that 1sync(c
′) ∈ B3k(1sync(c)). Hence (1sync(c

′)i, . . . ,1sync(c
′)n) ∈ B3k((1sync(c)i, . . . ,1sync(c)n)).

This implies that ||∆ ∩ [i, n]| − |∆′ ∩ [i, n]|| ≤ 3k, where ∆ = {i : 1sync(c)i = 1} and ∆′ = {i : 1sync(c
′)i = 1}. Hence

According to Eq. (4), we have that

|1sync(c) ·m(e) − 1sync(c
′) ·m(e)| =|

n∑
i=1

(|∆ ∩ [i, n]| − |∆′ ∩ [i, n]|)ie|,

≤
n∑

i=1

3kie

<3kne+1. (12)

If f(1sync(c)) = f(1sync(c
′)), then 1sync(c)·m(e) ≡ 1sync(c

′)·m(e) mod 3kne+1, which from Eq. (12) implies that 1sync(c)·
m(e) = 1sync(c

′) ·m(e). Since 1sync(c
′) ∈ B3k(1sync(c)) and 1sync(c),1sync(c

′) ∈ R3k, from Proposition 2 we conclude
that 1sync(c) = 1sync(c

′). Hence Lemma 1 is proved.

B. Proof of Lemma 2

We are now ready to prove Lemma 2. We have shown in Lemma 1 that f(1sync(c)) 6= f(1sync(c
′)) for c′ ∈ Bk(c)\{c}.

Hence
|M(f(1sync(c)))−M(f(1sync(c

′)))| 6= 0 (recall Eq. (3) for definition of function M(v)) for c′ ∈ Bk(c)\{c}. According to
Lemma 7, the number of divisors of |M(f(1sync(c)))−M(f(1sync(c

′)))| is upper bounded by

22[(3k+1)(6k+1) lnn+(6k+1) ln 3k]/ ln((3k+1)(6k+1) lnn+(6k+1) ln 3k) = 2o(logn).

For any sequence c ∈ {0, 1}n, let

P(c) = {p : p||M(f(1sync(c
′)))−M(f(1sync(c)))| for some c′ ∈ Bk(c)\{c}}

be the set of all divisors of the numbers {|M(f(1sync(c
′)))−M(f(1sync(c)))| : c′ ∈ Bk(c)\{c}}. Since |Bk(c)| ≤

(
n
k

)2
2k ≤

2n2k, we have that

|P(c)| ≤2n2k2o(logn)

=22k logn+o(logn).

Therefore, there exists a number p(c) ∈ [1, 22k logn+o(logn)] such that p(c) 6 | |M(f(1sync(c
′)))−M(f(1sync(c)))| for all c′ ∈

Bk(c)\{c}. Hence, if M(f(1sync(c
′))) ≡M(f(1sync(c))) mod p(c) and c′ ∈ Bk(c), we have that p(c)||M(f(1sync(c

′)))−
M(f(1sync(c)))| and thus c′ = c. This completes the proof of Lemma 2.

IV. HASH FOR k dense SEQUENCES

In this section, we present a hash function for correcting k deletions in a k-dense sequence c. The encoding/decoding
assumes the knowledge of the synchronization vector 1sync(c) and proves Lemma 3.

Let the positions of the 1 entries in 1sync(c) be t1 < t2 < . . . < tJ , where J =
∑n

i=1 1sync(c)i is the number of 1 entries
in 1sync(c). Furthermore, let t0 = 0 and tJ+1 = n+ 1. Split c into blocks a0, . . . ,aJ , where

aj = (ctj+1, ctj+2, . . . , ctj+1−1) (13)

for j ∈ [0, J]. Since c is k-dense, we have that the length |aj | of aj is not greater than L. Define the hash function Hashk
as follows.

Hashk(c) = RS2k((H(a0), . . . ,H(aJ))), (14)

where RS2k(c) is the redundancy of a systematic Reed-Solomon code (see [16] for details) protecting the length J + 1
sequence (H(a0), . . . ,H(aJ)) from 2k symbol substitution errors. Here the symbols are H(aj) (see Lemma 5 for definition

8

of H(c)), j ∈ [0, J], each having alphabet size not greater than 2d(L/dlogne)e(2k log logn+O(1)) and can be represented us-
ing d(L/dlog ne)e(2k log log n+O(1)) bits. The length of Hashk(c) is max{4k log(J + 1), 4kd(L/dlog ne)e(2k log log n+
O(1))} = 4k log n+ o(log n). We now present the following procedure that recovers c from its length n− k subsequence d,
given the hash function Hashk(c) and the synchronization vector 1sync(c) recovered in Section III.

