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Abstract

We consider the design of systems for sequential decentralized detection, a problem that entails

several interdependent choices: the choice of a stopping rule (specifying the sample size), a global

decision function (a choice between two competing hypotheses), and a set of quantization rules (the

local decisions on the basis of which the global decision is made). This paper addresses the problem

of whether in the Bayesian formulation of sequential decentralized detection, optimal local decision

functions can be found within the class of stationary rules.We develop an asymptotic approximation to

the optimal cost of stationary quantization rules and exploit this approximation to show that stationary

quantizers are not optimal in general. We also consider the class of blockwise stationary quantizers, and

show that asymptotically optimal quantizers are likelihood-based threshold rules.1

Keywords: sequential detection; decentralized detection; hypothesis testing; experimental design; quan-

tizer design; decision-making under constraints.

I. I NTRODUCTION

Detection is a classical discrimination or hypothesis-testing problem, in which observations{X1, X2, . . .}
are assumed to be drawn i.i.d. from the (multivariate) conditional distributionP( · |H ) and the goal is to

infer the value of the random variableH, which takes values in{0, 1}. In a typical engineering application,

the case{H = 1} represents the presence of some target to be detected, whereas{H = 0} represents its

1This work was presented in part at the International Symposium on Information Theory, July 2006, Seattle, WA.
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absence. Placing this problem in a communication-theoretic context, adecentralized detectionproblem

is a hypothesis-testing problem in which the decision-maker is not given access to the raw data points

Xn, but instead must inferH based only on the output of a set ofquantization rulesor local decision

functions, say {Un = φn(Xn)}, which map the raw data to quantized values. This basic problem of

decentralized detection has been studied extensively for several decades [17], [19], [6]; see the overview

papers [20], [23], [3], [5] and references therein for more background. Of interest in this paper is the

extension to an-online setting: more specifically, thesequential decentralized detectionproblem [19],

[21], [12] involves a data sequence,{X1, X2, . . .}, and a corresponding sequence of summary statistics,

{U1, U2, . . .}, determined by a sequence of local decision rules{φ1, φ2, . . .}. The goal is to design both

the local decision functions and to specify a global decision rule so as to predictH in a manner that

optimally trades off accuracy and delay. In short, the sequential decentralized detection problem is the

communication-constrained extension of classical formulation of sequential centralized decision-making

problems (see, e.g., [8], [15], [10]) to the decentralized setting.

In setting up a general framework for studying sequential decentralized problems, Veeravalli et al. [22]

defined five problems, denoted “Case A” through “Case E,” distinguished from one another by the amount

of information available to the local sensors. In applications such as power-constrained sensor networks,

one cannot assume that the decision-maker and sensors can communicate over a high-bandwidth channel,

nor that the sensors have unbounded memory. Most suited to this perspective—and the focus of this

paper—is Case A, in which the local decisions are of the simplified form φn(Xn); i.e., neither local

memory nor feedback are assumed to be available. Noting thatCase A is not amenable to dynamic

programming and hence presumably intractable, Veeravalliet al. [22] suggested restricting the analysis

to the class ofstationarylocal decision functions; i.e., local decision functionsφn that are independent of

n. They conjectured that stationary decision functions mightactually be optimal in the setting of Case A

(given the intuitive symmetry and high degree of independence of the problem in this case), even though

it is not possible to verify this optimality via DP arguments. This conjecture has remained open since it

was first posed by Veeravalli et al. [22], [21].

The main contribution of this paper is to resolve this question by showing that stationary decision

functions are, in fact,not optimal for decentralized problems of type A. Our argument is based on an

asymptotic characterization of the optimal Bayesian risk as the cost per sample goes to zero. In this

asymptotic regime, the optimal cost can be expressed as a simple function of priors and Kullback-

Leibler (KL) divergences. This characterization allows us to construct counterexamples to the stationarity
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conjecture, both in an exact and an asymptotic setting. In the latter setting, we present a class of

problems in which there always exists a range of prior probabilities for which stationary strategies,

either deterministic or randomized, are suboptimal. We note in passing that an intuition for the source

of this suboptimality is easily provided—it is due to the asymmetry of the KL divergence.

It is well known that optimal quantizers when unrestricted are necessarily likelihood-based threshold

rules [19]. Our counterexamples and analysis imply that optimal thresholds are not generally stationary

(i.e., the threshold may differ from sample to sample). We also provide a partial converse to this result:

specifically, if we restrict ourselves to stationary (or blockwise stationary) quantizer designs, then there

exists an optimal design that is a threshold rule based on thelikelihood ratio. We prove this result by

establishing a quasiconcavity result for the asymptotically optimal cost function. In this paper, this result

is proven for the space of deterministic quantizers with arbitrary output alphabets, as well as for the space

of randomized quantizers with binary outputs. We conjecture that the same result holds more generally

for randomized quantizers with arbitrary output alphabets.

The remainder of this paper is organized as follows. We begin in Section II with background on the

Bayesian formulation of sequential detection problems, and Wald’s approximation. Section III provides

a simple asymptotic approximation of the optimal cost that underlies our main analysis in Section IV. In

Section V, we establish the existence of optimal decision rules that are likelihood-based threshold rules,

under the restriction to blockwise stationarity. We conclude with a discussion in Section VI.

II. BACKGROUND

This section provides background on the Bayesian formulation of sequential (centralized) detection

problems. Of particular use in our subsequent analysis is Wald’s approximation of the cost of optimal

sequential test.

Let P0 andP1 represent the distribution ofX, when conditioned on{H = 0} and{H = 1} respectively.

Assume thatP0 andP1 are absolutely continuous with respect to one another. We use f0(x) andf1(x)

to denote the respective density functions with respect to some dominating measure (e.g., Lebesgue for

continuous variables, or counting measure for discrete-valued variables).

Our focus is the Bayesian formulation of the sequential detection problem [15], [21]; accordingly,

we let π1 = P(H = 1) and π0 = P(H = 0) denote the prior probabilities of the two hypotheses. Let

X1, X2, . . . be a sequence of conditionally i.i.d. realizations ofX. A sequential decision rule consists

of a stopping timeN defined with respect to the sigma fieldσ(X1, . . . , XN ), and a decision functionγ
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measurable with respect toσ(X1, . . . , XN ). The cost function is the expectation of a weighted sum of

the sample sizeN and the probability of incorrect decision—namely

J(N, γ) := E
{
cN + I[γ(X1, . . . , XN ) 6= H]

}
, (1)

wherec > 0 is the incremental cost of each sample. The overall goal is to choose the pair(N, γ) so as

to minimize the expected loss (1).

It is well known that the optimal solution of the sequential decision problem can be characterized

recursively using dynamic programming (DP) arguments [1],[25], [15], [2]. Although useful in classical

(centralized) sequential detection, the DP approach is notalways straightforward to apply todecentral-

ized versions of sequential detection [21]. In the remainder of this section, we describe an asymptotic

approximation of the optimal sequential cost, originally due to Wald (cf. [16]), valid asc → 0. To sketch

out Wald’s approximation, we begin by noting the optimal stopping rule for the cost function (1) takes

the form

N = inf
{
n ≥ 1

∣∣ Ln(X1, . . . , Xn) :=
n∑

i=1

log
f1(Xi)

f0(Xi)
/∈ (a, b)

}
, (2)

for some real numbersa < b. Given this stopping rule, the optimal decision function has the form

γ(LN ) =





1 if LN ≥ b,

0 if LN ≤ a.
(3)

Consider the two types of error:

α = P0(γ(LN ) 6= H) = P0(LN ≥ b)

β = P1(γ(LN ) 6= H) = P1(LN ≤ a).

