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Abstract

We consider the design of systems for sequential decezdchldetection, a problem that entails
several interdependent choices: the choice of a stoppitey (pecifying the sample size), a global
decision function (a choice between two competing hypatgsand a set of quantization rules (the
local decisions on the basis of which the global decision &l@). This paper addresses the problem
of whether in the Bayesian formulation of sequential dedized detection, optimal local decision
functions can be found within the class of stationary rul#e. develop an asymptotic approximation to
the optimal cost of stationary quantization rules and dxplis approximation to show that stationary
quantizers are not optimal in general. We also consider s of blockwise stationary quantizers, and

show that asymptotically optimal quantizers are likelitidmsed threshold rulés.

Keywords: sequential detection; decentralized detection; hyp@&hesting; experimental design; quan-

tizer design; decision-making under constraints.

. INTRODUCTION

Detection is a classical discrimination or hypothesisitgsproblem, in which observatioqsX;, Xo, ...}
are assumed to be drawn i.i.d. from the (multivariate) coowlal distributionP(- | H ) and the goal is to
infer the value of the random variablé, which takes values if0, 1}. In a typical engineering application,

the case{ H = 1} represents the presence of some target to be detected,asliéfe= 0} represents its

1This work was presented in part at the International Symposium onntafion Theory, July 2006, Seattle, WA.
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absence. Placing this problem in a communication-theointext, adecentralized detectioproblem

is a hypothesis-testing problem in which the decision-madanot given access to the raw data points
X,, but instead must infel{ based only on the output of a set g@iantization rulesor local decision
functions say {U,, = ¢,(X,)}, which map the raw data to quantized values. This basic prolué
decentralized detection has been studied extensivelyefgral decades [17], [19], [6]; see the overview
papers [20], [23], [3], [5] and references therein for moeckground. Of interest in this paper is the
extension to an-online setting: more specifically, gegjuential decentralized detectigmoblem [19],
[21], [12] involves a data sequencgX;, Xo, ...}, and a corresponding sequence of summary statistics,
{U1,Us, ...}, determined by a sequence of local decision rdles ¢.,...}. The goal is to design both
the local decision functions and to specify a global deacisidle so as to predicH in a manner that
optimally trades off accuracy and delay. In short, the satjaedecentralized detection problem is the
communication-constrained extension of classical foatioh of sequential centralized decision-making
problems (see, e.g., [8], [15], [10]) to the decentralizettisg.

In setting up a general framework for studying sequentiakedé&ralized problems, Veeravalli et al. [22]
defined five problems, denoted “Case A’ through “Case E,” djstished from one another by the amount
of information available to the local sensors. In applieas such as power-constrained sensor networks,
one cannot assume that the decision-maker and sensorsmanmucicate over a high-bandwidth channel,
nor that the sensors have unbounded memory. Most suitediggpénspective—and the focus of this
paper—is Case A, in which the local decisions are of the sfiagl form ¢,(X,,); i.e., neither local
memory nor feedback are assumed to be available. NotingGhae A is not amenable to dynamic
programming and hence presumably intractable, Veeragtllil. [22] suggested restricting the analysis
to the class oftationarylocal decision functions; i.e., local decision functiagfisthat are independent of
n. They conjectured that stationary decision functions magtitially be optimal in the setting of Case A
(given the intuitive symmetry and high degree of indepewdenf the problem in this case), even though
it is not possible to verify this optimality via DP argumenthis conjecture has remained open since it
was first posed by Veeravalli et al. [22], [21].

The main contribution of this paper is to resolve this questiy showing that stationary decision
functions are, in factnot optimal for decentralized problems of type A. Our argumenbased on an
asymptotic characterization of the optimal Bayesian risktlee cost per sample goes to zero. In this
asymptotic regime, the optimal cost can be expressed as plesifunction of priors and Kullback-

Leibler (KL) divergences. This characterization allows usdaostruct counterexamples to the stationarity
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conjecture, both in an exact and an asymptotic setting. é ldtter setting, we present a class of
problems in which there always exists a range of prior prdhias for which stationary strategies,
either deterministic or randomized, are suboptimal. Weerintpassing that an intuition for the source
of this suboptimality is easily provided—it is due to the asyetry of the KL divergence.