1) Step 1: Let 1sync(d) ∈ {0, 1}n−k be the synchronization vector of d. Recall that the locations of 1 entries in 1sync(c)
are 1 ≤ t1 < . . . < tJ ≤ n. Let t0 = 0 and tJ+1 = n+ 1.

2) Step 2: Let 1sync(d)0 = 1sync(d)n+1−k = 1. For each j ∈ [0, J], if there exist two numbers ij ∈ [tj − k, tj]
and ij+1 ∈ [tj+1 − k, tj+1] such that 1sync(d)ij = 1sync(d)ij+1

= 1, let a′j = (dij+1, dij+2, . . . , dij+1−1). Else
let a′j = 0.

3) Step 3: Apply the Reed-Solomon decoder to recover H(aj) (aj defined in (13)), j ∈ [0, J], from (H(a′0), . . . , H(a′J),
Hashk(c)).

4) Step 4: Let bj = (dtj+1, dtj+2, . . . , dtj+1−k−1), recover aj by using bj and H(aj). Then recover c from aj , j ∈ [0, J].
Since ctj = 1sync(c)tj = 1 for j ∈ [1, J], it suffices to show that aj , j ∈ [0, J] can be recovered correctly. Furthermore, note that
(dtj+1, . . . , dtj+1−k−1) is a length |aj |−k subsequence of aj , hence aj can be correctly found given bj and H(aj), j ∈ [0.J].
It is then left to recover H(aj) for j ∈ [0, J]. To this end, we show that there are at most 2k indices j, such that a′j 6= aj . Then
there are at most 2k symbol errors in the sequence (H(a0), . . . ,H(aJ)), which can be corrected given the Reed-Solomon
code redundancy Hashk(c).

Let ij , j ∈ [1, J] be the index of ctj in d after deletions, where ij = −1 if ctj is deleted. Let i0 = 0 and iJ+1 = n+1− k.
The interval [ij , ij+1], j ∈ [0.J] is called good if 1sync(d)ij = 1sync(d)ij+1 = 1 and ij+1 − ij = tj+1 − tj . Note that by
definition, 1sync(d)i0 = 1sync(d)iJ+1

= 1. Since dij = ctj and ij ∈ [tj − k, tj] for j ∈ [0, J], we have that a′j = aj if the
interval [ij , ij+1] is good. Now we show that a deletion can destroy at most 2 good intervals. Suppose that the deletion occurs
in interval [tj , tj+1] in c for some j. If the deletion turns the 1 entry 1sync(c)tj to 0, then the 1 entry 1sync(c)tj+1

stays. As
a result, at most two good intervals [ij−1, ij] and [ij , ij+1] are destroyed. Similarly, if the deletion turns 1sync(c)tj+1 to 0,
then at most two good intervals [ij , ij+1] and [ij+1, ij+2] are destroyed. If both 1 entries 1sync(c)tj and 1sync(c)tj+1 are not
affected, then the deletion destroys only one good interval [ij , ij+1]. In conclusion, a deletion affects at most two good intervals
and thus at most 2k block errors a′j 6= aj occur. Therefore, the sequence c can be recovered and this proves Lemma 3.

V. TRANSFORMATION TO k dense SEQUENCES

In this section we present an algorithm to compute the map T (c) (see Lemma 4), which transforms any sequence c ∈ {0, 1}n
into a k dense sequence, thus proving Lemma 4. Let 1x and 0y denote sequences of consecutive x 1’s and consecutive y 0’s
respectively. We will show in Proposition 3 that any sequence c satisfying the following two properties is a k dense sequence.
Then, algorithms will be presented in Subsection V-A to generate sequences that satisfy the two properties and thus is k dense.

Property 1: Every length B , (dlog ke + 5)2dlog ke+9dlog ne interval of c contains the pattern 1dlog ke+5, i.e., for any
integer i ∈ [1, n−B+1], there exists an integer j ∈ [i, i+B−dlog ke−5] such that (cj , cj+1, . . . , cj+dlog ke+4) = 1dlog ke+5.
property 2: Every length R , (3k+ dlog ke+4)(dlog ne+9+ dlog ke) interval of c contains a length 3k+ dlog ke+4
subinterval that does not contain the pattern 1dlog ke+5, i.e., for any integer i ∈ [1, n−R+ 1], there exists an integer j ∈
[i, i+R− 3k − dlog ke − 4], such that (cm, cm+1, . . . , cm+dlog ke+4) 6= 1dlog ke+5 for every m ∈ [j, j + 3k − 1].