As c → 0, it can be shown that the optimal choice ofa and b satisfiesa → −∞, b → ∞, and the

correspondingα, β satisfy α + β → 0. Ignoring the overshoot ofLN upon the optimal stopping time

N (i.e., instead assumingLN attains precisely the valuea or b) we can expressa, b, EN and the cost

function J in terms ofα andβ as follows [24]:

a ≈ a(α, β) := log
β

1 − α
and b ≈ b(α, β) := log

1 − β

α
(4)

E0[LN ] ≈ (1 − α)a + αb and E1[LN ] ≈ (1 − β)b + βa (5)

Now define the Kullback-Leibler divergences

D1 = E1[log
f1(X1)

f0(X1)
] = D(f1||f0), and D0 = −E0[log

f1(X1)

f0(X1)
] = D(f0||f1). (6)

4



With a slight abuse of notation, we shall also useD(α, β) to denote a function in[0, 1]2 → R such that:

D(α, β) := α log
α

β
+ (1 − α) log

1 − α

1 − β
.

With the above approximations, the cost functionJ of the decision rule based on envelopesa andb can

be written as

J = π1
E1(cN + I[LN ≤ a]) + π0

E0(cN + I[LN ≥ b])

= cπ1 E1LN

D1
+ cπ0 E0LN

−D0
+ π0α + π1β, (7)

≈ cπ0 D(α, 1 − β)

D0
+ cπ1 D(1 − β, α)

D1
+ π0α + π1β, (8)

where the third line follows from Wald’s equation [24]. Let̃J(α, β) denote the approximation (8) ofJ .

Let J∗ denote the cost of an optimal sequential test, i.e.,

J∗ = inf
a,b

J. (9)

A useful result due Chernoff [7] states that under certain assumption (to be elaborated in the next section),

J∗ has the following form:

J∗ ≈ (
π0

D0
+

π1

D1
)c log c−1(1 + o(1)). (10)

III. CHARACTERIZATION OF OPTIMAL STATIONARY QUANTIZERS

Turning now to the decentralized setting, the primary challenge lies in the design of the quantization

rules φn applied to dataXn. WhenXn is univariate, a deterministic quantization ruleφn is a function

that mapsX to the discrete spaceU = {0, . . . , K − 1} for some natural numberK. For multivariate

Xn with d dimensions arising in the multiple sensor setting, a deterministic quantizerφn is defined as a

mapping from thed-dimensional product spaceX to U = {0, . . . , K − 1}d. In the decentralized problem

defined as Case A by Veeravalli et al. [22], the functionφn is composed ofd separate quantizer functions,

one each for each dimension. A randomized quantizerφn is obtained by placing a distribution over the

space of deterministic quantizers.

Any fixed set of quantization rulesφn yields a sequence of compressed dataUn = φn(Xn), to which

the classical theory can be applied. We are thus interested in choosing quantization rulesφ1, φ2, . . . so

that the error resulting from applying the optimal sequential test to the sequence of statisticsU1, U2, . . .

is minimized over some spaceΦ of quantization rules. For a given quantizerφn we use

f i
φn

(u) := Pi(φn(Xn) = u), for i = 0, 1,
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to denote the distributions of the compressed data, conditioned on the hypothesis. In general, when

randomized quantizers are allowed, the vector(f0
φn

(.), f1
φn

(.)) ranges over a convex set, denotedconv Φ,

whose extreme points correspond to deterministic quantizers based on likelihood ratio threshold rules [18].

We say that a quantizer design isstationary if the rule φn is independent ofn; in this case, we

simplify the notation tof1
φ and f0

φ. In addition, we define the KL divergencesD1
φ := D(f1

φ||f0
φ) and

D0
φ := D(f0

φ||f1
φ). Moreover, letJφ andJ∗

φ denote the analogues of the functionsJ in Eq. (7) andJ∗

in Eq. (9), respectively, defined usingDi
φ, for i = 0, 1. In this scenario, the sequence of compressed

dataU1, . . . , Un, . . . are drawn i.i.d. from eitherf0
φ or f1

φ. Thus we can use the approximation (10) to

characterize the asymptotically optimal stationary quantizer design. This is stated formally in the lemma

to follow.

We begin by stating the assumptions underlying the lemma. For a given class of quantizersΦ, we

assume that the Kullback-Leibler divergences are uniformlybounded away from zero

D(f1
φ||f0

φ) > 0, D(f0
φ||f1

φ) > 0 for all φ ∈ Φ (11)

and moreover that the variance of the log likelihood ratios are bounded

sup
φ∈Φ

{Varf1

φ
log(f1

φ/f0
φ)) < ∞, and sup

φ∈Φ
Varf0

φ
log(f1

φ/f0
φ)) < ∞. (12)

Lemma 1. (a) Under assumptions(11) and (12), the optimal stationary cost takes the form

J∗
φ =

(
π0

D0
φ

+
π1

D1
φ

)
c log c−1 (1 + rφ) (13)

where|rφ| = o(1) as c → 0.

(b) If supφ∈Φ max{log(f1
φ/f0

φ), log(f0
φ/f1

φ)} < M for some constantM , then(13) holds with

supφ∈Φ |rφ| = o(1) as c → 0.

Proof: (a) This part is immediate from a combination of Theorems 1 and 2of Chernoff [7].

(b) We begin by bounding the error in the approximation (8). By definition of the stopping timeN ,

we have either (i)b ≤ LN ≤ b + M or (ii) a−M ≤ LN ≤ a. By standard arguments due to Wald [24],

it is simple to obtainebα ≤ 1 − β ≤ eb+Mα, or equivalentlyb ≤ b(α, β) = log 1−β
α ≤ b + M . Similar

reasoning for case (ii) yieldsa − M ≤ a(α, β) = log β
1−α ≤ a. Now, note that

E0LN = αE0[LN |LN ≥ b] + (1 − α)E0[LN |LN ≤ a].

Conditioning on the eventLN ∈ [b, b + M ], we have|LN − b(α, β)| ≤ M . Similarly, conditioning on

the eventLN ∈ [a − M, a], we have|LN − b(α, β)| ≤ M . This yields|E0LN − (−D(α, 1 − β))| ≤ M .
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Similar reasoning yields|E1LN − D(1 − β, α)| ≤ M . Let J̃φ(a, b) denote the approximation (8) ofJφ.

We obtain:

|Jφ − J̃φ(α, β)| ≤ 2cM.

Note that the approximation error bound is independent ofφ. Thus, it suffices to establish the asymptotic

behavior (13) for the quantityinfα,β J̃φ(α, β), where the infimum is taken over pairs of realizable error

probabilities(α, β). Moreover, we only need to consider the asymptotic regimeα + β → 0, since the

error probabilitiesα andβ vanish asc → 0. It is simple to see thatD(1 − β, α) = log(1/α)(1 + o(1)),

andD(1 − α, β) = log(1/β)(1 + o(1)). Hence,infα,β J̃φ(α, β) can be expressed as

inf
α,β

{
π0α + π1β + cπ0 log(1/β)

D0
φ

+ cπ1 log(1/α)

D1
φ

}
(1 + o(1)). (14)

This infimum, taken over all positive(α, β), is achieved atα∗ = cπ1

D1

φπ0 and β∗ = cπ0

D0

φπ1 . Plugging the

quantitiesα∗ andβ∗ into Eq. (14) yields (13). Note that the asymptotic quantityo(1) in (13) is absolutely

bounded byα∗ + β∗ → 0 uniformly for all quantizerφ, becauseD1
φ and D0

φ are uniformly bounded

away from zero due to the Lemma’s assumption.