It is well known that optimal quantizers when unrestricted aecessarily likelihood-based threshold
rules [19]. Our counterexamples and analysis imply thainogdtthresholds are not generally stationary
(i.e., the threshold may differ from sample to sample). Wao girovide a partial converse to this result:
specifically, if we restrict ourselves to stationary (or aise stationary) quantizer designs, then there
exists an optimal design that is a threshold rule based orikékhood ratio. We prove this result by
establishing a quasiconcavity result for the asymptdtiaghtimal cost function. In this paper, this result
is proven for the space of deterministic quantizers withteaty output alphabets, as well as for the space
of randomized quantizers with binary outputs. We conjextinat the same result holds more generally
for randomized quantizers with arbitrary output alphabets

The remainder of this paper is organized as follows. We bagiSeaction Il with background on the
Bayesian formulation of sequential detection problemsl Afald’s approximation. Section Ill provides
a simple asymptotic approximation of the optimal cost thadarlies our main analysis in Section IV. In
Section V, we establish the existence of optimal decisioasrtihat are likelihood-based threshold rules,

under the restriction to blockwise stationarity. We coudlgwvith a discussion in Section VI.

[I. BACKGROUND

This section provides background on the Bayesian formulatib sequential (centralized) detection
problems. Of particular use in our subsequent analysis ikl'8Vapproximation of the cost of optimal
sequential test.

Let Py andP; represent the distribution of, when conditioned o2 = 0} and{H = 1} respectively.
Assume that?, andP; are absolutely continuous with respect to one another. Weffigr) and f!(z)
to denote the respective density functions with respecbtoesdominating measure (e.g., Lebesgue for
continuous variables, or counting measure for discreteeehvariables).

Our focus is the Bayesian formulation of the sequential ai&te problem [15], [21]; accordingly,
we let7! = P(H = 1) and " = P(H = 0) denote the prior probabilities of the two hypotheses. Let
X1, Xs,... be a sequence of conditionally i.i.d. realizations6f A sequential decision rule consists

of a stopping timeN defined with respect to the sigma fiedd X1, ..., X ), and a decision function
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measurable with respect (X1, ..., Xxy). The cost function is the expectation of a weighted sum of

the sample sizéV and the probability of incorrect decision—namely
J(N,v) :=E{cN +1[y(X1,...,Xn) # H]}, (1)

wherec > 0 is the incremental cost of each sample. The overall goal ihtmse the paifV,~) so as
to minimize the expected loss (1).

It is well known that the optimal solution of the sequentigcision problem can be characterized
recursively using dynamic programming (DP) arguments [A%], [15], [2]. Although useful in classical
(centralized) sequential detection, the DP approach isalvays straightforward to apply tdecentral-
ized versions of sequential detection [21]. In the remainderhig section, we describe an asymptotic
approximation of the optimal sequential cost, originaliyedo Wald (cf. [16]), valid ag — 0. To sketch
out Wald's approximation, we begin by noting the optimalpgtimg rule for the cost function (1) takes

the form
SH(X3)
fO(X3)

for some real numberg < b. Given this stopping rule, the optimal decision functiors ltlae form

N=inf{n>1 ‘Ln(Xl,...,Xn) :zZlog ¢ (a,b)}, (2)
i=1

1 if Ly >b,
Y(Ln) = )
0 if Ly <a.

Consider the two types of error:
a = Po(v(Ln)# H)=Py(Ln 2 b)
B = Pi(v(Ln)# H)=Pi(Ly < a).