Proposition 3. If a sequence c satisfies Property 1 and Property 2, then it is a k dense sequence.

Proof. Let the locations of the 1 entries in 1sync(c) be t1 < . . . < tJ . Let t0 = 0 and tJ+1 = n + 1. It suffices to show
that ti+1 − ti ≤ B +R+ 1 = L+ 1 for any i ∈ [0, J].

According to Property 2, there exists an index j∗ ∈ [ti, ti+R−3k−dlog ke−4], such that (cm, cm+1, . . . , cm+dlog ke+4) 6=
1dlog ke+5 for every m ∈ [j∗, j∗ + 3k − 1]. According to Property 1, there exists an integer x ∈ [j∗ + 1, j∗ + B] such
that (cx, cx+1, . . . , cx+dlog ke+4) = 1dlog ke+5. Let ` = minx≥j∗,(cx,cx+1,...,cx+dlog ke+4)=1dlog ke+5 x. Then we have that ` ∈
[j∗ + 1, j∗ + B] and that (cm, cm+1, . . . , cm+dlog ke+4) 6= 1dlog ke+5 for every m ∈ [j∗, `). By definition of j∗, we have
that `− j∗ ≥ 3k. Since c`, c`+1, . . . , c`+dlog ke+4) = 1dlog ke+5, we have that 1sync(c)` = 1. Therefore, we conclude that

ti+1 − ti ≤ `− ti
≤ j∗ +B − ti
≤ R+B + 1

= L+ 1

The following lemma presents a function that outputs a sequence satisfying Property 1.

9

Proposition 4. For integers k and n > k, there exists a map T1 : {0, 1}n → {0, 1}n+2dlog ke+10, computable in O(n2k log n log2 k)
time, such that T1(c) satisfies Property 1. Moreover, either (T1(c)n+dlog ke+6, . . . , T1(c)n+2dlog ke+10) = 1dlog ke+5 or
(T1(c)n+dlog ke+5, . . . , T1(c)n+2dlog ke+9) = 1dlog ke+5. The sequence c can be recovered from T1(c).

Proof. We first show that every sequence b ∈ {0, 1}B containing no consecutive dlog ke+ 5 1’s can be uniquely represented
by a sequence φ(b) of length B−dlog ne− 2dlog ke− 12. Split b into 2dlog ke+9dlog ne blocks of length (dlog ke+5). Since
each block is not 1dlog ke+5, it can be represented by a symbol of alphabet size 2dlog ke+5 − 1. Therefore, the sequence b can
be uniquely represented by a sequence v of 2dlog ke+9dlog ne symbols, each having alphabet size 2dlog ke+5 − 1. Convert v
into a binary sequence φ(b). Then φ(b) can be represented by bits with length

D , log2(2
dlog ke+5 − 1)2

dlog ke+9dlogne

= log2(1− 1/2dlog ke+5)2
dlog ke+9dlogne + (dlog ke+ 5)2dlog ke+9dlog ne

=16 log2(1− 1/2dlog ke+5)2
dlog ke+5

dlog ne+B

(a)

≤ − 16 log2 edlog ne+B

≤B − 16dlog ne
≤B − dlog ne − 2dlog ke − 12, (15)

where (a) follows from the fact that the function (1− 1/x)x is increasing in x for x > 1 and that limx→∞(1− 1/x)x = 1/e.
Therefore, φ(b) can be represented by B − dlog ne − 2dlog ke − 12 bits.

For a sequence c ∈ {0, 1}n, the encoding procedure for computing T1(c) is as follows.
1) Initialization: Let T1(c) = c. Append 12dlog ke+10 to the end of the sequence T1(c). Let i = 1 and n′ = n. Go to

Step 1.
2) Step 1: If (cj , cj+1, . . . , cj+dlog ke+4) 6= 1dlog ke+5 for every j ∈ [i, i+B−dlog ke− 5], go to Step 2. Else go to Step 4.
3) Step 2: If i ≤ n′ − B + 1, delete (T1(c)i, . . . , T1(c)i+B−1) from T1(c) and append (i, φ(T1(c)i, . . . , T1(c)i+B−1), 0,

12dlog ke+10, 0) to the end of T1(c). Let n′ = n′ −B and i = 1. Go to Step 1. Else go to Step 3.
4) Step 3: Delete (T1(c)i, . . . , T1(c)n′) from T1(c) and append (i, φ(T1(c)i, . . . , T1(c)n′ ,0

i+B−n′−1), 0,
12dlog ke+10−(i+B−n′−1), 0) to the end of T1(c). Let n′ = i− 1 and i = 1. Go to Step 1.