It remains to show that error probabilities(α∗, β∗) can be approximately realized by using a sufficiently

large thresholdb > 0 and small thresholda < 0 while incurring an approximation cost of orderO(c)

uniformly for all φ. Indeed, let us choose thresholdsa′ and b′ such thate−(b′+M)/2 ≤ α∗ ≤ e−b′ , and

ea′−M/2 ≤ β∗ ≤ ea′

. Let α′ and β′ be the corresponding errors associated with these two thresholds.

As before, we also haveα′ ∈ (e−(b′+M)/2, e−b′) andβ′ ∈ (ea′−M/2, ea′

). Clearly, |α∗ − α′| ≤ e−b′(1−
e−M/2) = O(α∗) = O(c). Similarly, |β∗ − β′| = O(c). By the mean value theorem,

| log(1/α∗) − log(1/α′)| ≤ |α∗ − α′|eb′+M ≤ 2eM (1 − e−M/2) = O(1).

Similarly, log(1/β∗)− log(1/β′) = O(1). Hence, the approximation of(α∗, β∗) by the realizable(α′, β′)

incurs a cost at mostO(c). Furthermore, the constant in the asymptotic boundO(c) is independent of

quantizerφ ∈ Φ.

For the rest of this paper, we shall assume that all assumptions of Lemma 1 hold.

Remarks:

1) The preceding approximation of the optimal cost essentially ignores the overshoot of the likelihood

ratio LN . While it is possible to analyze this overshoot to obtain a finer approximation (cf. [11],

[16], [10], [14]), we see that this is not needed for our purpose. Lemma 1 shows that given a fixed
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prior (π0, π1), among all stationary quantizer designs inΦ, φ is optimal for sufficiently smallc if

and only if φ minimizes what we shall call thesequential cost coefficient:

Gφ :=
π0

D0
φ

+
π1

D1
φ

.

2) As a consequence of Lemma 7 to be proved in the sequel, if we consider the classΦ of all

binary randomized quantizers, then sequential cost coefficient Gφ is a quasiconcave function with

respect to(f0
φ(.), f1

φ(.)). (A function F is quasiconcave if and only if for anyη, the level set

{F (x) ≥ η} is a convex set; see Boyd and Vandenberghe [4] for further background). The minimum

of a quasiconcave function lies in the set of extreme points in its domain. For the setconv Φ,

these extreme points can be realized by deterministic quantizers based on likelihood ratios [20].

Consequently, we conclude that for quantizers with binary outputs, the optimal cost is not decreased

by considering randomized quantizers. We conjecture that this statement also holds beyond the

binary case.

Section V is devoted to a more detailed study of asymptotically optimal stationary quantizers. In the

meantime, we turn to the question of whether stationary quantizers are optimal in either finite-sample or

asymptotic settings.

IV. SUBOPTIMALITY OF STATIONARY DESIGNS

It was shown by Tsitsiklis [19] that optimal quantizersφn take the form of threshold rules based on

the likelihood ratiof1(Xn)/f0(Xn). Veeravalli et al. [22], [21] asked whether these rules can always

be taken to be stationary, a conjecture that has remained open. In this section, we resolve this question

with a negative answer in both the finite-sample and asymptotic settings.

A. Suboptimality in exact setting

We begin by providing a numerical counterexample for which stationary designs are suboptimal.

Consider a problem in whichX ∈ X = {1, 2, 3} and the conditional distributions take the form

f0(x) =
[

8
10

1999
10000

1
10000

]
andf1(x) =

[
1
3

1
3

1
3

]
.

Suppose that the prior probabilities areπ1 = 8
100 and π0 = 92

100 , and that the cost for each sample is

c = 1
100 .

If we restrict to binary quantizers (i.e.,U = {0, 1}), by the symmetric roles of the output alphabets

there are only three possible deterministic quantizers:
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1) Design A: φA(Xn) = 0 ⇐⇒ Xn = 1. As a result, the corresponding distribution forUn is

specified byf0
φA

(un) = [45
1
5 ] andf1

φA
(u) = [13

2
3 ].

2) Design B:φB(Xn) = 0 ⇐⇒ Xn ∈ {1, 2}. The corresponding distribution forUn is given by

f0
φB

(u) = [ 9999
10000

1
10000 ] andf1

φB
(u) = [23

1
3 ].

3) Design C:φC(Xn) = 0 ⇐⇒ Xn ∈ {1, 3}. The corresponding distribution forUn is specified by

f0
φC

∼ [ 8001
10000

1999
10000 ] andf1

φC
(u) = [23

1
3 ].

Now consider the three stationary strategies, each of whichuses only one fixed design, A, B or C. For

any given stationary quantization ruleφ, we have a classical centralized sequential problem, for which

the optimal cost (achieved by a sequential probability ratio test) can be computed using a dynamic-

programming procedure [25], [1]. Accordingly, for each stationary strategy, we compute the optimal cost

function J for 106 points on thep-axis by performing 300 updates of Bellman’s equation (cf. [2]). In

all cases, the difference in cost between the 299th and 300thupdates is less than10−6. Let JA, JB and

JC denote the optimal cost function for sequential tests usingall A’s, all B’s, and all C’s, respectively.

When evaluated atπ1 = 0.08, these computations yieldJA = 0.0567, JB = 0.0532 andJC = 0.08.

Finally, we consider a non-stationary rule obtained by applying design A for only the first sample, and

applying design B for the remaining samples. Again using Bellman’s equation, we find that the cost for

this design is

J∗ = min{min{π1, 1 − π1}, c + JB(P (H = 1|u1 = 0))P (u1 = 0)+

JB(P (H = 1|u1 = 1))P (u1 = 1)} = 0.052767,

which is better than any of the stationary strategies.

In this particular example, the costJ∗ of the non-stationary quantizer yields a slim improvement

(0.0004) over the best stationary ruleJB. This slim margin is due in part to the choice of a small per-

sample costc = 0.01; however, larger values ofc do not yield counterexample when using the particular

distributions specified above. A more significant factor is that our non-stationary rule differs from the

optimal stationary ruleB only in its treatment of the first sample. This fact suggests that one might

achieve better cost by alternating between using design A and design B on the odd and even samples,

respectively. Our analysis of the asymptotic setting in thenext section confirms this intuition.
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B. Asymptotic suboptimality for both deterministic and randomized quantizers

We now prove that in a broad class of examples, there is a rangeof prior probabilities for which

stationary quantizer designs are suboptimal. Our result stems from the following observation: Lemma 1

implies that in order to achieve a small cost we need to choosea quantizerφ for which the KL divergences

D0
φ := D(f0

φ||f1
φ) andD1

φ := D(f1
φ||f0

φ) are both as large as possible. Due to the asymmetry of the KL

divergence, however, these maxima are not necessarily achieved by a single quantizerφ. This suggests

that one could improve upon stationary designs by applying different quantizers to different samples, as

the following lemma shows.

Lemma 2. Let φ1 and φ2 be any two quantizers. If the following inequalities hold

D0
φ1

< D0
φ2

and D1
φ1

> D1
φ2

(15)

then there exists a non-empty interval(U, V ) ⊆ (0, +∞) such that asc → 0,

J∗
φ1

≤ J∗
φ1,φ2

≤ J∗
φ2

if
π0

π1
≤ U

J∗
φ1,φ2

< min{J∗
φ1

, J∗
φ2
} − Θ(c log c−1) if

π0

π1
∈ (U, V )

J∗
φ1

≥ J∗
φ1,φ2

≥ J∗
φ2

if
π0

π1
≥ V,

whereJ∗
φ1,φ2

denotes the optimal cost of a sequential test that alternates between usingφ1 and φ2 on

odd and even samples respectively.