As ¢ — 0, it can be shown that the optimal choice @fand b satisfiesa — —oc0,b — oo, and the
correspondingy, 3 satisfy « + 3 — 0. Ignoring the overshoot of.; upon the optimal stopping time
N (i.e., instead assuminfyy attains precisely the value or b) we can expresa, b, EN and the cost

function J in terms ofa and g as follows [24]:

aza(a,ﬁ)::loglﬁ 1;ﬁ

and b=~ b(a,p) :=log 4)
EO[LN] ~ (1 — OZ)CL +ab and El[LN] ~ (1 — ﬁ)b + Ga ()

Now define the Kullback-Leibler divergences

_ SHI(X), _ SHXY),
D' = E4[log fO(X1)} =D(f'|f"), and D°=-Eg[log fO(Xl)] = D(f°|| ). (6)



With a slight abuse of notation, we shall also U3¢, 3) to denote a function if0, 1> — R such that:
l-«
1-4

With the above approximations, the cost functidrof the decision rule based on envelopeandb can

D(a, B) := alog% +(1—«)log

be written as

J = mEi(cN +I[Ly < a]) + 7’Eo(cN +I[Ly > b))
1E1Ln oEoLn
Dl CcT —DO
D(a,1— D(1 -8,
0@ 120) | 1 DO—p)
where the third line follows from Wald's equation [24]. Lé{«, 3) denote the approximation (8) of.

+ 7%a + 718, 7)

= CT

+7T0a+7rlﬁ, (8)

Q

Let J* denote the cost of an optimal sequential test, i.e.,

J* = inf J. (9)

A useful result due Chernoff [7] states that under certaguagption (to be elaborated in the next section),
J* has the following form:

71.0 1

ﬁz(ﬁ+%m@ﬂwmm. (10)

[11. CHARACTERIZATION OF OPTIMAL STATIONARY QUANTIZERS

Turning now to the decentralized setting, the primary avade lies in the design of the quantization
rules ¢,, applied to dataX,,. When X,, is univariate, a deterministic quantization rutg is a function
that mapsX’ to the discrete spac = {0,..., K — 1} for some natural numbeK. For multivariate
X, with d dimensions arising in the multiple sensor setting, a datestic quantizerg,, is defined as a
mapping from thei-dimensional product spack to &/ = {0,..., K —1}¢. In the decentralized problem
defined as Case A by Veeravalli et al. [22], the functignis composed ofl separate quantizer functions,
one each for each dimension. A randomized quantzgers obtained by placing a distribution over the
space of deterministic quantizers.

Any fixed set of quantization ruleg,, yields a sequence of compressed ddta= ¢,,(X,,), to which
the classical theory can be applied. We are thus interestethdosing quantization rules;, ¢o, ... so
that the error resulting from applying the optimal sequariest to the sequence of statistics, Us, . . .

is minimized over some spack of quantization rules. For a given quantizey we use
fo.(w) = Pi(¢n(Xn)=u), for i=0,1,

5



to denote the distributions of the compressed data, coméiti on the hypothesis. In general, when
randomized quantizers are allowed, the vec@pfggl(.), f(;n(.)) ranges over a convex set, denoteaiv ®,
whose extreme points correspond to deterministic quanstizased on likelihood ratio threshold rules [18].
We say that a quantizer design sgationary if the rule ¢, is independent of:; in this case, we
simplify the notation tof} and f9. In addition, we define the KL divergencds} := D(f}||fJ) and
DY = D(f3]f,). Moreover, letJ, and J; denote the analogues of the functiofisn Eq. (7) and.J*
in Eq. (9), respectively, defined usin@és, for i« = 0,1. In this scenario, the sequence of compressed
datalUy,...,U,,... are drawn i.i.d. from eithepf(g or f;. Thus we can use the approximation (10) to
characterize the asymptotically optimal stationary gizantdesign. This is stated formally in the lemma
to follow.
We begin by stating the assumptions underlying the lemma.aFgiven class of quantizers, we

assume that the Kullback-Leibler divergences are uniforodynded away from zero
D(f}I1£3) > 0,D(f3If}) > 0 for all ¢ € ® (11)
and moreover that the variance of the log likelihood ratiges lmounded

Zug{\/arfi log(f(zl)/f(g)) < 00, and Zug Var fo log(fé/fg)) < o0. (12)
€ €

Lemma 1. (a) Under assumptionéll) and (12), the optimal stationary cost takes the form

* 7T0 ﬂ—l —1
Jg = D735+D7é cloge™ (1+ry) (13)
where|ry| = o(1) asc — 0.

(b) If supyeq max{log(f;)/fg),log(fg/fé)} < M for some constand/, then(13) holds with

SUPgeq 79| = o(1) asc — 0.