5) Step 4: If i ≤ n′, let i = i+ 1 and go to Step 1. Else output T1(c).
It can be seen that the length of T1(c) keeps constant and is n+2dlog ke+10. The integer n′ is defined such that (T1(c)n′+1, . . . ,
T1(c)n+2dlog ke+10) are the appended bits and (T1(c)1, . . . , T1(c)n′) are the remaining bits in c after the deleting operations
in Step 2 and Step 3. The appended bits are not deleted in the procedure. Note that (T1(c)n′+1, . . . , T1(c)n′+dlog ke+5) =

1dlog ke+5. Hence in Step 3, the integer i satisfies 1 ≤ i+B−n′−1 ≤ dlog ke+4 and the appended bits 12dlog ke+10−(i+B−n′−1)

has length at least dlog ke+ 6.
Since either i increases from 1 to n′ or n′ decreases by B in each step. The algorithm terminates within O(n2) times of

Step 1, Step 2 and Step 3. Since it takes O(B log k) to check if a subsequence is an all 1’s vector. The total complexity
is O(n2k log n log2 k).

We now show that the output sequence T1(c) satisfies Property 1. Note that for any i ∈ [1, n′], there exists some j ∈
[i, i+B − dlog ke − 5] such that T1(c)j = T1(c)j+1 = . . . = T1(c)j+dlog ke+4 = 1. Otherwise T1(c)i is deleted in Step 2 or
Step 3. Moreover, the distance between two consecutive patterns 1dlog ke+5 after position n′ is at most B−dlog ke− 5. Hence
the sequence T1(c) satisfies Property 1.

It can be seen that when the inserting operation in Step 2 or Step 3 does not occur, the we have that (T1(c)n+dlog ke+6, . . . ,
T1(c)n+2dlog ke+10) = 1dlog ke+5. If the insertion operation in Step 2 or Step 3 occurs, then we have that (T1(c)n+dlog ke+5, . . . ,
T1(c)n+2dlog ke+9) = 1dlog ke+5.

We now give the following decoding procedure that recovers c from T1(c).
1) Initialization: Let c = T1(c) and go to Step 1.
2) Step 1: If cn+2dlog ke+10 = 0, find the length ` of the 1 run that ends with cn+2dlog ke+9. let i be the decimal repre-

sentation of (cn+4dlog ke+21−B−`, cn+4dlog ke+22−B−`, . . . , cn+4dlog ke+20−B−`+dlogne). Let b be the sequence obtained
by computing φ−1(cn+4dlog ke+21−B−`+dlogne, cn+4dlog ke+22−B−`+dlogne, . . . , cn+2dlog ke+8−`), where the function φ
is defined in the paragraph before Eq. (15) and is invertible, Note that the length of b is B. Delete (cn+4dlog ke+21−B−`,
cn+4dlog ke+22−B−`, . . . , cn+2dlog ke+10) from c and insert (b1, . . . ,bB−2dlog ke−10+`) at location i of c. Repeat. Else
delete cn+1, . . . , cn+2dlog ke+10 and output c.

Note that in the encoding procedure, every appended subsequence has length B − 2dlog ke − 10 + ` and ends with a 0.
Hence the algorithm stops when all the subsequences appended in Step 2 or Step 3 are deleted. Moreover, the encoding
procedure consists of a series of deleting and appending operations. The decoding procedure exactly reverses the series of
operations in the encoding procedure. Specifically, let T1,i(c), i ∈ [0, I] be the sequence T1(c) obtained after the i-th deleting
and appending operation in the encoding procedure, where I is the number of deleting and appending operations in total in

10

the encoding procedure. We have that T1,0(c) = c and that T1,I(c) is the final output T1(c). Then the decoding procedure
obtains T1,I−i(c), i ∈ [0, I] after the i-th deleting and inserting operation. Hence we get the output T1,I−I(c) = c in the
decoding procedure.

The following lemma shows that a small sequence containing 1dlog ke+5 patterns can be encoded into a sequence without
the 1dlog ke+5 pattern. The lemma will be used to generate sequence satisfying Property 2.

Proposition 5. For an integer k, let c ∈ {0, 1}3k+dlog ke+4 be a sequence such that ci = ci+1 = . . . = ci+dlog ke+4 = 1 for
some i ∈ [1, 3k]. There exists a mapping T2 : {0, 1}3k+dlog ke+4 → {0, 1}3k+dlog ke+3, computable in O(k2 log k) time, such
that T2(c) contains no dlog ke+ 5 consecutive 1 bits. In addition, the sequence c can be recovered from T2(c).