Proof: According to Lemma 1, we have

J∗
φi

=

(
π0

D0
φi

+
π1

D1
φi

)
c log c−1(1 + o(1)), i = 0, 1. (16)

Now consider the sequential test that applies quantizersφ1 andφ2 alternately to odd and even samples.

Furthermore, let this test consider two samples at a time. Letf0
φ1φ2

and f1
φ1φ2

denote the induced

conditional probability distributions, jointly on the odd-even pairs of quantized variables. From the

additivity of the KL divergence and assumption (15), there holds:

D(f0
φ1φ2

||f1
φ1φ2

) = D0
φ1

+ D0
φ2

> 2D0
φ1

(17a)

D(f1
φ1φ2

||f0
φ1φ2

) = D1
φ1

+ D1
φ2

< 2D1
φ1

. (17b)

Clearly, the cost of the proposed sequential test is an upperbound for J∗
φ1,φ2

. Furthermore, the gap

between this upper bound and the true optimal cost is no more than O(c). Hence, as in the proof of
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Lemma 1, asc → 0, the optimal costJ∗
φ1,φ2

can be written as
(

2π0

D0
φ1

+ D0
φ2

+
2π1

D1
φ1

+ D1
φ2

)
c log c−1(1 + o(1)). (18)

From equations (16) and (18), simple calculations yield the claim with

U =
D0

φ1

(D1
φ1

− D1
φ2

)(D0
φ1

+ D0
φ2

)

D1
φ1

(D1
φ1

+ D1
φ2

)(D0
φ2

− D0
φ1

)
< V =

D0
φ2

(D1
φ1

− D1
φ2

)(D0
φ1

+ D0
φ2

)

D1
φ2

(D1
φ1

+ D1
φ2

)(D0
φ2

− D0
φ1

)
. (19)

Example: Let us return to the example provided in the previous subsection. Note that the two quan-

tizers φA and φB satisfy assumption (15), sinceD(f0
φB

||f1
φB

) = 0.4045 < D(f0
φA

||f1
φA

) = 0.45 and

D(f1
φB

||f0
φB

) = 2.4337 > D(f1
φA

||f0
φA

) = 0.5108. Furthermore, both quantizers dominatesφC in terms

of KL divergences:D(f0
φC

||f1
φC

) = 0.0438, D(f0
φC

||f1
φC

) = 0.0488. As a result, there exist a range of

priors for which a sequential test using stationary quantizer design (eitherφA, φB or φC for all samples)

is not optimal.

Theorem 3. (a) Suppose thatΦ is a finite collection of quantizers, and that there is no single quantizer

φ that dominates all other quantizers inΦ in the sense that

D0
φ ≥ D0

φ′ and D1
φ ≥ D1

φ′ for all φ′ ∈ Φ. (20)

Then there exists a non-empty range of prior probabilities for which no stationary design based on a

quantizer inΦ is optimal.

(b) For any non-deterministicφ in the randomized classconv Φ, there exists a non-stationary quantizer

design that has strictly smaller sequential cost coefficient than that of a stationary design based onφ

for any choice of prior probabilities.

Proof: (a) Since there are a finite number of quantizers inΦ and no quantizer dominates all others,

the interval(0,∞) is divided into at least two adjacent non-empty intervals, each of which corresponds to

a range of prior probability ratiosπ0/π1 for which a quantizer is strictly optimal (asymptotically)among

all stationary designs. Let them be(δ1, δ) and(δ, δ2), for two quantizers, namely,φ1 andφ2. In particular,

δ is the value forπ0/π1 for which the sequential cost coefficients are equal—viz.Gφ1
= Gφ2

—which

happens only if assumption (15) holds. Some calculations verify that

δ =
D0

φ1

D0
φ2

(D1
φ2

− D1
φ1

)

D1
φ1

D1
φ2

(D0
φ1

− D0
φ2

)
. (21)
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By Lemma 2, a non-stationary design obtained by alternating betweenφ1 andφ2 has smaller sequential

cost than bothφ1 and φ2 for π0/π1 ∈ (U, V ), whereU and V are given in equation (19). Since it

can be verified thatδ as defined (21) belongs to the interval(U, V ), we conclude that forπ0/π1 ∈
(U, V ) ∩ (δ1, δ2), this non-stationary design has smaller cost than any stationary design usingφ ∈ Φ.

(b) Let φ ∈ conv Φ be a randomized quantizer (i.e., at each step choose with non-zero probabilities

w1, . . . , wk from quantizersφ1, . . . , φk ∈ Φ, respectively, where
∑k

i=1 wi = 1). Clearly, the density

induced byφ satisfy: f0
φ =

∑k
i=1 wif

0
φi

and f1
φ =

∑k
i=1 wif

1
φi

. Due to strict convexity of the KL

divergence functional with respect jointly to the two density arguments [9], by Jensen’s inequality

we have:D0
φ <

∑k
i=1 wiD

0
φi

and D1
φ <

∑k
i=1 wiD

1
φi

. SinceD0
φi

and D1
φi

are bounded from above

uniformly for all φi ∈ Φ, it is possible to approximate(w1, . . . , wk) by rational numbers of the form

(q1/N, q2/N, . . . , qk/N) for some natural numbersq1, . . . , qk andN satisfying
∑k

i=1 qi = N such that

D0
φ <

k∑

i=1

qiD
0
φi

/N

D1
φ <

k∑

i=1

qiD
1
φi

/N.

Now consider the non-stationary quantizer that appliesφ1 for q1 steps, thenφ2 for q2 steps and so on,

up to φk for qk steps, yielding a total ofN steps, and then repeats this sequence starting again at step

N + 1. By construction, this non-stationary quantizer has a smaller cost than that of quantizerφ for any

choice of prior.

Remarks: It is interesting to contrast the Bayesian formulation of the problem of quantizer design

with the Neyman-Pearson formulation. Our results on the suboptimality of stationary quantizer design

in the Bayesian formulation repose on the asymmetry of the Kullback-Leibler divergence, as well as

the sensitivity of the optimal quantizers on the prior probability. We note that Mei [12] (see p. 58)

considered the Neyman-Pearson formulation of this problem. In this formulation, it can be shown that

for all sequential tests for which the Type 1 and Type 2 errorsare bounded byα and β, respectively,

then asα + β → 0, the expected stopping timeE0N under hypothesisH = 0 is asymptotically

minimized by applying a stationary quantizerφ∗ that maximizesD(f0
φ||f1

φ). Similarly, the expected

stopping timeE1N under hypothesisH = 1 is asymptotically minimized by the stationary quantizerφ∗∗

that maximizesD(f1
φ||f0

φ) [12]. In this context, the example in subsection IV-A provides a case in which

the asymptotically minimal KL divergencesφ∗ andφ∗∗ are not the same, due to the asymmetry, which

suggests that there may not exist a stationary quantizer that simultaneously minimizes bothE1N and

12



E0N .

C. Asymptotic suboptimality in multiple sensor setting

Our analysis thus far has established that with a single sensor per time step (d = 1), applying multiple

quantizers to different samples can reduce the sequential cost. As pointed out by one of the referees, it

is natural to ask whether the same phenomenon persists in thecase of multiple sensors (d > 1). In this

section, we show that the phenomenon does indeed carry over,more specifically by providing an example

in which stationary strategies are still sub-optimal in comparison to non-stationary ones. The key insight

is that we have only a fixed number of dimensions, whereas asc → 0 we are allowed to take more

samples, and each sample can act as an extra dimension, providing more flexibility for non-stationary

strategies.

