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Abstract Many common approaches to detecting change-
points, for example based on statistical criteria such as
penalised likelihood or minimum description length, can be
formulated in terms ofminimising a cost over segmentations.
We focus on a class of dynamic programming algorithms that
can solve the resulting minimisation problem exactly, and
thus find the optimal segmentation under the given statistical
criteria. The standard implementation of these dynamic pro-
gramming methods have a computational cost that scales at
least quadratically in the length of the time-series. Recently
pruning ideas have been suggested that can speed up the
dynamic programming algorithms, whilst still being guar-
anteed to be optimal, in that they find the true minimum of
the cost function. Herewe extend these pruningmethods, and
introduce twonewalgorithms for segmenting data: FPOPand
SNIP.Empirical results show that FPOP is substantially faster
than existing dynamic programming methods, and unlike the
existing methods its computational efficiency is robust to the
number of changepoints in the data. We evaluate the method
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for detecting copy number variations and observe that FPOP
has a computational cost that is even competitive with that
of binary segmentation, but can give much more accurate
segmentations.
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1 Introduction

Often time-series data experiences multiple abrupt changes
in structure which need to be taken into account if the
data is to be modelled effectively. These changes, known as
changepoints, or breakpoints, cause the data to be split into
segments which can then be modelled separately. Detecting
changepoints, both accurately and efficiently, is required in
a number of applications including bioinformatics (Picard
et al. 2011), financial data (Fryzlewicz 2012), climate data
(Killick et al. 2012; Reeves et al. 2007), EEG data (Lavielle
2005), Oceanography (Killick et al. 2010) and the analysis
of speech signals (Davis et al. 2006).

As increasingly large data-sets are obtained in mod-
ern applications, there is a need for statistical methods for
detecting changepoints that are not only accurate but also
are computationally efficient. A motivating application area
where computational efficiency is important is in detecting
copynumber variation (Olshen et al. 2004;Zhanget al. 2010).
For example, in Sect. 7 we look at detecting changes in DNA
copy number in tumour microarray data. Accurate detection
of regions in which this copy number is amplified or reduced
from a baseline level is crucial as these regions can relate to
tumorous cells and their detection is important for classify-
ing tumour progression and type. The data analysis in Sect. 7
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involves detecting changepoints in thousands of time-series,
many of which have hundreds of thousands of data points.
Other applications of detecting copy number variation can
involve analysing data sets which are orders of magnitude
larger still.

There are awide-range of approaches to detecting change-
points, see for example Frick et al. (2014) and Aue and
Horvth (2013) and the references therein. We focus on one
important class of approaches (e.g. Braun et al. 2000; Davis
et al. 2006; Zhang and Siegmund 2007) that can be formu-
lated in terms of defining a cost function for a segmentation.
They then either minimise a penalised version of this cost
(e.g. Yao 1988; Lee 1995), which we call the penalised min-
imisation problem; orminimise the cost under a constraint on
the number of changepoints (e.g. Yao and Au 1989; Braun
and Müller 1998), which we call the constrained minimi-
sation problem. If the cost function depends on the data
through a sum of segment-specific costs then the minimisa-
tion can be done exactly using dynamic programming (Auger
and Lawrence 1989; Jackson et al. 2005). However these
dynamic programming methods have a cost that increases at
least quadratically with the amount of data, and is prohibitive
for large-data applications.

Alternatively, much faster algorithms exist that provide
approximate solutions to the minimisation problem. The
most widely used of these approximate techniques is Binary
Segmentation (Scott and Knott 1974). This takes a recur-
sive approach, adding changepoints one at a time. With a
new changepoint added in the position that would lead to
the largest reduction in cost given the location of previous
changepoints. Due to its simplicity, Binary Segmentation is
computationally efficient, being roughly linear in the amount
of data, however it only provides an approximate solution
and can lead to poor estimation of the number and posi-
tion of changepoints (Killick et al. 2012). Variations of
Binary Segmentation, such as Circular Binary Segmentation
(Olshen et al. 2004) and Wild Binary Segmentation (Fry-
zlewicz 2012), can offer more accurate solutions for slight
decreases in the computational efficiency.

An alternative approach is to look at ways of speeding
up the dynamic programming algorithms. Recent work has
shown this is possible via pruning of the solution space. Kil-
lick et al. (2012) present a technique for doing this which
we shall refer to as inequality based pruning. This forms the
basis of their method PELT which can be used to solve the
penalised minimisation problem. Rigaill (2010) develop a
different pruning technique, functional pruning, and this is
used in their pDPA method which can be used to solve the
constrainedminimisation problem.Both PELT and pDPAare
optimal algorithms, in the sense that they find the true opti-
mum of the minimisation problem they are trying to solve.
However the pruning approaches they take are very different,
and work well in different scenarios. PELT is most efficient

in applications where the number of changepoints is large,
and pDPA when there are few changepoints.

The focus of this paper is on these pruning techniques,
with the aim of trying to combine ideas from PELT and
pDPA. This leads to two new algorithms, Functional Pruning
Optimal Partitioning (FPOP) and Segment Neighbourhood
with Inequality Pruning (SNIP). SNIP uses inequality based
pruning to solve the constrained minimisation problem pro-
viding an alternative to pDPAwhich offers greater versatility,
especially in the case of multivariate data. FPOP uses func-
tional pruning to solve the penalised minimisation problem
efficiently. We show that FPOP always prunes more than
PELT. Empirical results suggest that FPOP is efficient for
large data sets regardless of the number of changepoints, and
we observe that FPOP has a computational cost that is, in
some scenarios, even competitive with Binary Segmentation.

The structure of the paper is as follows. We introduce
the constrained and penalised optimisation problems for seg-
menting data in the next section. We then review the existing
dynamic programming methods and pruning approaches for
solving the penalised optimisation problem in Sect. 3 and for
solving the constrained optimisation problem in Sect. 4. The
new algorithms, FPOP and SNIP, are developed in Sect. 5,
and compared empirically and theoretically with existing
pruning methods in Sect. 6. We then evaluate FPOP empiri-
cally on both simulated and CNV data in Sect. 7. The paper
ends with a discussion.

2 Model definition

Assumewe have data ordered by time, though the same ideas
extend trivially to data ordered by any other attribute such
as position along a chromosome. Denote the data by y =
(y1, . . . , yn). We will use the notation that, for t ≥ s, the set
of observations from time s to time t is ys:t = (ys, . . . , yt ).
If we assume that there are k changepoints in the data, this
will correspond to the data being split into k + 1 distinct
segments. We let the location of the j th changepoint be τ j
for j = 1, . . . , k, and set τ0 = 0 and τk+1 = n. The j th
segment will consist of data points yτ j−1+1, . . . , yτ j . We let
τ = (τ0, . . . , τk+1) be the set of changepoints.