Proof: (@) This part is immediate from a combination of Theorems 1 amd hernoff [7].

(b) We begin by bounding the error in the approximation (8). d&finition of the stopping timeV,
we have either (ip < Ly < b+ M or (ii) a— M < Ly < a. By standard arguments due to Wald [24],
it is simple to obtain’a < 1— 3 < b*Ma, or equivalentlyb < b(a, §) = log -2 < b+ M. Similar

reasoning for case (i) yields — M < a(«, 5) = log % < a. Now, note that
EULN = Oon[LN|LN Z b] + (1 — a)]E()[LN‘LN S a].

Conditioning on the eventy € [b,b + M|, we have|Ly — b(«a, 3)] < M. Similarly, conditioning on
the eventLy € [a — M, a], we have|Ly — b(a, §)] < M. This yields|EoLy — (—D(«a,1 — 3))| < M.
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Similar reasoning yield$E, Ly — D(1 — 3,a)| < M. Let J,(a,b) denote the approximation (8) of;.
We obtain:
[T — Jg(a, B)] < 2¢M.

Note that the approximation error bound is independent dfhus, it suffices to establish the asymptotic
behavior (13) for the quantitinf,, 3 j¢(a,ﬂ), where the infimum is taken over pairs of realizable error
probabilities («, 3). Moreover, we only need to consider the asymptotic regime 5 — 0, since the
error probabilitiese and 5 vanish asc — 0. It is simple to see thab(1 — 3, «) = log(1/a)(1 + o(1)),
and D(1 — o, 8) = log(1/6)(1 + o(1)). Hence,inf, 3 J4(a, 3) can be expressed as

) log(1 log(1
glg{ﬂoa—i-ﬂlﬂ—i-cwoog(Dg/ﬂ)+c7rlOgl()({a)}(l—i-o(l))- (14)

This infimum, taken over all positivéq, 3), is achieved at* = %;0 and g* = %. Plugging the
quantitiesa* and8* into Eq. (14) yields (13). Note that the asymptotic quantity) in (13) is absolutely
bounded bya* + 5* — 0 uniformly for all quantizerg, becauseD;, and Dg are uniformly bounded
away from zero due to the Lemma’s assumption.

It remains to show that error probabilitiéa™, 3*) can be approximately realized by using a sufficiently
large thresholdb > 0 and small threshold < 0 while incurring an approximation cost of ordél(c)
uniformly for all ¢. Indeed, let us choose thresholdsand &’ such thate=("+M) /2 < o* < e, and
e?~M/2 < p* < e, Let o/ and 3’ be the corresponding errors associated with these two Hblgs
As before, we also have’ € (e~ ("tM) /2 ¢~y and 3’ € (e¥~M/2,¢%). Clearly, |a* — /| < e (1 —

e M /2) = O(a*) = O(c). Similarly, |3* — 3’| = O(c). By the mean value theorem,
[log(1/a*) —log(1/d/)| < |a* — /| TM < 2eM(1 — "M /2) = O(1).

Similarly, log(1/5*) —log(1/5) = O(1). Hence, the approximation ¢&*, 5*) by the realizabldd’, 5’)
incurs a cost at mosb(c). Furthermore, the constant in the asymptotic bouh@) is independent of

quantizerp € .

For the rest of this paper, we shall assume that all assunmgptib Lemma 1 hold.
Remarks:
1) The preceding approximation of the optimal cost esséyiigihores the overshoot of the likelihood
ratio L. While it is possible to analyze this overshoot to obtain arfiygproximation (cf. [11],

[16], [10], [14]), we see that this is not needed for our pwgoLemma 1 shows that given a fixed
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prior (7¥, '), among all stationary quantizer designsdin¢ is optimal for sufficiently smalk if

and only if ¢ minimizes what we shall call theequential cost coefficient
0 1

T T
Gy = FS) + Dié)

2) As a consequence of Lemma 7 to be proved in the sequel, if weider the classp of all
binary randomized quantizers, then sequential cost caaflici, is a quasiconcave function with
respect to(fg(.),f(})(.)). (A function F' is quasiconcave if and only if for any, the level set
{F(xz) > n} is a convex set; see Boyd and Vandenberghe [4] for furthekdracnd). The minimum
of a quasiconcave function lies in the set of extreme pointg#s domain. For the setonv &,
these extreme points can be realized by deterministic qaeaatbased on likelihood ratios [20].
Consequently, we conclude that for quantizers with binanypots, the optimal cost is not decreased
by considering randomized quantizers. We conjecture thiat tatement also holds beyond the
binary case.