Suppose that the observation vectorXn at timen is d-dimensional, with each component corresponding

to a sensor in a typical decentralized setting. Suppose that the observations from each sensor are assumed

to be independent and identically distributed according tothe conditional distributions defined in our

earlier example (see Section IV-A). Of interest are the optimal deterministic binary quantizer designs for

all d sensors. Although there are three possible choicesφA, φB and φC for each sensor, the quantizer

φC is dominated by the other two, so each sensor should choose either φA andφB. Suppose that among

these sensors, a subset of sizek chooseφA and whereas the remainingd − k sensors chooseφB for

0 ≤ k ≤ d. We thus haved + 1 possible stationary designs to consider. For eachk, the sequential cost

coefficient corresponding to the associated stationary design takes the form

Gk :=
π0

kD0
φA

+ (d − k)D0
φB

+
π1

kD1
φA

+ (d − k)D1
φB

. (22)

Now consider the following non-stationary design: the first sensor alternates between decision rules

φA andφB, while the remainingd− 1 sensors simply apply the stationary design based onφB. For this

design, the associated sequential cost coefficient is given by

G :=
2π0

D0
φA

+ (2d − 1)D0
φB

+
2π1

D1
φA

+ (2d − 1)D1
φB

. (23)

Consider the interval(U, V ), where the interval has endpoints

U =
D1

φB
− D1

φA

D0
φA

− D0
φB

D0
φA

+ (2d − 1)D0
φB

D1
φA

+ (2d − 1)D1
φB

D0
φB

D1
φB

< V =
D1

φB
− D1

φA

D0
φA

− D0
φB

D0
φA

+ (2d − 1)D0
φB

D1
φA

+ (2d − 1)D1
φB

D0
φA

+ (d − 1)D0
φB

D1
φA

+ (d − 1)D1
φB

.

13



Straightforward calculations yield that for any prior likelihood π0/π1 ∈ (U, V ), the minimal cost over

stationary designsmink=0,...,d Gk is strictly larger than the sequential costG of the non-stationary design,

previously defined in equation (23).

V. ON ASYMPTOTICALLY OPTIMAL BLOCKWISE STATIONARY DESIGNS

Despite the possible loss in optimality, it is useful to consider some form of stationarity in order to

reduce computational complexity of the optimization and decision process. In this section, we consider

the class ofblockwise stationarydesigns, meaning that there exists some natural numberT such that

φT+1 = φ1, φT+2 = φ2, and so on. For eachT , let CT denote the class of all blockwise stationary designs

with period T . We assume throughout the analysis that each decision ruleφn (n = 1, . . . , T ) satisfies

conditions (11) and (12). Thus, asT increases, we have a hierarchy of increasingly rich quantizer classes

that will be seen to yield progressively better approximations to the optimal solution.

For a fixed prior(π0, π1) and T > 0, let (φ1, . . . , φT ) denote a quantizer design inCT . As before,

the costJ∗
φ of an asymptotically optimal sequential test using this quantizer design is of orderc log c−1

with the sequential cost coefficient

Gφ =
Tπ0

D0
φ1

+ . . . + D0
φT

+
Tπ1

D1
φ1

+ . . . + D1
φT

. (24)

Gφ is a function of the vector of probabilities introduced by the quantizer:(f0
φ(.), f1

φ(.)). We are interested

in the properties of a quantization ruleφ that minimizesJ∗
φ.

It is well known that there exist optimal quantizers—when unrestricted— that can be expressed as

threshold rules based on the log likelihood ratio (LLR) [19]. Our counterexamples in the previous sections

imply that the thresholds need not be stationary (i.e., the threshold may differ from sample to sample).

In the remainder of this section, we addresses a partial converse to this issue: specifically, if we restrict

ourselves to stationary (or blockwise stationary) quantizer designs, then there exists an optimal design

consisting of LLR-based threshold rules.

It turns out that the analysis for the caseT > 1 can be reduced to an analysis that is closely related to

our earlier analysis forT = 1. Indeed, consider the sequential cost coefficient for the time stepn = 1,

where the rules for the other time steps are held fixed. From (24)we have

Gφ =
Tπ0

D0
φ1

+ s0
+

Tπ1

D1
φ1

+ s1
,
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for non-negative constantss0 and s1. As we will show, our earlier analysis of the sequential cost

coefficient, in whichs0 = s1 = 0, carries through to the case in which these values are non-zero. This

allows us to provide (in Theorem 9) a characterization of the optimal blockwise stationary quantizer.

Definition 4. The quantizer design functionφ : X → U is said to be alikelihood ratio threshold

rule if there are thresholdsd0 = −∞ < d1 < . . . < dK = +∞, and a permutation(u1, . . . , uK) of

(0, 1, . . . , K − 1) such that forl = 1, . . . , K, with P0-probability 1, we have:

φ(X) = ul if dl−1 ≤ f1(X)/f0(X) ≤ dl,

Whenf1(X)/f0(X) = dl−1, setφ(X) = ul−1 or φ(X) = ul with P0-probability 1.2

Previous work on the extremal properties of likelihood ratio based quantizers guarantees that the

Kullback-Leibler divergence is maximized by a LLR-based quantizer [18]. In our case, however, the

sequential cost coefficientGφ involves a pair of KL divergences,D0
φ andD1

φ, which are related to one

another in a nontrivial manner. Hence, establishing asymptotic optimality of LLR-based rules for this cost

function does not follow from existing results, but rather requires further understanding of the interplay

between these two KL divergences.

The following lemma concerns certain “unnormalized” variants of the Kullback-Leibler (KL) diver-

gence. Given vectorsa = (a0, a1) and b = (b0, b1), we define functions̃D0 and D̃1 mapping fromR
4
+

to the real line as follows:

D̃0(a, b) := a0 log
a0

a1
+ b0 log

b0

b1
(25a)

D̃1(a, b) := a1 log
a1

a0
+ b1 log

b1

b0
. (25b)

These functions are related to the standard (normalized) KL divergence via the relations̃D0(a, 1− a) ≡
D(a0, a1), andD̃1(a, 1 − a) ≡ D(a1, a0).

Lemma 5. For any positive scalarsa1, b1, c1, a0, b0, c0 such thata1

a0

< b1

b0

< c1

c0

, at least oneof the two

2This last requirement of the definition is termed thecanonical likelihood ratio quantizer by Tsitsiklis [18]. Although one

could consider performing additional randomization when there are ties,our later results (in particular, Lemma 7) establish that

in this case, randomization will not further decrease the optimal costJ
∗

φ.
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following conditions must hold:

D̃0(a, b + c) > D̃0(b, c + a) and D̃1(a, b + c) > D̃0(b, c + a), or (26a)

D̃0(c, a + b) > D̃0(b, c + a) and D̃1(c, a + b) > D̃0(b, c + a). (26b)

This lemma implies that under certain conditions on the ordering of the probability ratios, one can

increaseboth KL divergences by re-quantizing. This insight is used in the following lemma to establish

that the optimal quantizerφ behaves almost like a likelihood ratio rule. To state the result, recall that

the essential supremumis the infimum of the set of allη such thatf(x) ≤ η for P0-almost allx in the

domain, for a measurable functionf .

Lemma 6. If φ is an asymptotically optimal quantizer, then for all pairs(u1, u2) ∈ U , u1 6= u2, there

holds:
f1(u1)

f0(u1)
/∈
(

ess inf
x:φ(x)=u2

f1(x)

f0(x)
, ess sup

x:φ(x)=u2

f1(x)

f0(x)

)
.

Note that a likelihood ratio rule guarantees something stronger: ForP0-almost allx such thatφ(x) = u1,

f1(x)/f0(x) takes a value either to the left or to the right, but not to bothsides, of the interval specified

above.

Lemma 7 stated below essentially guarantees quasiconcavityof Gφ for the case of binary quantizers.