Proof. Given c ∈ {0, 1}3k+dlog ke+4, the encoding procedure for computing T2(c) is given as follows.
1) Initialization: Let T2(c) = c. Append 0 to the end of the sequence T2(c). Find the smallest i ∈ [1, 3k] such

that T2(c)i = T2(c)i+1 = . . . = T2(c)i+dlog ke+4 = 1. Delete (T2(c)i, . . . , T2(c)i+dlog ke+4) from T2(c) and ap-
pend (i,0dlog ke+3−dlog(3k)e) to the end of T2(c). Let n′ = 3k − 1 and i = 1. Go to Step 1.

2) Step 1: If i ≤ n′−dlog ke−4 and T2(c)i = T2(c)i+1 = . . . = T2(c)i+dlog ke+4 = 1, delete (T2(c)i, . . . , T2(c)i+dlog ke+4)
from T2(c) and append (i,0dlog ke+5−dlog(3k)e, 1) to the end of T2(c). Let n′ = n′−dlog ke− 5 and i = 1. Repeat. Else
go to Step 2.

3) Step 2: If i ≤ n′, let i = i+ 1 and go to Step 1. Else output T2(c).
The length of the sequence T2(c) keeps constant and is

3k + dlog ke+ 4 + 1− dlog ke − 5 + dlog ke+ 3 = 3k + dlog ke+ 3.

The integer n′ is defined such that (T2(c)n′+1, . . . , T2(c)3k+dlog ke+3) are appended bits and (T2(c)1, . . . , T2(c)n′) are
the remaining bits in T2(c) after deleting (T2(c)i, . . . , T2(c)i+dlog ke+4). Note that T2(c)n′+1 = 0. Hence if (T2(c)i, . . . ,
T2(c)i+dlog ke+4) = 1dlog ke+5, then i+ dlog ke+ 4 ≤ n′ and thus T2(c)n′+1 is not deleted.

Since either i increases from 1 to n′ or n′ decreases in each step. The algorithm terminates within O(k2) times of Step 1
and Step 2. Since it takes O(log k) to check if a subsequence is an all 1’s vector. The total complexity is O(k2 log k).

We now show that T2(c) contains no 1dlog ke+5 patterns. According to the encoding procedure, for i ∈ [1, n′], we have
that (T2(c)i, . . . , T2(c)i+dlog ke+4) 6= 1dlog ke+5. Furthermore, the distance between two consecutive 0 entries after position n′

is at most dlog 3ke + 1. Hence for any i ∈ [n′ + 1, 3k − 1], we have that (T2(c)i, . . . , T2(c)i+dlog ke+4) 6= 1dlog ke+5.
Therefore, T2(c) does not contain 1dlog ke+5 patterns.

To show that T2(c) is decodable, we present the following procedure that recovers c from T2(c).
1) Initialization: Let c = T2(c) and go to Step 1.
2) Step 1: If c3k+dlog ke+3 = 1, let i be the decimal representation of (c3k−1, c3k, . . . , c3k+dlog 3ke−2). Delete (c3k−1, c3k,

. . . , c3k+dlog ke+3) from c and insert 1dlog ke+5 at location i of c. Repeat. Else go to Step 2.
3) Step 2: Let i be the decimal representation of (c3k+1, c3k+2, . . . , c3k+dlog(3k)e). Delete (c3k, c3k+2, . . . , c3k+dlog ke+3)

from c and insert 1dlog ke+5 at location i of c. Output c.
Note that in the encoding procedure, the appended subsequence in the Initialization Step ends with a 0. The appended
subsequence in Step 1 ends with a 1. Hence the algorithm stops when c3k+dlog ke+3 = 0 and the subsequence (c3k, c3k+2, . . . ,
c3k+dlog ke+3) is deleted.

Similarly to the proof of correctness of decoding in Proposition 4, the decoding procedure exactly reverses the series of
operations in the encoding procedure. Let T2,i(c), i ∈ [0, I] be the sequence obtained after the i-th deleting and appending
operation in the encoding procedure, where I is the number of deleting and appending operations in total in the encoding
procedure. Then T2,i(c) is the sequence obtained after the I − i-th deleting and inserting operation in the decoding procedure.
Therefore, the decoding procedure recovers the sequence c after the I-th operation.

A. Proof of Lemma 4

We are now ready to present the encoding and decoding procedure for computing T (c). The encoding procedure is as
follows.

1) Initialization: Let T (c) = T1(c). Append (03k,1dlog ke+5) to the end of the sequence T (c). Let n′ = n+2dlog ke+10
(the length of T1(c)) and i = 1. Go to Step 1.