The statistical problem we are considering is how to infer
both the number of changepoints and their locations. The
specific details of any approach will depend on the type of
change, such as change inmean, variance or distribution, that
wewish to detect. However a general framework that encom-
passes many changepoint detection methods is to introduce
a cost function for each segment. The cost of a segmentation
can then be defined in terms of the sum of the costs across
the segments, and we can infer segmentations through min-
imising the segmentation cost.
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Throughout we will let C(ys+1:t ), for s < t , denote the
cost for a segment consisting of data points ys+1, . . . , yt .
The cost of a segmentation, τ1, . . . , τk is then

k∑

j=0

C(yτ j+1:τ j+1). (1)

The form of this cost function will depend on the type of
change we are wanting to detect. One generic approach to
defining these segments is to introduce a model for the data
within a segment, and then to let the cost be minus the maxi-
mum log-likelihood for the data in that segment. If our model
assumes that the data is independent and identically distrib-
uted with segment-specific parameter μ then

C(ys+1:t ) = min
μ

t∑

i=s+1

− log(p(yi |μ)). (2)

In this formulation we are detecting changes in the value of
the parameter, μ, across segments.

For example ifμ is the mean in Normally distributed data,
with known variance σ 2, then the cost for a segment would
simply be

C(ys+1:t ) = 1

2σ 2

t∑

i=s+1

⎛

⎝yi − 1

t − s

t∑

j=s+1

y j

⎞

⎠
2

, (3)

which is just a quadratic error loss. We have removed a term
that does not depend on the data and is linear in segment
length, as this term does not affect the solution to the seg-
mentation problem. The cost for a segment can also include
a term that depends on the length of segment. Such a cost
appears within a minimum description length criteria Davis
et al. (2006), where the cost for a segment ys+1:t would also
include a log(t − s) term.

2.1 Segmenting data using penalised and constrained
optimisation

If we know the number of changepoints in the data, k, then
we can infer their location through minimising (1) over all
segmentations with k changepoints. Normally however k is
unknown, and thus has to be estimated. A common approach
is to define

Ck,n = min
τ

⎡

⎣
k∑

j=0

C(yτ j+1:τ j+1)

⎤

⎦ , (4)

the minimum cost of a segmenting data y1:n with k change-
points. As k increases we have more flexibility in our model
for the data, therefore Ck,n will often be monotonically

decreasing in k and estimating the number of changepoints
by minimising Ck,n is not possible. One solution is to solve
(4) for a fixed value of k which is either assumed to be known
or chosen separately. We call this problem the constrained
minimisation problem.

If k is not known, then a common approach is to calcu-
late Ck,n and the corresponding segmentations for a range of
values, k = 0, 1, . . . , K , where K is some chosen maximum
number.We can then estimate the number of changepoints by
minimising Ck,n + f (k, n) over k for some suitable penalty
function f (k, n).

Choosing a good value for f (k, n) is still very much an
open problem. The most common choices of f (k, n), for
example SIC (Schwarz 1978) and AIC (Akaike 1974) are
linear in k, however these are only consistent in specific
cases and rely on assumptions made about the data generat-
ing process which in practice is generally unknown. Recent
work in Haynes et al. (2014) looks at picking penalty func-
tions in greater detail, offering ranges of penalties that give
good solutions.

If the penalty function is linear in k, with f (k, n) = βk
for some β > 0 (which may depend on n), then we can
directly find the number of changepoints and corresponding
segmentation by noting that

min
k

[
Ck,n + βk

] = min
k,τ

⎡

⎣
k∑

j=0

C(yτ j+1:τ j+1)

⎤

⎦ + βk,

= min
k,τ

⎡

⎣
k∑

j=0

C(yτ j+1:τ j+1) + β

⎤

⎦ − β. (5)

We call the minimisation problem in (5) the penalised min-
imisation problem.

In both the constrained and penalised cases we need to
solve a minimisation problem to find the optimal segmen-
tation under our criteria. There are dynamic programming
algorithms for solving each of these minimisation problems.
For the constrained case this is achieved using the Segment
Neighbourhood Search algorithm (see Sect. 4.1), whilst for
the penalised case this can be achieved using the Optimal
Partitioning algorithm (see Sect. 3.1).

Solving the constrained case offers a way to get segmen-
tations for k = 0, 1, . . . , K changepoints, and thus gives
insight into how the segmentation varies with the number of
segments. However, a big advantage of the penalised case is
that it incorporates model selection into the problem itself,
and therefore it is often computationally more efficient when
dealing with an unknown value of k. In the following we
will use the terminology optimal segmentation to define seg-
mentations that are the solution to either the penalised or
constrained minimisation problem, with the context making
it clear as to which minimisation problem it relates to.
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2.2 Conditions for pruning

The focus of this paper is on methods for speeding up these
dynamic programming algorithms using pruning methods.
The pruning methods can be applied under one of two con-
ditions on the segment costs:

C1 The cost function satisfies

C(ys+1:t ) = min
μ

t∑

i=s+1

γ (yi , μ),

for some function γ (·, ·), with parameter μ.
C2 There exists a constant κ such that for all s < t < T ,

C(ys+1:t ) + C(yt+1:T ) + κ ≤ C(ys+1:T ).

Condition C1 will be used by functional pruning (which
is discussed in Sects. 4.2 and 5.1). Condition C2 will be used
by the inequality based pruning (Sects. 3.2 and 5.2).

Note that C1 is a stronger condition than C2. If C1 holds
then C2 also holds with κ = 0 and this is true for many
practical cost functions. For example it is easily seen that
for the negative log-likelihood (2) C1 holds with γ (yi , μ) =
− log(p(yi |μ)) and C2 holds with κ = 0. By comparison,
segment costs that are the sum of (2) and a term that depends
non-linearly on the length of the segment will obey C2 but
not C1.

3 Solving the penalised optimisation problem

We first consider solving the penalised optimisation prob-
lem (5) using a dynamic programming approach. The initial
algorithm, Optimal Partitioning (Jackson et al. 2005), will be
discussed first before mentioning how pruning can be used
to reduce the computational cost.

3.1 Optimal Partitioning

Consider segmenting the data y1:t . Denote F(t) to be the
minimum value of the penalised cost (5) for segmenting such
data, with F(0) = −β. The idea of Optimal Partitioning is to
split the minimisation over segmentations into the minimi-
sation over the position of the last changepoint, and then the
minimisation over the earlier changepoints. We can then use
the fact that the minimisation over the earlier changepoints
will give us the value F(τ ∗) for some τ ∗ < t

F(t) = min
τ ,k

k∑

j=0

[C(yτ j+1:τ j+1)+β
]−β,

= min
τ ,k

⎧
⎨

⎩

k−1∑

j=0

[C(yτ j+1:τ j+1)+β
]+ C(yτk+1:t )+β

⎫
⎬

⎭−β,

= min
τ∗

⎧
⎨

⎩min
τ ,k′

k′∑

j=0

[C(yτ j+1:τ j+1) + β
]

−β + C(yτ∗+1:t ) + β

⎫
⎬

⎭ ,

= min
τ∗

{
F(τ ∗) + C(yτ∗+1:t ) + β

}
.