To state the result, letF : [0, 1]2 → R be given by

F (a0, a1) =
c0

D(a0, a1) + d0
+

c1

D(a1, a0) + d1
. (27)

Lemma 7. For any non-negative constantsc0, c1, d0, d1, the functionF defined in(27) is quasiconcave.

We provide a proof of this result in the Appendix. An immediate consequence of Lemma 7 is that

LLR-based quantizers exist for the class of randomized quantizers with binary outputs.

Corollary 8. Restricting to the class of (blockwise) stationary binary quantizers, there exists an asymp-

totically optimal quantizerφ that is a (deterministic) likelihood ratio threshold rule.

Proof: Let φ is a (randomized) binary quantizer. The sequential cost coefficient can be written as

Gφ = F (f0
φ(0), f1

φ(0)). The set of{(f0
φ(0), f1

φ(0)} for all φ is a convex set whose extreme points can

be realized by deterministic likelihood ratio threshold rules (Prop. 3.2 of [18]). Since the minimum of a

quasiconcave function must lie at one such extreme point [4], the corollary is immediate as a consequence
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of Lemma 7.

It turns out that the same statement can also be proved for deterministic quantizers with arbitrary

output alphabets:

Theorem 9. Restricting to the class of (blockwise) stationary and deterministic decision rules, then there

exists an asymptotically optimal quantizerφ that is a likelihood ratio threshold rule.

We present the full proof of this theorem in the Appendix. The proof exploits both Lemma 6 and

Lemma 7.

VI. D ISCUSSION

In this paper, we have studied the problem of sequential decentralized detection. For quantizers with

neither local memory nor feedback (Case A in the taxonomy of Veeravalli et al. [22]), we have established

that stationary designs need not be optimal in general. Moreover, we have shown that in the asymptotic

setting (i.e., when the cost per sample goes to zero), there is a class of problems for which there exists

a range of prior probabilities over which stationary strategies are suboptimal.

There are a number of open questions raised by the analysis in this paper. First, our analysis has

established only that the best stationary rule chosen from afinite set of deterministic quantizers need not

be optimal. Is there a corresponding example with an infinite number of deterministic stationary quantizer

designs for which none is optimal? Second, Corollary 8 establishes the optimality of likelihood ratio rules

for randomized decision rules that produce binary outputs.This proof was based on the quasiconcavity

of the functionGφ that specifies the asymptotic sequential cost coefficient. Is this function Gφ also

quasiconcave for quantizers other than binary ones? Such quasiconcavity would extend the validity of

Theorem 9 for the general class of randomized quantizers.
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a0

a1

1 − b0

1 − b1

(b1 − b0)/b1

A

Fig. 1: Illustration of the domainA.

By renormalizing, we can assume w.l.o.g. thata1 + b1 + c1 = a0 + b0 + c0 = 1. Also w.l.o.g, assume

that b1 ≥ b0. Thus,c1 > c0 anda1 < a0. Replacingc1 = 1−a1 − b1 andc0 = 1−a0 − b0, the inequality

c1/c0 > b1/b0 is equivalent toa1 < a0b1/b0 − (b1 − b0)/b0.

We fix values ofb, and consider varyinga ∈ A, whereA denotes the domain for(a0, a1) governed

by the following equality and inequality constraints:0 < a1 < 1 − b1; 0 < a0 < 1 − b0; a1 < a0 and

a1 < a0b1/b0 − (b1 − b0)/b0. (28)

Note that the third constraint (a1 < a0) is redundant due to the other three constraints. In particular,

constraint (28) corresponds to a line passing through((b1 − b0)/b1, 0) and(1− b0, 1− b1) in the (a0, a1)

coordinates. As a result,A is the interior of the triangle defined by this line and two other lines given

by a1 = 0 anda0 = 1 − b0 (see Figure 1).

Since bothD̃0(a, 1−a) andD̃1(a, 1−a) correspond to KL divergences, they are convex functions with

respect to(a0, a1). In addition, the derivatives with respect toa1 are a1−a0

a1(1−a1)
< 0 and log a1(1−a0)

a0(1−a1)
< 0,

respectively. Hence, both functions can be (strictly) bounded from below by increasinga1 while keeping

a0 unchanged, i.e., by replacinga1 by a′1 so that(a0, a
′
1) lies on the line given by (28), which is equivalent

to the constraintc1/c0 = b1/b0. Let c′1 = 1− b1 − a′1; thenc′1/c0 = b1/b0. Our argument has established
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inequalities (a) and (b) in the following chain of inequalities:

D̃1(a, b + c)
(a)
> a′1 log

a′1
a0

+ (b1 + c′1) log
b1 + c′1
b0 + c0

(29a)

(b)
= a′1 log

a′1
a0

+ c′1 log
c′1
c0

+ b1 log
b1

b0
(29b)

(c)

≥ (a′1 + c′1) log
a′1 + c′1
a0 + c0

+ b1 log
b1

b0
(29c)

= D̃1(a + c, b), (29d)

inequality (c) follows from an application of the log-sum inequality [9]. A similar conclusion holds for

D̃0(a, b + c).

Proof of Lemma 6

Suppose the opposite is true, that there exist two setsS1, S2 with positive P0-measure such that

φ(X) = u2 for any X ∈ S1 ∪ S2, and

f1(S1)

f0(S1)
<

f1(u1)

f0(u1)
<

f1(S2)

f0(S2)
. (30)

By reassigningS1 or S2 to the quantileu1, we are guaranteed to have a new quantizerφ′ such that

D0
φ′ > D0

φ∗ andD1
φ′ > D1

φ∗ , thanks to Lemma 5. As a result,φ′ has a smaller sequential costJ∗
φ′ , which

is a contradiction.

Proof of Lemma 7

The proof of this lemma is conceptually straightforward, butthe algebra is involved. To simplify the

notation, we replacea0 by x, a1 by y, the functionD(a0, a1) by f(x, y), and the functionD(a1, a0) by

g(x, y). Finally, we assume thatd0 = d1 = 0; the proof will reveal that this case is sufficient to establish

the more general result with arbitrary non-negative scalars d0 andd1.

We havef(x, y) = x log(x/y)+(1−x) log[(1−x)/(1−y)] andg(x, y) = y log(y/x)+(1−y) log[(1−
y)/(1 − x)]. Note that bothf and g are convex functions and are non-negative in their domains,and

moreover that we haveF (x, y) = c0/f(x, y) + c1/g(x, y). In order to establish the quasiconcavity ofF ,

it suffices to show that for any(x, y) in the domain ofF , for any vectorh = [h0 h1] ∈ R
2 such that

hT∇F (x, y) = 0, there holds

hT∇2F (x, y) h < 0 (31)
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(see Boyd and Vandenberghe [4]). Here we adopt the standard notation of∇F for the gradient vector

of F , and∇2F for its Hessian matrix. We also useFx to denote the partial derivative with respect to

variablex, Fxy to denote the partial derivative with respect tox andy, and so on.

We have∇F = − c0∇f
f2 − c1∇g

g2 . Thus, it suffices to prove relation (31) for vectors of the form

h =
[(

− c0fy

f2 − c1gy

g2

) (
c0fx

f2 + c1gx

g2

)]T

.

It is convenient to writeh = c0v0 + c1v1, wherev0 = [−fy/f2 fx/f2]T andv1 = [−gy/g2 gx/g2]T .

The Hessian matrix∇2F can be written as∇2F = c0H0 + c0H1, where

H0 = − 1

f3

[
fxxf − 2f2

x fxyf − 2fxfy

fxyf − 2fxfy fyyf − 2f2
y

]
,

and

H1 = − 1

g3

[
gxxg − 2g2

x gxyg − 2gxgy

gxyg − 2gxgy gyyg − 2g2
y

]
.