2) Step 1: If i ≤ min{n′, n+ 3k + 3dlog ke+ 16− R} and for every j ∈ [i, i+ R − 3k − dlog ke − 4], there exists m ∈
[j, j + 3k − 1] such that (T (c)m, T (c)m+1, . . . , T (c)m+dlog ke+4) = 1dlog ke+5, split (T (c)i, T (c)i+1, . . . , T (c)i+R−1)
into (dlog ne+9+dlog ke) blocks b1,b2, . . . ,bdlogne+9+dlog ke of length 3k+dlog ke+4. Delete (b2, . . . ,bdlogne+8+dlog ke)
from T (c) and append (0, T2(b2), T2(b3), . . . , T2(bdlogne+8+dlog ke), i + 3k + dlog ke + 4,1dlog ke+5, 0) to the end of
T (c). Let n′ = n′ −R+ 6k + 2dlog ke+ 8 and i = 1. Repeat. Else go to Step 2.

3) Step 2: If i ≤ n′, let i = i+ 1 and go to Step 1. Else output T (c).

11

The length of T (c) keeps constant and is n + 3k + 3dlog ke + 15. The subsequence T (c)n′+1, . . . , T (c)n+3k+3dlog ke+15

are appended bits. The subsequence T (c)1, . . . , T (c)n′ consists of the remaining bits in T (c) after deletions in Step 1. Note
that (T (c)n′+1, . . . , T (c)n+3k+3dlog ke+15) is not deleted.

We show that T (c)n′+1, . . . , T (c)n′+3k = 03k and that either T (c)n′−dlog ke−4, . . . , T (c)n′ = 1dlog ke+5 or T (c)n′−dlog ke−5, . . . ,
T (c)n′−1 = 1dlog ke+5. The proof is based on induction on the number r of deleting operations in Step 1 that have been done.
According to Proposition 4, the claim holds after the Initialization Step and hence after r = 0 deleting operations. Suppose the
claim holds after r deleting operations and we have that (T (c)n′+1, . . . , T (c)n′+3k) = 03k. Then in the r+1-deleting operation
in Step 1, the ”if” condition only holds when i ≤ n′−R. Otherwise, for j = n′ ∈ [i, i+R− 1], we have that (cm, cm+1, . . . ,
cm+dlog ke+4) 6= 1dlog ke+5 for every m ∈ [j, j + 3k − 1], contradicting to the ”if” condition. Furthermore, note that the
bits (T (c)i+R−3k−dlog ke−4, . . . , T (c)n+3k+3dlog ke+15) after block bdlogne+9+dlog ke are not deleted in the deleting operation.
Hence the bits T (c)n′−dlog ke−5, . . . , T (c)n+3k+3dlog ke+15 stay in T (c). Therefore, the claim holds after r + 1-th deleting
operation and holds after any number of deleting operations.

We now show that T (c) satisfies Property 1. From Proposition 4, the initial sequence T (c) = (T1(c),0
3k,1dlog ke+5)

satisfies Property 1. We prove that T (c) keeps Property 1 after the deleting and inserting operations. Note that the deleting
operation does not delete b1 and bdlogne+9+dlog ke, which both contain 1dlog ke+5 as a subsequence. Hence the deleting
operation do not change the distance of consecutive 1dlog ke+5 patterns before block b1 and after bdlogne+9+dlog ke. Since
the distance of consecutive 1dlog ke+5 patterns in (b1,bdlogne+9+dlog ke) is at most 6k + 2dlog ke + 8 ≤ B − dlog ke − 5,
the sequence T (c) keeps Property 1 after a deleting operation. Moreover, the distance of consecutive 1dlog ke+5 patterns in
the appended bits (T (c)n′+1, . . . , T (c)n+3k+3dlog ke+15) is at most R − 6k − 2dlog ke − 8 ≤ B − dlog ke − 5. Note that the
appended bits are not deleted in the deleting operations. Hence T (c) keeps Property 1 after an inserting operation and we
conclude that the output T (c) satisfies Property 1.