Hence we obtain a simple recursion for the F(t) values

F(t) = min
0≤τ<t

[
F(τ ) + C(yτ+1:t ) + β

]
. (6)

The segmentations themselves can be recovered by first tak-
ing the arguments which minimise (6)

τ ∗
t = arg min

0≤τ<t

[
F(τ ) + C(yτ+1:t ) + β

]
, (7)

which give the optimal location of the last changepoint in the
segmentation of y1:t .

If we denote the vector of ordered changepoints in the
optimal segmentation of y1:t by cp(t), with cp(0) = ∅, then
the optimal changepoints up to a time t can be calculated
recursively

cp(t) = (cp(τ ∗
t ), τ ∗

t ).

As Eq. (6) is calculated for time steps t = 1, 2, . . . , n and
each time step involves aminimisation over τ =0, 1, . . . , t−1
the computation takes O(n2) time.

3.2 PELT

One way to increase the efficiency of Optimal Partitioning
is discussed in Killick et al. (2012) where they introduce the
PELT (Pruned Exact Linear Time) algorithm. PELT works
by limiting the set of potential previous changepoints (i.e.
the set over which τ is chosen in the minimisation in Eq. 6).
They show that if condition C2 holds for some κ , and if

F(s) + C(y(s+1:t)) + κ > F(t), (8)

then at any future time T > t , s can never be the optimal
location of the most recent changepoint prior to T .

This means that at every time step t the left hand side of
Eq. (8) can be calculated for all potential values of the last
changepoint. If the inequality holds for any individual s then
that s can be discounted as a potential last changepoint for
all future times. Thus the update rules (6) and (7) can be
restricted to a reduced set of potential last changepoints, τ ,
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to consider. This set, which we shall denote as Rt , can be
updated simply by

Rt+1 = {τ ∈ {Rt ∪ {t}} : F(τ ) + C(y(τ+1):t ) + κ ≤ F(t)}.
(9)

This pruning technique, which we shall refer to as inequality
based pruning, forms the basis of the PELT method.

Since at each time step in the PELT algorithm the min-
imisation is being run over fewer values it is expected that
this method will be more efficient than the basic Optimal
Partitioning algorithm. In Killick et al. (2012) it is shown to
be at least as efficient as Optimal Partitioning, with PELT’s
computational cost being bounded above by O(n2). Under
certain conditions the expected computational cost can be
shown to be bounded by Ln for some constant L < ∞. These
conditions are given fully in Killick et al. (2012), the most
important of which is that the expected number of change-
points in the data increases linearly with the length of the
data, n.

4 Solving the constrained optimisation problem

We now consider applications of dynamic programming to
solve the constrained optimisation problem (4). These meth-
ods assumeamaximumnumber of changepoints that are to be
considered, K , and then solve the constrained optimisation
problem for all values of k = 1, 2, . . . , K . We first describe
the initial algorithm, SegmentNeighbourhoodSearch (Auger
and Lawrence 1989), and then an approach that uses pruning.

4.1 Segment Neighbourhood Search

Take the constrained case (4) which segments the data up to
t , for t ≥ k + 1, into k + 1 segments (using k changepoints),
and denote the minimum value of the cost by Ck,t . The idea
of Segment Neighbourhood Search is to derive a relationship
between Ct,k and Cs,k−1 for s < t :

Ck,t = min
τ

k∑

j=0

C(yτ j+1:τ j+1),

= min
τk

⎡

⎣ min
τ 1:k−1

k−1∑

j=0

C(yτ j+1:τ j+1) + C(yτk+1:τk+1)

⎤

⎦ ,

= min
τk

[
Ck−1,τk + C(yτk+1:τk+1)

]
.

Thus the following recursion is obtained:

Ck,t = min
τ∈{k,...,t−1}

[
Ck−1,τ + C(yτ+1:t )

]
. (10)

If this is run for all values of t up to n and for k = 2, . . . , K ,
then the exact segmentations with 1, . . . , K segments can be
acquired.

To extract the exact segmentation we first let τ ∗
l (t) denote

the optimal position of the last changepoint if we segment
data y1:t using l changepoints. This can be calculated as

τ ∗
l (t) = argmin

τ∈{l,...,t−1}
[
Cl−1,τ + C(yτ+1:t )

]
.

Then if we let (τ k1 , . . . , τ kk ) be the set of changepoints in the
segmentation of y1:n into k + 1 segments, we have τ kk =
τ ∗
k (n). Furthermore we can calculate the other changepoint
positions recursively for l = k − 1, . . . , 1 using

τ kl (n) = τ ∗
l (τ kl+1).

For a fixed value of k Eq. (10) is computed for t ∈
1, . . . , n. Then for each t the minimisation is done for
τ = 1, . . . , t − 1. This means that O(n2) calculations are
needed. However, to also identify the optimal number of
changepoints this then needs to be done for k ∈ 1, . . . , K
so the total computational cost in time can be seen to be
O(Kn2).

4.2 Pruned Segment Neighbourhood Search

Rigaill (2010) has developed techniques to increase the effi-
ciency of Segment Neighbourhood Search using functional
pruning. These form the basis of a method called pruned
Dynamic Programming Algorithm (pDPA). A more generic
implementation of this method is presented in Cleynen et al.
(2012). Here we describe how this algorithm can be used to
calculate theCk,t values. Once these are calculated, the exact
segmentation can be extracted as in Segment Neighbourhood
Search.

Assuming condition C1, the segment cost function can
be split into the component parts γ (yi , μ), which depend
on the parameter μ. We can then define new cost functions,
Costτk,t (μ), as the minimal cost of segmenting data y1:t into
k segments, with a most recent changepoint at τ , and where
the segment after τ is conditioned to have parameterμ. Thus
for τ ≤ t − 1,

Costτk,t (μ) = Ck−1,τ +
t∑

i=τ+1

γ (yi , μ), (11)

and Cost tk,t (μ) = Ck−1,t .
These functions, which are stored for each candidate

changepoint, can then be updated at each new time step as
for τ ≤ t − 1

Costτk,t (μ) = Costτk,t−1(μ) + γ (yt , μ). (12)
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By taking the minimum of Costτk,t (μ) over μ, the individual
terms of the right hand side of Eq. (10) can be recovered.
Therefore, by further minimising over τ , the minimum cost
Ck,t can be returned

min
τ

min
μ

Costτk,t (μ) = min
τ

min
μ

[
Ck−1,τ +

t∑

i=τ+1

γ (yi , μ)

]
,

= min
τ

[
Ck−1,τ + min

μ

t∑

i=τ+1

γ (yi , μ)

]
,

= min
τ

[
Ck−1,τ + C(yτ+1:t )

]
,

= Ck,t .

By interchanging the order of minimisation the values of
the potential last changepoint, τ , can be pruned whilst allow-
ing for changes in μ. First we define the function Cost∗k,t (μ)

as follows

Cost∗k,t (μ) = min
τ

Costτk,t (μ).