Now observe that

hT∇2Fh = (c0v0 + c1v1)
T (c0H0 + c1H1)(c0v0 + c1v1),

which can be simplified to

hT∇2Fh = c3
0v

T
0 H0v0 + c3

1v
T
1 H1v1 + c2

0c1(2vT
0 H0v1 + vT

0 H1v0) + c0c
2
1(2vT

0 H1v1 + vT
1 H0v1).

This function is a polynomial inc0 and c1, which are restricted to be non-negative scalars (at least

one of which is assumed to be non-zero). Therefore, it suffices to prove that all the coefficients of this

polynomial (with respect toc0 andc1) are strictly negative. In particular, we shall show that

(i) vT
0 H0v0 ≤ 0, and

(ii) 2vT
0 H0v1 + vT

0 H1v0 ≤ 0,.

where in both cases equality occurs only ifx = y, which is outside of the domain ofF . The strict

negativity of the other two coefficients follows from entirely analogous arguments.

First, some straightforward algebra shows that inequality (i) is equivalent to the relation

fxxf2
y + fyyf

2
x ≥ 2fxfyfxy.

But note thatf is a convex function, sofxxfyy ≥ f2
xy. Hence, we have

fxxf2
y + fyyf

2
x

(a)

≥ 2
√

fxxfyy|fxfy|
(b)

≥ 2fxfyfxy,
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thereby proving (i). (In this argument, inequality (a) follows from the fact thata2 + b2 ≥ 2ab, whereas

inequality (b) follows from the strict convexity off . Equality occurs only ifx = y.)

Regarding (ii), some further algebra reduces it to the inequality

G1 + G2 − G3 ≥ 0, (32)

where

G1 = 2(fygyfxx + fxgxfyy − (fygx + fxgy)fxy),

G2 = f2
y gxx + f2

xgyy − 2fxfygxy,

G3 =
2

g
(fygx − fxgy)

2.

At this point in the proof, we need to exploit specific information about the functionsf andg, which

are defined in terms of KL divergences. To simplify notation, we let u = x/y andv = (1 − x)/(1 − y).

Computing derivatives, we have

fx(x, y) = log(x/y) − log((1 − x)/(1 − y)) = log(u/v),

fy(x, y) = (1 − x)/(1 − y) − x/y = v − u,

gx(x, y) = (1 − y)/(1 − x) − y/x = 1/v − 1/u,

gy(x, y) = log(y/x) − log((1 − y)/(1 − x)) = log(v/u),

∇2f(x, y) =

[ 1
x(1−x) − 1

y(1−y)

− 1
x(1−x)

1−x
(1−y)2 + x

y2

]
, and ∇2g(x, y) =

[ 1−y
(1−x)2 + y

x2 − 1
x(1−x)

− 1
x(1−x)

1
y(1−y)

]
.

Noting thatfx = −gy; gxy = −fxx; fxy = −gyy, we see that equation (32) is equivalent to

2(fxgxfyy + fygxgyy) − f2
xgyy + f2

y gxx ≥ 2

g
(fygx − fxgy)

2. (33)

To simplify the algebra further, we shall make use of the inequality (log t2)2 ≤ (t−1/t)2, which is valid

for any t. This implies that

fygx = (v − u)(1/v − 1/u) ≤ fxgy = −(log(u/v))2 = −f2
x = −g2

y ≤ 0.

Thus,−f2
xgyy ≥ fygxgyy, and 2

g (fygx − fxgy)
2 ≤ 2

gfygx(fygx − fxgy). As a result, (33) would follow

if we can show that

2(fxgxfyy + fygxgyy) + fygxgyy + f2
y gxx ≥ 2

g
fygx(fygx − fxgy).
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For all x 6= y, we may divide both sides by−fy(x, y)gx(x, y) > 0. Consequently, it suffices to show

that:

−2fxfyy/fy − fygxx/gx − 3gyy ≥ 2

g
(fxgy − gxfy),

or, equivalently,

2 log(u/v)

(
v

u − 1
+

u

1 − v

)
+

(
u

1 − x
+

v

x

)
− 3

y(1 − y)
≥ 2

g

(
(u − v)2

uv
− (log

u

v
)2

)
,

or, equivalently,

2 log(u/v)
(u − v)(u + v − 1)

(u − 1)(1 − v)
+

(u − v)2(u + v − 4uv)

uv(u − 1)(1 − v)
≥ 2

g

(
(u − v)2

uv
− (log

u

v
)2

)
. (34)

Due to the symmetry, it suffices to prove (34) forx < y. In particular, we shall use the following

inequality for logarithm mean [13], which holds foru 6= v:

3

2
√

uv + (u + v)/2
<

log u − log v

u − v
<

1

(uv(u + v)/2)1/3
.

We shall replacelog(u/v)
u−v in (34) by appropriate upper and lower bounds. In addition, we shall also bound

g(x, y) from below, using the following argument. Whenx < y, we haveu < 1 < v, and

g(x, y) = y log
y

x
+ (1 − y) log

1 − y

1 − x
>

3y(y − x)

2
√

xy + (x + y)/2
+

(1 − y)(x − y)

[(1 − x)(1 − y)(1 − (x + y)/2)]1/3

=
3(1 − v)(1 − u)

(u − v)(2
√

u + u+1
2 )

+
(u − 1)(1 − v)

(u − v)(v(v + 1)/2)1/3
> 0.

Let us denote this lower bound byq(u, v).

Having got rid of the logarithm terms, (34) will hold if we canprove the following:

6(u − v)2(u + v − 1)

(2
√

uv + (u + v)/2)(u − 1)(1 − v)
+

(u − v)2(u + v − 4uv)

uv(u − 1)(1 − v)
≥ 2

q(u, v)

(
(u − v)2

uv
− 9(u − v)2

(2
√

uv + (u + v)/2)2

)
,

or equivalently,

(
6(u + v − 1)

(2
√

uv + (u + v)/2)
+

(u + v − 4uv)

uv

)(
3

(v − u)(2
√

u + u+1
2 )

− 1

(v − u)(v(v + 1)/2)1/3

)

≥ 2

(
1

uv
− 9

(2
√

uv + (u + v)/2)2

)
, (35)

which is equivalent to

(u + v − 2
√

uv)((u + v)/2 + 3
√

uv + 4uv)

(2
√

uv + (u + v)/2)uv

3(v(v + 1)/2)1/3 − (2
√

u + (u + 1)/2)

(v − u)(2
√

u + (u + 1)/2)(v(v + 1)/2)1/3

≥ (u + v − 2
√

uv)((u + v)/2 + 5
√

uv)

uv(2
√

uv + (u + v)/2)2
(36)
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and also equivalent to

((u + v)/2 + 2
√

uv)((u + v)/2 + 3
√

uv + 4uv)[3(v(v + 1)/2)1/3 − (2
√

u + (u + 1)/2)]

≥ (2
√

u + (u + 1)/2)(v(v + 1)/2)1/3((u + v)/2 + 5
√

uv)(v − u). (37)

It can be checked by tedious but straightforward calculus that inequality (37) holds for anyu ≤ 1 ≤ v,

and equality holds whenu = 1 = v, i.e., x = y.

Proof of Theorem 9

Suppose thatφ is not a likelihood ratio rule. Then there exist positiveP0-probability disjoint sets

S1, S2, S3 such that for anyX1 ∈ S1, X2 ∈ S2, X3 ∈ S3,

φ(X1) = φ(X3) = u1 (38a)

φ(X2) = u2 6= u1 (38b)

f1(X1)

f0(X1)
<

f1(X2)

f0(X2)
<

f1(X3)

f0(X3)
. (38c)

Define the probability of the quantiles as:

f0(u1) := P0(φ(X) = u1), and f0(u2) := P0(φ(X) = u2),

f1(u1) := P1(φ(X) = u1), and f1(u2) := P1(φ(X) = u2).