Next, we prove that T (c) satisfies Property 2. According to the encoding procedure, for any i ∈ [1,min{n′, n+3k+3dlog ke+
16−R}], there exists some j ∈ [i, i+R− 3k−dlog ke− 4], such that (T (c)m, T (c)m+1, . . . , T (c)m+dlog ke+4) 6= 1dlog ke+5

for every m ∈ [j, j + 3k − 1]. Note that the appended bits (T (c)n′+1, . . . , T (c)n+3k+3dlog ke+15) are not deleted. Hence
for i ∈ [n′ + 1, n + 3k + 3dlog ke + 16 − R], the interval [i, i + R − 1] contains a subinterval [j, j + 3k + dlog ke + 3]
such that T (c)j = 0 and (T (c)j+1, . . . , T (c)j+3k+dlog ke+3) = T2(b2), where b2 ∈ {0, 1}3k+dlog ke+4 contains the 1dlog ke+5

pattern. Then (T (c)m, T (c)m+1, . . . , T (c)m+dlog ke+4) 6= 1dlog ke+5 for every m ∈ [j, j+3k−1]. Therefore, the sequence T (c)
satisfies Property 2. According to Proposition 3, we conclude that T (c) satisfies Property 1 and Property 2 and is k dense.

Since either i increases from 1 to n′ or n′ decreases in the encoding procedure, the procedure terminates within O(n2) itera-
tions. Each iteration takes O(k log kR) time to check a violation of Property 2. Hence the complexity is at most O(n2k2 log k(log n)).
Therefore, the total complexity is poly(n, k).

Finally we present the following decoding procedure that recovers c from T (c).
1) Initialization: Let c = T (c) and go to Step 1.
2) Step 1: If cn+3k+3dlog ke+15 = 0, let i be the decimal representation of (cn+3k+2dlog ke+10−dlogne,

cn+3k+2dlog ke+11−dlogne, . . . , cn+3k+2dlog ke+9). Split (cn+9k+5dlog ke+25−R, . . . , cn+3k+2dlog ke+9−dlogne) into
dlog ne + 7 + dlog ke blocks (b′1, . . . ,b

′
dlogne+7+dlog ke) of length 3k + dlog ke + 3. Compute bj = T−12 (b′j) for j ∈

[1, dlog ne+ 7 + dlog ke], where T−12 (b′j) is obtained by applying T2 decoder (Proposition 5) on b′j . Delete
(cn+9k+5dlog ke+24−R, . . . , cn+3k+3dlog ke+15) from c and insert b1, . . . ,bdlogne+7+dlog ke at location i of c. Repeat.
Else delete (cn+2dlog ke+11, . . . , cn+3k+3dlog ke+15) and output T−11 (c).

According to the encoding procedure, the inserted bits end with a 1 entry in the Initialization Step and with a 0 entry in Step 1.
Note that the inserted bits are not deleted in the encoding procedure. Hence the decoding algorithm stops when an ending 1
entry is detected.

Similarly to the to the proof of correctness of decoding in Proposition 4 and Proposition 5, the decoding procedure exactly
reverses the series of operations in the encoding procedure. Therefore, the decoding procedure decodes the sequence c correctly.
The proof is done.

VI. ENCODING

In this section we present the encoding function E and prove Theorem 1. The function E is given by

E(c) = (T (c), R′(c), R′′(c)).

where

R′(c) = (M(f(1sync(T (c)))) mod p(T (c)), p(T (c)), Hashk(T (c))), and
R′′(c) = Repk+1(H(R′(c))).

Here M(v) is the function defined in Eq. (3) and Repk+1(H(R′(c))) is the k+1-fold repetition of the bits in H(R′(c)) (See
Lemma 5 for definition of function H(c)). The function Hashk(c) is defined in Eq. (14) and the function T (c) is defined in
Lemma 4.

12

The length of R′(c) is N1 = 8k log(n + 3k + 3dlog ke + 15) + o(log(n + 3k + 3dlog ke + 15)) = 8k log n + o(log n).
The length of R′′(c) is N2 = 2k(k + 1)(N1/dlog ne) log log n = o(log n). Therefore, the redundancy of E(c) is N1 +N2 =
8k log n+o(log n). Let N = n+8k log n+o(log n) be the length of E(c). To show that c can be recovered from a length N−k
subsequence d of E(c), we prove that

1) The redundancy R′(c) can be recovered from k deletions with the help of R′′(c).
2) The sequence T (c) can be recovered from k deletions with the help of R′(c).

Note that (dn+N1+1, . . . , dn+N1+N2−k) is a length N2 − k subsequence of R′′(c). Since R′′(c) is a k deletion code pro-
tecting H(R′(c)), the hash function H(R′(c)) can be recovered from (dn+N1+1, . . . , dn+N1+N2−k). Moreover, (dn+1, . . . ,
dn+N1−k) is a length N1 − k subsequence of R′(c). From Lemma 5 the hash function H(R′(c)) protects R′(c) from k
deletions. Hence (1) holds.