We can now get a recursion for Cost∗k,t (μ) by splitting the
minimisation over themost recent changepoint τ into the two
cases τ ≤ t − 1 and τ = t

Cost∗k,t (μ) = min

{
min

τ≤t−1
Costτk,t (μ), Cost tk,t (μ)

}
,

= min

{
min

τ≤t−1
Costτk,t−1(μ)

+γ (yt , μ) , Ck−1,t

}
,

which gives

Cost∗k,t (μ) = min
{
Cost∗k,t−1(μ) + γ (yt , μ), Ck−1,t

}
.

The idea of pDPA is to use this recursion for Cost∗k,t (μ).
We can then use the fact that Ck,t = minμ Cost∗k,t (μ) to
calculate the Ck,t values. In order to do this we need to be
able to represent this function of μ in an efficient way. This
can be done if μ is a scalar, because for any value of μ,
Cost∗k,t (μ) is equal to the value ofCostτk,t (μ) for some value
of τ . Thus we can partition the possible values of μ into
intervals, with each interval corresponding to a value for τ

for which Cost∗k,t (μ) = Costτk,t (μ).
To make the idea concrete, an example of Cost∗k,t (μ) is

given in Fig. 1 for a change in mean using the cost function
given in (3). As each γ (yi , μ) is quadratic in μ then the sum
of these, Costτk,t (μ), is also a quadratic function in this case.
In this example there are 8 intervals of μ corresponding to 7
different values of τ forwhichCost∗k,t (μ) = Costτk,t (μ). The
pDPA algorithm needs to just store the 7 differentCostτk,t (μ)

functions, and the corresponding sets.

1.0 1.5 2.0 2.5 3.0 3.5 4.0

93
.5

94
.0

94
.5

95
.0

95
.5
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.0

96
.5

µ

co
st

6
16
28
42
52
53
54

Fig. 1 Cost functions,Costk,τ (μ, t) for τ = 0, . . . , 54 and t = 54 and
the corresponding C∗

k (μ, t) (in bold) for a change in mean using the
negative normal log-likelihood cost function (3). Coloured lines corre-
spond to Costk,τ (μ, t) that contribute to C∗

k (μ, t), with the coloured
horizontal lines showing the intervals of μ for which each value of τ

is such that Costk,τ (μ, t) = C∗
k (μ, t). Faded lines correspond to can-

didates which have previously been pruned, and do not contribute to
C∗
k (μ, t)

Formally speaking we define the set of intervals for
which Cost∗k,t (μ) = Costτk,t (μ) as Setτk,t . The recursion for
Cost∗k,t (μ) can be used to induce a recursion for these sets.
First define:

I τ
k,t = {μ : Costτk,t (μ) ≤ Ck−1,t }. (13)

Then, for τ ≤ t − 1 we have

Setτk,t = {
μ : Costτk,t (μ) = Cost∗k,t (μ)

}
,

= {
μ : Costτk,t−1(μ) + γ (yt , μ)

= min
{
Cost∗k,t−1(μ) + γ (yt , μ),Ck−1,t

}}
.

Remembering thatCostτk,t−1(μ)+γ (yt , μ) ≥ Cost∗k,t−1(μ)

+ γ (yt , μ), we have that for μ to be in Setτk,t we need
that Costτk,t−1(μ) = Cost∗k,t−1(μ), and that Costτk,t−1(μ)+
γ (yt , μ) ≤ Ck−1,t . The former condition corresponds to μ

being in Setτk,t−1 and the second that μ is in I τ
k,t . So for

τ ≤ t − 1

Setτk,t = Setτk,t−1 ∩ I τ
k,t .

If this Setτk,t = ∅ then the value τ can be pruned, as Setτk,T =
∅ for all T > t .

If we denote the range of values μ can take to be D, then
we further have that
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Fig. 2 Example of the pDPA algorithm over two time-steps. On each
plot we show individual Costτk,t (μ) functions that are stored, together
with the intervals (along the bottom) for which each candidate last
changepoint is optimal. In bold is the value of Cost∗k,t (μ). For this
example t = 43 and we are detecting a change in mean (see Sect. 2).

(a) 4 candidates are optimal for some interval of μ, however at t = 44
(b), when the candidate functions are updated and the new candidate is
added, then the candidate τ = 43 is no longer optimal for any μ and
hence can be pruned (c)

Set tk,t = D\
[
⋃

τ

I τ
k,t

]
,

where t can be pruned straight away if Set tk,t = ∅.
An example of the pDPA recursion is given in Fig. 2 for

a change in mean using the negative normal log-likelihood
cost function (3). The left-hand plot showsCost∗k,t (μ). In this
example there are 5 intervals ofμ corresponding to 4different
values of τ for which Cost∗k,t (μ) = Costτk,t (μ). When we
analyse the next data point, we update each of these four
Costτk,t (μ) functions, using Costτk,t+1(μ) = Costτk,t (μ) +
γ (yt+1, μ), and introduce a new curve corresponding to a
change-point at time t + 1, Cost t+1

k,t+1(μ) = Ck−1,t+1 (see
middle plot). We can then prune the functions which are no
longer optimal for any μ values, and in this case we remove
one such function (see right-hand plot).

pDPA can be shown to be bounded in time by O(Kn2).
Rigaill (2010) further analyse the time complexity of pDPA
and show it empirically to be O(Kn log n), further indica-
tions towards thiswill be presented in Sect. 7.However pDPA
has a computational overhead relative to Segment Neigh-
bourhood Search, as it requires calculating and storing the
Costτk,t (μ) functions and the corresponding sets Setτk,t . Cur-
rently implementations of pDPA have only been possible for
models with scalar segment parameters μ, due to the dif-
ficulty of calculating the sets in higher dimensions. Being
able to efficiently store and update the Costτk,t (μ) has also
restricted applications primarily to models where γ (y, μ)

corresponds to the log-likelihood of an exponential fam-
ily. However this still includes a wide-range of changepoint
applications, including that of detecting CNVs that we con-
sider in Sect. 7. The cost of updating the sets depends heavily
on whether the updates (13) can be calculated analytically,
or whether they require the use of numerical methods.

5 New changepoint algorithms

Two natural ways of extending the two methods introduced
above will be examined in this section. These are, respec-
tively, to apply functional pruning (Sect. 4.2) to Optimal
Partitioning, and to apply inequality based pruning (Sect. 3.2)
to Segment Neighbourhood Search. These lead to two new
algorithms, which we call Functional Pruning Optimal Parti-
tioning (FPOP) and SegmentNeighbourhoodwith Inequality
Pruning (SNIP).

5.1 Functional Pruning Optimal Partitioning

Functional Pruning Optimal partitioning (FPOP) provides a
version of Optimal Partitioning (Jackson et al. 2005) which
utilises functional pruning to increase the efficiency. As will
be discussed in Sect. 6 and shown in Sect. 7, FPOP provides
an alternative to PELT which is more efficient in certain sce-
narios. The approach used by FPOP is similar to the approach
for pDPA in Sect. 4.2, however the theory is slightly simpler
here as there is no longer the need to condition on the number
of changepoints.