Section V is devoted to a more detailed study of asymptoyiagitimal stationary quantizers. In the

meantime, we turn to the question of whether stationary tigens are optimal in either finite-sample or

asymptotic settings.

IV. SUBOPTIMALITY OF STATIONARY DESIGNS

It was shown by Tsitsiklis [19] that optimal quantizess take the form of threshold rules based on
the likelihood ratio f1(X,,)/f°(X,). Veeravalli et al. [22], [21] asked whether these rules cavags
be taken to be stationary, a conjecture that has remainedl dpehis section, we resolve this question

with a negative answer in both the finite-sample and asynupsatitings.

A. Suboptimality in exact setting

We begin by providing a numerical counterexample for whitatisnary designs are suboptimal.

Consider a problem in whiclk € X = {1,2,3} and the conditional distributions take the form
0 — |8 1999 1 1 — |1 1 1
fiz) = 10 10000 10000] and f*(z) = {§ 3 3} '

Suppose that the prior probabilities aré = % and ¥ = % and that the cost for each sample is

_ 1
€= 100"

If we restrict to binary quantizers (i.elf = {0,1}), by the symmetric roles of the output alphabets

there are only three possible deterministic quantizers:
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1) Design A:pa(X,) = 0 < X, = 1. As a result, the corresponding distribution oy, is
specified byf) (u,) =[5 3] and f} (u) =[5 3].
2) Design B:¢p(X,) = 0 < X, € {1,2}. The corresponding distribution fdv,, is given by
£, (u) = [2999 ob) and £ (u) = (2 3].
3) Design Cipc(X,) =0 < X,, € {1,3}. The corresponding distribution fdr,, is specified by
T ~ litowo tooos] and 3, (u) =[5 3],
Now consider the three stationary strategies, each of whsds only one fixed design, A, B or C. For
any given stationary quantization rule we have a classical centralized sequential problem, factwh
the optimal cost (achieved by a sequential probabilityoragéist) can be computed using a dynamic-
programming procedure [25], [1]. Accordingly, for eacht&taary strategy, we compute the optimal cost
function .J for 105 points on thep-axis by performing 300 updates of Bellman’s equation (21).[In
all cases, the difference in cost between the 299th and 3Qfiates is less that0—°. Let J,4, Jp and
Jo denote the optimal cost function for sequential tests usih@\s, all B’s, and all C’s, respectively.
When evaluated at! = 0.08, these computations yield, = 0.0567, Jg = 0.0532 and Jo = 0.08.
Finally, we consider a non-stationary rule obtained by aipglylesign A for only the first sample, and
applying design B for the remaining samples. Again usingrBah’'s equation, we find that the cost for

this design is
Jo = min{min{7',1 — 7}, ¢ + Jp(P(H = 1ju; = 0))P(u; = 0)+
Jp(P(H = 1ju; = 1))P(u; = 1)} = 0.052767,

which is better than any of the stationary strategies.

In this particular example, the cost* of the non-stationary quantizer yields a slim improvement
(0.0004) over the best stationary rufg. This slim margin is due in part to the choice of a small per-
sample cost = 0.01; however, larger values af do not yield counterexample when using the particular
distributions specified above. A more significant factor ist thar non-stationary rule differs from the
optimal stationary ruleB only in its treatment of the first sample. This fact suggests dme might
achieve better cost by alternating between using designdida&sign B on the odd and even samples,

respectively. Our analysis of the asymptotic setting inribg&t section confirms this intuition.