Similarly, for the setsS1, S2 andS3, we define

a0 = f0(S1), b0 = f0(S2) and c0 = f0(S3),

a1 = f1(S1), b1 = f1(S2), and c1 = f1(S3).

Finally, let p0, p1, q0 andq1 denote the probability measures of the “residuals”:

p0 = f0(u2) − b0, p1 = f1(u2) − b1,

q0 = f0(u1) − a0 − c0, q1 = f1(u1) − a1 − c1.

Note that we havea1

a0

< b1

b0

< c1

c0

. In addition, the setsS1 and S3 were chosen so thata1

a0

≤ q1

q0

≤ c1

c0

.

From Lemma 6, there holdsp1+b1

p0+b0

= f1(u2)
f0(u2)

/∈
(

a1

a0

, c1

c0

)
. We may assume without loss of generality that

p1+b1

p0+b0

≤ a1

a0

. Then, p1+b1

p0+b0

< b1

b0

, so p1

p0

< p1+b1

p0+b0

. Overall, we are guaranteed to have the ordering

p1

p0
<

p1 + b1

p0 + b0
≤ a1

a0
<

b1

b0
<

c1

c0
. (39)
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Our strategy will be to modify the quantizerφ only for thoseX for which φ(X) takes the valuesu1

or u2, such that the resulting quantizer is defined by a LLR-based threshold, and has a smaller (or equal)

value of the corresponding costJ∗
φ. For simplicity in notation, we useA to denote the set with measures

underP0 and P1 equal toa0 and a1; the setsB, C, P andQ are defined in an analogous manner. We

begin by observing that we have eithera1

a0

≤ q1+a1

q0+a0

< b1

b0

or b1

b0

< q1+c1

q0+c0

≤ c1

c0

. Thus, in our subsequent

manipulation of sets, we always bundleQ with eitherA or C accordingly without changing the ordering

of the probability ratios. Without loss of generality, then, we may disregard the corresponding residual

set corresponding toQ in the analysis to follow.

In the remainder of the proof, we shall show that either one ofthe following two modifications of the

quantizerφ will improve (decrease) the sequential costJ∗
φ:

(i) AssignA,B andC to the same quantization levelu1, and leaveP to the levelu2, or

(ii) Assign P, A andB to the same levelu2, and leavec to the levelu1.

It is clear that this modified quantizer design respects the likelihood ratio rule for the quantization indices

u1 andu2. By repeated application of this modification for every such pair, we are guaranteed to arrive

at a likelihood ratio quantizer that is optimal, thereby completing the proof.

Let a′0, b
′
0, c

′
0, p

′
0 be normalized versions ofa0, b0, c0, p0, respectively (i.e.,a′0 = a0/(p0 +a0 +b0 +c0),

and so on). Similarly, leta′1, b
′
1, c

′
1, p

′
1 be normalized versions ofa1, b1, c1, p1, respectively. With this

notation, we have the relations

D0
φ =

∑

u 6=u1,u2

f0(u) log
f0(u)

f1(u)
+ (p0 + b0) log

p0 + b0

p1 + b1
+ (a0 + c0) log

a0 + c0

a1 + c1

= A0 + (f0(u1) + f0(u2))

(
(p′0 + b′0) log

p′0 + b′0
p′1 + b′1

+ (a′0 + c′0) log
a′0 + c′0
a′1 + c′1

)

= A0 + (f0(u1) + f0(u2))D̃
0(p′ + b′, a′ + c′),

D1
φ =

∑

u 6=u1,u2

f1(u) log
f1(u)

f0(u)
+ (p1 + b1) log

p1 + b1

p0 + b0
+ (a1 + c1) log

a1 + c1

a0 + c0

= A1 + (f1(u1) + f1(u2))D̃
1(p′ + b′, a′ + c′),

24



where we define

A0 :=
∑

u 6=u1,u2

f0(u) log
f0(u)

f1(u)
+ (f0(u1) + f0(u2)) log

f0(u1) + f0(u2)

f1(u1) + f1(u2)
≥ 0,

A1 :=
∑

u 6=u1,u2

f1(u) log
f1(u)

f0(u)
+ (f1(u1) + f1(u2)) log

f1(u1) + f1(u2)

f0(u1) + f0(u2)
≥ 0

due to the non-negativity of the KL divergences.

Note that from (39) we have

p′1
p′0

<
p′1 + b′1
p′0 + b′0

≤ a′1
a′0

<
b′1
b′0

<
c′1
c′0

,

in addition to the normalization constraints thatp′0 + a′0 + b′0 + c′0 = p′1 + a′1 + b′1 + c′1 = 1. It follows

that p′

1
+b′

1

p′

0
+b′

0

< p′

1
+a′

1
+b′

1
+c′

1

p′

0
+a′

0
+b′

0
+c′

0

= 1.

Let us consider varying the values ofa′1, b
′
1, while fixing all other variables and ensuring that all the

above constraints hold. Then,a′1 + b′1 is constant, and both̃D0(p′ + b′, a′ + c′) and D̃1(p′ + b′, a′ + c′)

increase asb′1 decreases anda′1 increases. In other words, if we definea′′0 = a′0, b′′0 = b′0 anda′′1 and b′′1

such that
a′′1
a′0

=
b′′1
b′0

=
1 − p′1 − c′1
1 − p′0 − c′0

,

then we have

D̃0(p′ + b′, a′ + c′) ≤ D̃0(p′ + b′′, a′′ + c′) andD̃1(p′ + b′, a′ + c′) ≤ D̃1(p′ + b′′, p′′ + c′). (40)

Now note that vector(b′′0, b
′′
1) in R

2 is a convex combination of(0, 0) and (a′′0 + b′′0, a
′′
1 + b′′1). It

follows that (p′0 + b′′0, p
′
1 + b′′1) is a convex combination of(p′0, p

′
1) and (p′0 + a′′0 + b′′0, p

′
1 + a′′1 + b′′1) =

(p′0 + a′0 + b′0, p
′
1 + a′1 + b′1).

By (40), we obtain:

Gφ =
π0

A0 + (f0(u1) + f0(u2))D̃0(p′ + b′, a′ + c′)
+

π1

A1 + (f1(u1) + f1(u2))D̃1(p′ + b′, a′ + c′)

≥ π0

A0 + (f0(u1) + f0(u2))D̃0(p′ + b′′, a′′ + c′)
+

π1

A1 + (f1(u1) + f1(u2))D̃1(p′ + b′′, a′′ + c′)

=
π0

A0 + (f0(u1) + f0(u2))D(p′0 + b′′0, p
′
1 + b′′1)

+
π1

A1 + (f1(u1) + f1(u2))D(p′1 + b′′1, p
′
0 + b′′0)
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Applying the quasiconcavity result in Lemma 7:

Gφ ≥ min

{
π0

A0 + (f0(u1) + f0(u2))D(p′0, p
′
1)

+
π1

A1 + (f1(u1) + f1(u2))D(p′1, p
′
0)

,

π0

A0 + (f0(u1) + f0(u2))D(p′0 + a′0 + b′0, p
′
1 + a′1 + b′1)

+

π1

A1 + (f1(u1) + f1(u2))D(p′1 + a′1 + b′1, p
′
0 + a′0 + b′0)

}
.

But the two arguments of the minimum are the sequential cost coefficient corresponding to the two

possible modifications ofφ. Hence, the proof is complete.
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