We assume condition C1 holds, that the cost function,
C(yτ+1:t ), can be split into component parts γ (yi , μ) which
depend on the parameter μ. Cost functions Costτt can then
be defined as the minimal cost of the data up to time t , condi-
tional on the last changepoint being at τ and the last segment
having parameter μ. Thus for τ ≤ t − 1

Costτt (μ) = F(τ ) + β +
t∑

i=τ+1

γ (yi , μ), (14)

and Cost tt (μ) = F(t) + β.

123



526 Stat Comput (2017) 27:519–533

These functions, which only need to be stored for each
candidate changepoint, can then be recursively updated at
each time step, τ ≤ t − 1

Costτt (μ) = Costτt−1(μ) + γ (yt , μ). (15)

Given the cost functions Costτt (μ) the minimal cost F(t)
can be returned by minimising over both τ and μ:

min
τ

min
μ

Costτt (μ) = min
τ

min
μ

[
F(τ )+ β+

t∑

i=τ+1

γ (yi , μ)

]
,

= min
τ

[
F(τ ) +β+ min

μ

t∑

i=τ+1

γ (yi , μ)

]
,

= min
τ

[
F(τ ) + β + C(yτ+1:t )

]
,

= F(t).

As before, by interchanging the order of minimisation, the
values of the potential last changepoint, τ , can be pruned
whilst allowing for a varying μ. Firstly we will define the
function Cost∗t (μ), the minimal cost of segmenting data y1:t
conditional on the last segment having parameter μ

Cost∗t (μ) = min
τ

Costτt (μ).

Note that if a potential last changepoint τ1 doesn’t form
part of the piecewise function Cost∗t (μ) for a time t (i.e.
there doesn’t exist μ such that Cost∗t (μ) = Costτ1t (μ)),
then this implies that for any given μ we can find τ2 such
that Costτ2t (μ) < Costτ1t (μ) and further, from the recursion
given in (15), Costτ2T (μ) < Costτ1T (μ) for all T > t . Hence
if τ1 doesn’t form part of the piecewise function Cost∗t (μ)

at time t then it can be pruned from all future time steps.
We will update these functions recursively over time,

and use F(t) = minμ Cost∗t (μ) to then obtain the solution
of the penalised minimisation problem. The recursions for
Cost∗t (μ) are obtained by splitting the minimisation over τ

into τ ≤ t − 1 and τ = t

Cost∗t (μ) = min

{
min

τ≤t−1
Costτt (μ) , Cost tt (μ)

}
,

= min

{
min

τ≤t−1
Costτt−1(μ) + γ (yt , μ) , Cost tt (μ)

}
,

which then gives

Cost∗t (μ) = min{Cost∗t−1(μ) + γ (yt , μ) , F(t) + β}.

To implement this recursion we need to be able to efficiently
store and updateCost∗t (μ). As beforewe do this by partition-
ing the space of possibleμ values, D, into sets where each set
corresponds to a value τ for which Cost∗t (μ) = Costτt (μ).

We then need to be able to update these sets, and store
Costτt (μ) just for each τ for which the corresponding set
is non-empty.

This can be achieved by first defining

I τ
t = {μ : Costτt (μ) ≤ F(t) + β}. (16)

Then, for τ ≤ t − 1, we define

Setτt = {μ : Costτt (μ) = Cost∗t (μ)},
= {μ : Costτt−1(μ) + γ (yt , μ)

= min {Cost∗t−1(μ) + γ (yt , μ) , F(t) + β}}.

Remembering that Costτt−1(μ) + γ (yt , μ) ≥ Cost∗t−1(μ) +
γ (yt , μ); we have that for μ to be in Setτt we need
that Costτt−1(μ) = Cost∗t−1(μ), and that Costτt−1(μ) +
γ (yt , μ) ≤ F(t) + β. The former condition corresponds
to μ being in Setτt−1 and the second that μ is in I τ

t , so for
τ ≤ t − 1

Setτt = Setτt−1 ∩ I τ
t .

If Setτt = ∅ then the value τ can be pruned, as then SetτT = ∅
for all T > t .

If we denote the range of values μ can take to be D, then
we further have that

Set tt = D\
[
⋃

τ

I τ
t

]
,

where t can be pruned straight away if Set tt = ∅.
This updating of the candidate functions and sets is illus-

trated in Fig. 3 where the Cost functions and Set intervals
are displayed across two time steps. In this example a change
in mean has been considered, using the negative normal log-
likelihood cost function (3). As each γ (yi , μ) is quadratic
in μ then the sum of these, Costτk,t (μ), is also a quadratic
function in this case. The bold line on the left-hand graph cor-
responds to the functionCost∗t (μ) and is made up of 7 pieces
which relate to 6 candidate last changepoints. As the next
time point is analysed the sixCostτt (μ) functions are updated
using the formula Costτt+1(μ) = Costτt (μ) + γ (yt+1, μ)

and a new function, Cost t+1
t+1 (μ) = F(t + 1) + β, is intro-

duced corresponding to placing a changepoint at time t + 1
(see middle plot). The functions which are no longer optimal
for any values of μ (i.e. do not form any part of Cost∗t+1(μ))
can then be pruned, and one such function is removed in the
right-hand plot.

Once again we denote the set of potential last changes to
consider as Rt and then restrict the update rules (6) and (7)
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Fig. 3 Candidate functions over two time steps, the intervals shown
along the bottom correspond to the intervals of μ for which each candi-
date last changepoint is optimal. When t = 78 (a) 4 candidates are
optimal for some interval of μ, however at t = 79 (b), when the

candidate functions are updated and the new candidate is added, then
candidate τ = 78 is no longer optimal for any μ and hence can be
pruned (c)

to τ ∈ Rt . This set can then be recursively updated at each
time step

Rt+1 = {τ ∈ {Rt ∪ {t}} : Setτt �= ∅}. (17)

These steps can then be applied directly to an Optimal Par-
titioning algorithm to form the FPOP method and the full
pseudocode for this is presented in Algorithm 1.

Algorithm 1: Functional Pruning Optimal Partition-
ing (FPOP)

Input : Set of data of the form y1:n = (y1, . . . , yn),
A measure of fit γ (·, ·) dependent on the data and

the mean,
A penalty β which does not depend on the number

or location of the changepoints.

Let n =length of data, and set F(0) = −β, cp(0) = 0;
then let R1 = {0};
and set D = the range of μ;
Set00 = D;
Cost00 (μ) = F(0) + β = 0;
for t = 1, . . . , n do

for τ ∈ Rt do
Costτt (μ) = Costτt−1(μ) + γ (yt , μ);

Calculate F(t) = minτ∈Rt (minμ∈Setτt [Costτt (μ)]);
Let τt = argminτ∈Rt

(minμ∈Setτt [Costτt (μ)]);
Set cp(t) = (cp(τt ), τt );
Cost tt (μ) = F(t) + β;
Set tt = D;
for τ ∈ Rt do

I τ
t = {μ : Costτt (μ) ≤ F(t) + β};
Setτt = Setτt−1 ∩ I τ

t ;
Set tt = Set tt \I τ

t ;

Rt+1 = {τ ∈ {Rt ∪ {t}} : Setτt �= ∅};
Output: The changepoints recorded in cp(n).