B. Asymptotic suboptimality for both deterministic and ramélced quantizers

We now prove that in a broad class of examples, there is a rahgeior probabilities for which
stationary quantizer designs are suboptimal. Our resethstfrom the following observation: Lemma 1
implies that in order to achieve a small cost we need to chaapeantizer for which the KL divergences
DY := D(f3||f}) and D} := D(f}||f3) are both as large as possible. Due to the asymmetry of the KL
divergence, however, these maxima are not necessarily\athiby a single quantizer. This suggests
that one could improve upon stationary designs by applyiffgrdnt quantizers to different samples, as

the following lemma shows.
Lemma 2. Let ¢1 and ¢, be any two quantizers. If the following inequalities hold
DY < D andDj > Dy, (15)

then there exists a non-empty interyal, V') C (0, +o00) such that as: — 0,

=]

* * * . ™
J¢1 S J¢1:¢2 S J¢2 |f F S U
0
* . * * _ . s
o e <min{J3, J5,} = O(cloge™) if — € (U,V)
* k * . 77-0
Joo 250,20, 72V,

where I35, 6 denotes the optimal cost of a sequential test that altemmamtween using; and ¢, on

odd and even samples respectively.

Proof: According to Lemma 1, we have

7T0 7'('1
Jy, = <D3 + %>clogcl(1 +0o(1)), i=0,1. (16)
Now consider the sequential test that applies quantizerand ¢ alternately to odd and even samples.
Furthermore, let this test consider two samples at a time.ﬂg% and f¢{1¢2 denote the induced
conditional probability distributions, jointly on the odsven pairs of quantized variables. From the

additivity of the KL divergence and assumption (15), theoddh:
D(fo,6:1f,0.) = Dg, +Dg, >2D5, (17a)
D(f4,0,118,6,) = Dg, + Dy, <2Dy,. (17b)

Clearly, the cost of the proposed sequential test is an uppand for I o Furthermore, the gap

between this upper bound and the true optimal cost is no nmi@e @(c). Hence, as in the proof of
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Lemma 1, as: — 0, the optimal cost/;, 4, can be written as

270 ol > 1
+ cloge™ (1 +0(1)). (18)
0 0 1 1
<D¢>1 + D¢2 D¢1 + D¢>2
From equations (16) and (18), simple calculations yield tla@rcwith
0 1 1 0 0 0 1 1 0 0
_ Dy, (Dg, — Dy, )(Dg, + Dg,) _ Dy, (Dg, — Dy, )(Dg, + Dg,) (19)
- 1 1 1 0 0 - 1 1 1 0 0\’
Dy, (Dg, +Dg,)(Dg, — Dg)) Dy, (Dg, +Dg,)(Dg, — Dg))
O

Example: Let us return to the example provided in the previous subsectNote that the two quan-
tizers ¢4 and ¢ satisfy assumption (15), sincB(fJ, ||f},) = 0.4045 < D(fJ ||f} ) = 0.45 and
D(f}If9,) = 24337 > D(f} ||£9,) = 0.5108. Furthermore, both quantizers dominatgs in terms
of KL divergences:D(f3_||f;.) = 0.0438, D(f |If}.) = 0.0488. As a result, there exist a range of
priors for which a sequential test using stationary quantdesign (eithet 4, ¢ or ¢¢ for all samples)

is not optimal.

Theorem 3. (a) Suppose thad is a finite collection of quantizers, and that there is no nguantizer

¢ that dominates all other quantizers i in the sense that
DY > D), and Dj > Dj  forall ¢ €. (20)

Then there exists a hon-empty range of prior probabilitiesvithich no stationary design based on a
quantizer in® is optimal.

(b) For any non-deterministi¢ in the randomized classnv ®, there exists a non-stationary quantizer
design that has strictly smaller sequential cost coeffictban that of a stationary design based on

for any choice of prior probabilities.

Proof: (a) Since there are a finite number of quantizer®@iand no quantizer dominates all others,
the interval(0, o) is divided into at least two adjacent non-empty intervadsheof which corresponds to
a range of prior probability ratios”/=! for which a quantizer is strictly optimal (asymptoticaliginong
all stationary designs. Let them &, §) and(d, d2), for two quantizers, namely;; andg,. In particular,

§ is the value forr? /7! for which the sequential cost coefficients are equal—@z, = G4,—which
happens only if assumption (15) holds. Some calculation$yvérat
_ D4, D5, (Dg, — Dj,)

§ = .
1 1 0 0
Dy, Dy, (Dg, = Dg,)

(21)
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By Lemma 2, a non-stationary design obtained by alternatatg/éens; and ¢, has smaller sequential
cost than bothp; and ¢, for /= € (U,V), whereU and V are given in equation (19). Since it
can be verified that as defined (21) belongs to the intendl, V'), we conclude that for® /7! €
(U, V)N (d1,02), this non-stationary design has smaller cost than anyostty design using € o.