We now prove (2). According to Lemma 2, the synchronization vector 1sync(T (c)) can be recovered from M(f(1sync(T (c))))
modp(T (c)) and p(T (c)). Since by Lemma 4, T (c) is a k dense sequence. Hence from Lemma 3, it can be recovered based
on 1sync(T (c)) and Hashk(T (c)). Finally, the sequence c can be recovered from T (c) by Lemma 4. Hence (2) holds and c
can be recovered.

The encoding complexity of E(c) is O(n2k+1), which comes from brute fore searching for p(T (c)). The decoding compliex-
ity is O(nk+1), which comes from brute force searching for the correct 1sync(T (c)), given M(f(1sync(T (c)))) mod p(T (c))
and p(T (c)).

VII. CONCLUSION AND FUTURE WORK

We construct a k-deletion correcting code with optimal order redundancy. Interesting open problems include finding com-
plexity O(NO(1)) encoding/decoding algorithms for our code, as well as constructing a systematic k-deletion code with optimal
redundancy.

REFERENCES

[1] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions, and reversals,” Soviet physics doklady, vol. 10, no. 8, pp. 707–710, 1966.
[2] R. R. Varshamov and G. M. Tenengolts, “Codes which correct single asymmetric errors,” Autom. Remote Control, vol. 26, no. 2, pp. 286–290, 1965.
[3] M. Mitzenmacher, “A survey of results for deletion channels and related synchronization channels,” Probability Surveys, vol. 6, pp. 1–33, 2009.
[4] A. S. Helberg and H. C. Ferreira, “On multiple insertion/deletion correcting codes,” IEEE Trans. on Inf. Th., vol. 48, no. 1, pp. 305–308, 2002.
[5] K. A. Abdel-Ghaffar, F. Paluncic, H. C. Ferreira, and W. A. Clarke, “On Helberg’s generalization of the Levenshtein code for multiple deletion/insertion

error correction,” IEEE Trans. on Inf. Th., vol. 58, no. 3, pp. 1804–1808, 2012.
[6] F. Paluncic, K. A. Abdel-Ghaffar, H. C. Ferreira, and W. A. Clarke, “A multiple insertion/deletion correcting code for run-length limited sequences,” IEEE

Trans. on Inf. Th., vol. 58, no. 3, pp. 1809–1824, 2012.
[7] J. Brakensiek, V. Guruswami, and S. Zbarsky, “Efficient low-redundancy codes for correcting multiple deletions,” IEEE Trans. on Inf. Th., vol. 64, no. 5,

pp. 3403–3410, 2018.
[8] B. Haeupler, “Optimal document exchange and new codes for small number of insertions and deletions.” arXiv:1804.03604 [cs.DS], 2018.
[9] K. Cheng, Z. Jin, X. Li and K. Wu, “Deterministic document exchange protocols, and almost optimal binary codes for edit errors,” IEEE 59th Annual

Symposium on Foundations of Computer Science (FOCS), pp. 200–211, 2018.
[10] L. J. Schulman and D. Zuckerman, “Asymptotically good codes correcting insertions, deletions, and transpositions,” IEEE Trans. on Inf. Th., vol. 45,

no. 7, pp. 2552–2557, 1999.
[11] V. Guruswami and C. Wang, “Deletion codes in the high-noise and high-rate regimes,” IEEE Trans. on Inf. Th., vol. 63, no. 4, pp. 1961–1970, 2017.
[12] R. Gabrys and F. Sala, “Codes correcting two deletions,” IEEE Trans. on Inf. Th., vol. 65, no. 2, pp. 965–974, Feb. 2019.
[13] J. Sima, N. Raviv, and J. Bruck, “Two Deletion Correcting Codes from Indicator Vectors,” IEEE Int. Symp. on Inform. Theory., Vail, USA, pp. 421–425,

2018.
[14] S. K. Hanna and S. El Rouayheb, “Guess & check codes for deletions, insertions, and synchronization,” IEEE Trans. on Inf. Th., vol. 65, no. 1, pp. 3–15,

Jan. 2019.
[15] J. L. Nicolas, “On highly composite numbers,” in Ramanujan revisited, Urbana-Champaign, Ill., pp. 215-244, 1987.
[16] S. Gao, ”A new algorithm for decoding Reed-Solomon codes,” Communications, Information and Network Security, Springer, Boston, MA, pp. 55–68,

2003.

	Introduction
	Outline and Preliminaries
	Protecting the synchronization vectors
	Proof of Lemma 1
	Proof of Lemma 2

	Hash for k dense sequences
	Transformation to k dense sequences
	Proof of Lemma 4

	Encoding
	Conclusion and Future Work
	References