5.2 Segment Neighbourhood with Inequality Pruning

In a similar vein to Sect. 5.1, SegmentNeighbourhoodSearch
can also benefit from using pruning methods. In Sect. 4.2 the
method pDPAwas discussed as a fast pruned version of Seg-
ment Neighbourhood Search. In this section a new method,
Segment Neighbourhood with Inequality Pruning (SNIP),
will be introduced. This takes the Segment Neighbour-
hood Search algorithm and uses inequality based pruning
to increase the speed.

Under condition (C2) the following result can be proved
for Segment Neighbourhood Search and this will enable
points to be pruned from the candidate changepoint set.

Theorem 1 Assume that there exists a constant, κ , such that
condition C2 holds. If, for any k ≥ 1 and s < t

Ck−1,s + C(ys+1:t ) + κ > Ck−1,t , (18)

then at any future time T > t , s cannot be the position of
the last changepoint in the exact segmentation of y1:T with k
changepoints.

Proof The idea of the proof is to show that a segmentation
of y1:T into k segments with the last changepoint at t will be
better than one with the last changepoint at s for all T > t .

Assume that (18) is true. Now for any t < T ≤ n

Ck−1,s + C(ys+1:t ) + κ+ > Ck−1,t ,

Ck−1,s + C(ys+1:t ) + κ + C(yt+1:T )

> Ck−1,t + C(yt+1:T ),

Ck−1,s + C(ys+1,T ) > Ck−1,t + C(yt+1,T ), (by C2).
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Therefore for any T > t the cost Ck−1,s + C(ys+1,T ) >

Ck,T and hence s cannot be the optimal location of the last
changepoint when segmenting y1:T with k changepoints. �


Theorem 1 implies that the update rule (10) can be
restricted to a reduced set over τ of potential last changes
to consider without losing the exactness of Segment Neigh-
bourhood Search. This set, which we shall denote as Rk,t ,
can be updated simply by

Rk,t+1 ={v∈{Rk,t ∪ {t}} : Ck−1,v+C(yv+1,t )+κ <Ck−1,t }.
(19)

This new algorithm, SNIP, is described fully in Algo-
rithm 2.

Algorithm 2: Segment Neighbourhoodwith Inequal-
ity Pruning (SNIP)

Input : Set of data of the form y1:n = (y1, . . . , yn),
A measure of fit C(·) dependent on the data (needs to

be minimised),
An integer, K , specifying the maximum number of

changepoints to find,
A constant κ that satisfies:

C(ys+1:t ) + C(yt+1:T ) + κ ≤ C(ys+1:T ).

Let n =length of data;
Set C0,t = C(y1:t ), for all t ∈ {1, . . . , n};
for k = 1, . . . , K do

Set Rk,k+1 = {k}. for t = k + 1, . . . , n do
Calculate Ck,t = minv∈Rk,t (Ck−1,v + C(yv+1:t ));
Set Rk,t+1 = {v ∈ {Rk,t ∪ {t}} :
Ck−1,v + C(yv+1,t ) + κ < Ck−1,t };

Set τk,1 = argminv∈Rk,n
(Ck−1,v + C(yv+1,n));

for i = 2, . . . , k do
Let
τk,i = argminv∈Rk−i,τk,i−1

(Ck−1,v + C(yv+1,τk,i−1 ));

Output: For k = 0, . . . , K : the total measure of fit, Ck,n , for
k changepoints and the location of the changepoints
for that fit, τ k,(1:k).

6 Comparisons between pruning methods

Functional and inequality based pruning both offer increases
in the efficiency in solving both the penalised and constrained
problems, however their use depends on the assumptions
which can be made on the cost function. Inequality based
pruning is dependent on the assumption C2, while functional
pruning requires the slightly stronger condition C1.

Functional pruning also requires a larger computational
overhead than inequality based pruning. This arises due to
the potential difficulties in calculating Setτt for all τ at a given
timepoint t . If this calculation can be done efficiently (ie. for a

FPOP

PELT

0

5

10

15

20

0 30 60 90

Time

N
um

be
r 

of
 c

an
di

da
te

s 
be

in
g 

co
ns

id
er

ed
Fig. 4 Comparison of the number of candidate changepoints stored
over time by FPOP and PELT. Averaged over 1000 data sets with
changepoints at t = 20, 40, 60 and 80

univariate parameter from a model in the exponential family,
where the intervals can be calculated analytically) then the
algorithm (such as FPOP or pDPA) will be efficient too. In
particular, this is infeasible (at least using current approaches)
formulti-dimensional parameters, as in this case the intervals
Setτt are also multi-dimensional.

If we consider models for which both pruning methods
can be implemented, we can compare the extent to which the
methods prune. This will give some insight into when the
different pruning methods would be expected to work well.

To explore this in Figs. 4 and 5 we look at the amount of
candidates stored by functional and inequality based pruning
in each of the two optimisation problems.

As Fig. 4 illustrates, PELT prunes very rarely; only when
evidence of a change is particularly high. In contrast, FPOP
prunes more frequently keeping the candidate set small
throughout. Figure 5 shows similar results for the constrained
problem. While pDPA constantly prunes, SNIP only prunes
sporadically. In addition SNIP fails to prune much at all for
low values of k.

Figures 4 and 5 give strong empirical evidence that func-
tional pruning prunes more points than the inequality based
method. In fact it can be shown that any point pruned by
inequality based pruning will also be pruned at the same
time step by functional pruning. This result holds for both
the penalised and constrained case and is stated formally in
Theorem 2.

Theorem 2 Let C(·) be a cost function that satisfies con-
dition C1, and consider solving either the constrained or
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Fig. 5 Comparison of the number of candidate changepoints stored over time by pDPA and SNIP at multiple values of k in the algorithms (going
from left to right k = 2, 3, 4, 5). Averaged over 1000 data sets with changepoints at t = 20, 40, 60 and 80

penalised optimisation problemusing dynamic programming
and either inequality or functional pruning.

Any point pruned by inequality based pruning at time t
will also have been pruned by functional pruning at the same
time.

Proof Weprove this for pruning of optimal partitioning, with
the ideas extending directly to the pruning of the Segment
Neighbourhood algorithm.

For a cost function which can be decomposed into point-
wise costs, it’s clear that condition C2 holds when κ = 0 and
hence inequality based pruning can be used. Recall that the
point τ (where τ < t , the current time point) is pruned by
inequality based pruning in the penalised case if

F(τ ) + C(yτ+1:t ) ≥ F(t),

Then, by letting μ̂τ be the value of μ such that Costτt (μ) is
minimised, this is equivalent to

Costτt (μ̂τ ) − β ≥ F(t),

Which can be generalised for all μ to

Costτt (μ) ≥ F(t) + β.

Therefore Eq. (16) holds for no value of μ and hence I τ
t = ∅

and furthermore Setτt+1 = Setτt ∩ I τ
t = ∅ meaning that τ is

pruned under functional pruning.