(b) Let ¢ € conv® be a randomized quantizer (i.e., at each step choose wittz@anprobabilities
wi,...,wg from quantizerseq,...,¢r € ®, respectively, wherezlewi = 1). Clearly, the density
induced by¢ satisfy: f) = Sk wify and f; = Zlew,-f%i. Due to strict convexity of the KL
divergence functional with respect jointly to the two déysarguments [9], by Jensen’s inequality
we have:DY < Y- w;DY and D} < Y& w;D} . Since DY and D} are bounded from above
uniformly for all ¢; € ®, it is possible to approximatéws,...,wy) by rational numbers of the form

(¢1/N,q2/N,...,q/N) for some natural numberg, ..., q, and N satisfyinng:1 ¢; = N such that
k
D3 < ) @Dy /N
i=1

D

=

k
< Y @D} /N.
i=1

Now consider the non-stationary quantizer that appfiesor ¢; steps, thenp, for ¢ steps and so on,
up to ¢y for g, steps, yielding a total oV steps, and then repeats this sequence starting again at step
N + 1. By construction, this non-stationary quantizer has a Enabst than that of quantizer for any
choice of prior. O
Remarks: It is interesting to contrast the Bayesian formulation oé ghroblem of quantizer design
with the Neyman-Pearson formulation. Our results on theoptitmality of stationary quantizer design
in the Bayesian formulation repose on the asymmetry of thébKck-Leibler divergence, as well as
the sensitivity of the optimal quantizers on the prior probty. We note that Mei [12] (see p. 58)
considered the Neyman-Pearson formulation of this problenthis formulation, it can be shown that
for all sequential tests for which the Type 1 and Type 2 erames bounded byy and 3, respectively,
then asa + 8 — 0, the expected stopping timEy/N under hypothesisH = 0 is asymptotically
minimized by applying a stationary quantizéf that maximizesD(f(ng(})). Similarly, the expected
stopping timeE; N under hypothesi¢/ = 1 is asymptotically minimized by the stationary quantizét
that maximizesD(f;Hfg) [12]. In this context, the example in subsection IV-A prasda case in which
the asymptotically minimal KL divergences® and ¢** are not the same, due to the asymmetry, which

suggests that there may not exist a stationary quantizérsthaultaneously minimizes botR; N and
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EoN.

C. Asymptotic suboptimality in multiple sensor setting

Our analysis thus far has established that with a singleosqres time stepd = 1), applying multiple
quantizers to different samples can reduce the sequemtsdl As pointed out by one of the referees, it
is natural to ask whether the same phenomenon persists icades of multiple sensorg ¢ 1). In this
section, we show that the phenomenon does indeed carrymuoee, specifically by providing an example
in which stationary strategies are still sub-optimal in g@amson to non-stationary ones. The key insight
is that we have only a fixed number of dimensions, whereas as 0 we are allowed to take more
samples, and each sample can act as an extra dimensiondipgowore flexibility for non-stationary
strategies.

Suppose that the observation vecly at timen is d-dimensional, with each component corresponding
to a sensor in a typical decentralized setting. Supposehibatliservations from each sensor are assumed
to be independent and identically distributed accordinght® conditional distributions defined in our
earlier example (see Section IV-A). Of interest are the ogtideterministic binary quantizer designs for
all d sensors. Although there are three possible choicgs¢p and ¢ for each sensor, the quantizer
¢c is dominated by the other two, so each sensor should chothesr @iy and ¢z. Suppose that among
these sensors, a subset of sizehoose¢, and whereas the remaining— k& sensors choosep for
0 < k < d. We thus havel + 1 possible stationary designs to consider. For elacthe sequential cost

coefficient corresponding to the associated stationarygdesikes the form

0 1

G T + T
k= .
kDY, +(d—k)D§ —~ kD +(d—k)Dj

(22)