7 Empirical evaluation of FPOP

As explained in Sect. 6 functional pruning leads to a bet-
ter pruning in the following sense: any point pruned by
inequality based pruning will also be pruned by functional

pruning. However, functional pruning is computationally
more demanding than inequality based pruning. We thus
decided to empirically compare the performance of FPOP
to PELT (Killick et al. 2012), pDPA (Rigaill 2010), Binary
Segmentation (BinSeg), Wild Binary Segmentation (WBS)
(Fryzlewicz 2012) and SMUCE (Frick et al. 2014).

PELT and pDPA have been discussed in Sects. 3.2 and 4.2
respectively. Binary Segmentation (Scott and Knott 1974)
involves the entire data being scanned for a single change-
point and then splitting into two segments around this change.
The process is then repeated on these two segments. This
recursion is repeated until a certain criterion is satisfied.Wild
Binary Segmentation (Fryzlewicz 2012) takes this method
further, taking a randomly drawn number of subsamples from
the data and searching these subsamples for a changepoint.
As before the data is then split around the changepoint and
the process repeated on the two created segments. Lastly
SMUCE (Simultaneous Multiscale Changepoint Inference)
(Frick et al. 2014) uses a multiscale test at level α and
estimates a step function that minimises the number of
changepointswhilst lying in the acceptance regionof this test.

To do the analysis, we implement FPOP for the quadratic
loss (3) in C++, the code for this can be found in the opfp
project repository on R-Forge:

https://r-forge.r-project.org/R/?group_id=1851. We ass-
ess the runtimes of FPOP on both real microarray data as
well as synthetic data. All algorithms were implemented in
C++.

7.1 Speed benchmark: 4467 chromosomes from tumour
microarrays

Hocking et al. (2014) proposed to benchmark the speed of
segmentation algorithms on a database of 4467 problems of
size varying from n = 25 to 153662 data points. These data
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Fig. 6 Timings on the tumor micro array benchmark. Left Runtimes as a function of the length n of the profile (median line and quartile error
band). Middle Runtimes of PELT and FPOP for the same profiles. Right Runtimes of BinSeg and FPOP for the same profiles

come from different microarrays data sets (Affymetrix, Nim-
blegen, BAC/PAC) and different tumour types (leukaemia,
lymphoma, neuroblastoma, medulloblastoma).

We compared FPOP to several other segmentation algo-
rithms: pDPA (Rigaill 2010), PELT (Killick et al. 2012),
Binary Segmentation (BinSeg), Wild Binary Segmentation
(WBS; Fryzlewicz 2012), and SMUCE (Frick et al. 2014).
We ran pDPA and BinSeg with a maximum number of
changes K = 52, WBS and SMUCE with default settings,
and PELT and FPOP with the SIC penalty.

We used the R microbenchmark package to mea-
sure the execution time on each of the 4467 segmenta-
tion problems. The R source code for these timings is
in benchmark/systemtime.arrays.R in the opfp
project repository on R-Forge: https://r-forge.r-project.org/
R/?group_id=1851.

Figure 6 shows that the speed of FPOP is comparable to
BinSeg, and faster than the other algorithms. As expected, it
is clear that the asymptotic behavior of FPOP is similar to
pDPA for a large number of data points to segments. Note
that for analysing a single data set,WBS could bemore easily
implemented in parallelised computing environment that the
othermethods. If done so thiswould lead to some reduction in
it computational cost per data set. For analysingmultiple data
sets, as here, all methods are trivially parallelisable through
analysing each data set on a different CPU.

7.2 Speed benchmark: simulated data with different
number of changes

The speed of PELT, BinSeg and pDPA depends on the
underlying number of changes. For pDPA and BinSeg the
relationship is clear; to copewith a larger number of changes,
one needs to increase the maximum number of changes K .
For a signal of fixed size n, the time complexity is expected to
beO(log K ) for BinSeg andO(K ) for pDPA (Rigaill 2010).

For PELT the expected time complexity is not as clear, but
pruning should be more efficient if there are many change-
points. Hence for a signal of fixed size n, we expect the
runtime of PELT to decrease with the underlying number of
changes.

Based on Sect. 6, we expect FPOP to be faster than PELT
and pDPA. Thus it seems reasonable to expect FPOP to faster
for the whole range of K . This is what we empirically check
in this section.

To do that we simulated a Gaussian signal with n = 2 ×
105 data points, and varied the number of changes K . We
then repeat the same experiment for signals with n = 107

and timed FPOP and BinSeg only. The R source code for
these timings is in benchmark/systemtime.simula
tion.R in the opfp project repository on R-Forge: https://
r-forge.r-project.org/R/?group_id=1851.

It can be seen in Fig. 7 that FPOP is always faster than
pDPA, PELT,WBS, and SMUCE. Interestingly for both n =
2 × 105 and n = 107, FPOP is faster than BinSeg for a true
number of changepoints larger than K = 500.

7.3 Accuracy benchmark: the neuroblastoma data set

Hocking et al. (2013) proposed the neuroblastoma tumor
microarray data set for benchmarking changepoint detec-
tion accuracy of segmentation models. These data consist
of annotated region labels defined by expert doctors when
they visually inspected scatterplots of the data. There are
2845 negative labels where there should be no changes
(a false positive occurs if an algorithm predicts a change),
and 573 positive labels where there should be at least one
change (a false negative occurs if an algorithm predicts no
changes). There are 575 copy number microarrays, and a
total of 3418 labeled chromosomes (separate segmentation
problems).

Letm be the number of segmentation problems in the train
set, let n1, . . . , nm be the number of data points to segment
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Fig. 7 Runtimes in simulated
data sets with a variable number
of true changepoints (median
line and quartile error band).
Left All algorithms in data of
size n = 2 × 105. Right BinSeg
and FPOP in data of size
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in each problem, and let y1 ∈ R
n1 , . . . , ym ∈ R

nm be the
vectors of noisy data to segment. Both PELT and pDPA have
been applied to this benchmark by first defining a penalty
value of β = λni in (5) for all problems i ∈ {1, . . . ,m},
and then choosing the constant λ ∈ {10−8, . . . , 101} that
minimises the number of incorrect labels in the train set. To
apply this model selection criterion to WBS and SMUCE,
we first computed a sequence of models with up to K =
20 segments (for WBS we used the changepoints.sbs
function, and for SMUCE we varied the q parameter).

First, we computed train error ROC curves by consider-
ing the entire database as a train set, and computing false
positive and true positive rates for each penalty λ parame-
ter (Fig. 8, left). The ROC curves suggest that FPOP, PELT,
pDPA, andBinSeg have the best detection accuracy, followed
by SMUCE, and then WBS.

Second, we performed cross-validation to estimate the test
error of each algorithm. We divided the labeled segmenta-
tion problems into six folds. For each fold we designate it
as a test set, and use the other five folds as a train set. For
each algorithm we used grid search to choose the penalty
λ parameter which had the minimum number of incorrect
labels in the train set. We then count the number of incor-
rect labels on the test set. In agreement with the ROC
curves, FPOP/pDPA/PELT/BinSeg had the smallest test error
(2.2 %), followed by SMUCE (2.43 %), and then WBS
(3.87 %). Using a paired one-sided t5-test, FPOP had signifi-
cantly less test error thanWBS (p = 0.005) but not SMUCE
(p = 0.061).

7.4 Accuracy on the WBS simulation benchmark

We assessed the performance of FPOP using the simulation
benchmark proposed in the WBS paper (Fryzlewicz 2012)
page 29. In that paper 5 scenarios are considered. We consid-
ered an additional scenario from a further paper on SMUCE
(Futschik et al. 2014) corresponding to Scenario 2 of WBS
with a standard deviation of 0.2 rather than 0.3. We call this
Scenario 2’. We first compared FPOP with β = 2 log(n),

WBS with the sSIC and SMUCE with α = 0.45 (used in
Futschik et al. (2014) for Scenario 2’) in terms of mean
squared error (MSE). For FPOP we first standardised the
signal using the MAD (Mean Absolute Deviation) estimate
as was done for PELT in Fryzlewicz (2012).

Using 2000 replications per scenario we tested the
hypotheses

• H0 the averageMSE difference betweenWBS and FPOP
is lower or equal to 0.

• H1 the averageMSE difference betweenWBS and FPOP
is larger than 0.

using a paired t-test and paired Wilcoxon test. H0 is clearly
rejected (p value < 10−16) in 4 scenarios out of the 6 (1, 2,
2′ and 5). We did the same thing with SMUCE and we found
that H0 is rejected in 4 scenarios (1, 2, 4 and 5). The R code
of this comparison is available on R-Forge.

More generally, we compared WBS with the sSIC, mBIC
and BIC penalty, SMUCE with α = 0.35, 0.45 and 0.55 and
FPOP with β = log(n), 2 log(n) and 3 log(n). For each sce-
nario we made 500 replications. We assessed the ability to
recover the true number of changes K̂ , computed the mean
squared error (MSE) and breakpoint error (BkpEr) from
the breakpointError R package and counted the number of
exactly recovered breakpoints (exact TP).With β = 2 log(n)

or 3 log(n) FPOP gets better results, in terms of MSE, K̂ ,
exact TP and BkpEr, than SMUCE and WBS in Scenarios 1
and 5. WBS is better than FPOP and SMUCE in Scenario 4.
In Scenarios 2 and 3 WBS and FPOP are comparable (WBS
is better in terms of BkpEr and worst in terms of MSE). In
Scenario 2’ FPOP and SMUCE are comparable. The average
of each approach is given in a supplementary data file, and
the R code is available on R-Forge in the “benchmark wbs”
directory.

We performed similar analysis on our speed benchmark
(Fig. 7, left) and found that FPOP is competitive or better
than WBS and SMUCE in terms of MSE, BkpEr, exact TP
and K̂ . Results are shown in supplementary file. The R codes
are also available on R-forge.
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Fig. 8 Accuracy results on the neuroblastoma data set. Left Train error
ROC curves computed by varying the penalty λ on the entire data set.
Circles and text indicate the penalty λ which minimized the number of

incorrect labels (FP false positive, FN false negative). Right Test error
(circles 6 test folds; text mean and standard deviation)

8 Discussion

We have introduced two new algorithms for detecting
changepoints, FPOP andSNIP.Anatural question iswhich of
these, and the existing algorithms, pDPAandPELT, should be
used in which applications. There are two stages to answer-
ing this question. The first is whether to detect changepoints
through solving the constrained or the penalised optimisa-
tion problem, and the second is whether to use functional or
inequality based pruning.

The advantage of solving the constrained optimisation
problem is that this gives exact segmentations for a range of
numbers of changepoints. The disadvantage is that solving
it is slower than solving the penalised optimisation problem,
particularly if there are many changepoints. In interactive
situations where you wish to explore segmentations of the
data, then solving the constrained problem is to be preferred
(Hocking et al. 2014). However in non-interactive scenar-
ios when the penalty parameter is known in advance, it will
be faster to solve the penalised problem to recover the single
segmentation of interest. Further, recentwork inHaynes et al.
(2014) explores a way of outputting multiple segmentations
(corresponding to various penalty values) for the penalised
problem.

The decision as to which pruning method to use is purely
one of computational efficiency. We have shown that func-
tional pruning always prunes more than inequality based
pruning, and empirically have seen that this difference can
be large, particularly if there are few changepoints. How-
ever functional pruning can be applied less widely. Not only
does it require a stronger condition on the cost functions, but
currently its implementation has been restricted to detecting
changes in a univariate parameter from a model in the expo-
nential family. Even for situations where functional pruning
can be applied, its computational overhead per non-pruned
candidate is higher.

Our experience suggests that you should prefer functional
pruning in the situationswhere it can be applied. For example
FPOP was always faster than PELT for detecting a change in

mean in the empirical studies we conducted, the difference
in speed is particularly large in situations where there are
few changepoints. Furthermore we observed FPOP’s com-
putational speed was robust to changes in the number of
changepoints to be detected, and was even competitive with,
and sometimes faster than, Binary Segmentation.

Software C++ implementation (within an R wrapper) for
the FPOP algorithm can be found in the opfp project repos-
itory on R-Forge: https://r-forge.r-project.org/R/?group_id
=1851.

Reproducibility The subversion repository of the opfp
project on R-Forge contains all the code necessary to make
the figures in this manuscript.
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Short description of the WBS benchmark scenarios

The 6 scenarios considered in Sect. 7.4 are:
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• (1) block profiles of length 2048. Changepoints are at
205, 267, 308, 472, 512, 820, 902, 1332, 1557, 1598,
1659. Means are 0, 14.64, −3.66, 7.32, −7.32, 10.98,
−4.39, 3.29, 19.03, 7.68, 15.37, 0. The standard deviation
is 10.

• (2) fms profiles of length 497. Changepoints are at 139,
226, 243, 300, 309, 333. Means are −0.18, 0.08, 1.07,
−0.53, 0.16, −0.69, −0.16. The standard deviation is
0.3.

• (2′) fms′, profiles of length 497. Changepoints are at 139,
226, 243, 300, 309, 333. Means are −0.18, 0.08, 1.07,
−0.53, 0.16, −0.69, −0.16. The standard deviation is
0.2.

• (3) mix profiles of length 560. Changepoints are at 11,
21, 41, 61, 91, 121, 161, 201, 251, 301, 361, 421, 491.
Means are 7, −7, 6, −6, 5, −5, 4, −4, 3, −3, 2, −2, 1,
−1. The standard deviation is 4.

• (4) teeth10 profiles of length 140. Changepoints are at 11,
21, 31, 41, 51, 61, 71, 81, 91, 101, 111, 121, 131. Means
are 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1. The standard
deviation is 0.4.

• (5) stairs 10, profiles of length 150. Changepoints are
at11, 21, 31, 41, 51, 61, 71, 81, 91, 101, 111, 121, 131,
141. Means are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15. The standard deviation is 0.3.
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