Now consider the following non-stationary design: the firshsor alternates between decision rules
¢4 and¢ g, while the remainingl — 1 sensors simply apply the stationary design basea gnFor this

design, the associated sequential cost coefficient is giyen b

270 27t
G = + . (23)
0 0 1 1
Dy +(2d-1)Dy ~ Dy +(2d—1)Dy,

Consider the intervalU, V'), where the interval has endpoints

1 1 0 0 0 1 1 0 0 0 0
17— Pos = Dy, Dy, + (24— 1)Dg, Dy, _ Dy, — Dy, Dy, +(2d—1)Dg, Dy, +(d—1)Dg,

0 0 1 1 1 0 0 1 1 1 1 -

Dy, =Dy, Dy, +(2d—-1)Dg, Dy, Dy, = Dg, Dy, +(2d=1)Dy Dy, +(d—1)Dy,

13



Straightforward calculations yield that for any prior likedbod 7° /7! € (U, V), the minimal cost over
stationary designsiin,—, .4 G, is strictly larger than the sequential c@stof the non-stationary design,

previously defined in equation (23).

V. ON ASYMPTOTICALLY OPTIMAL BLOCKWISE STATIONARY DESIGNS

Despite the possible loss in optimality, it is useful to ddes some form of stationarity in order to
reduce computational complexity of the optimization andisien process. In this section, we consider
the class ofblockwise stationarydesigns, meaning that there exists some natural nurbsuch that
or+1 = @1, dr12 = P2, and so on. For each, let Cr denote the class of all blockwise stationary designs
with period 7. We assume throughout the analysis that each decisiongruler = 1,...,7T) satisfies
conditions (11) and (12). Thus, dsincreases, we have a hierarchy of increasingly rich quantiiasses
that will be seen to yield progressively better approximagi to the optimal solution.

For a fixed prior(7°, ') and T > 0, let (¢1,...,¢r) denote a quantizer design . As before,
the costJy of an asymptotically optimal sequential test using thismjzar design is of ordetlog c—*
with the sequential cost coefficient
B Tr0 Tt
DY +...+D], DL +..+DL

Gy (24)

G Is a function of the vector of probabilities introduced bg thuantizer(f(g(.), f(})(.)). We are interested
in the properties of a quantization rulethat minimizesJ;.

It is well known that there exist optimal quantizerssen unrestricted- that can be expressed as
threshold rules based on the log likelihood ratio (LLR) [19Uir@ounterexamples in the previous sections
imply that the thresholds need not be stationary (i.e., theshold may differ from sample to sample).
In the remainder of this section, we addresses a partialazeavto this issue: specifically, if we restrict
ourselves to stationary (or blockwise stationary) quamtidesigns, then there exists an optimal design
consisting of LLR-based threshold rules.

It turns out that the analysis for the caBe> 1 can be reduced to an analysis that is closely related to
our earlier analysis fofl" = 1. Indeed, consider the sequential cost coefficient for the t#tepn = 1,
where the rules for the other time steps are held fixed. From \({@have
_ T n Tl
- DY +s0 Dj +si

Gy
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for non-negative constantg, and s;. As we will show, our earlier analysis of the sequential cost
coefficient, in whichsy = s; = 0, carries through to the case in which these values are nan-Zais

allows us to provide (in Theorem 9) a characterization of th#neal blockwise stationary quantizer.

Definition 4. The quantizer design function : X — U is said to be alikelihood ratio threshold
rule if there are thresholdgly = —oco0 < d; < ... < dx = +o0, and a permutationuy, ..., ux) of

(0,1,...,K — 1) such that forl = 1,..., K, with Py-probability 1, we have:
O(X) =w if dy < f1(X)/f(X) < d,
Whenf1(X)/f%(X) = d;_1, setp(X) = u;_1 or ¢(X) = u; with Py-probability 12

Previous work on the extremal properties of likelihood sabiased quantizers guarantees that the
Kullback-Leibler divergence is maximized by a LLR-based qizant[18]. In our case, however, the
sequential cost coefficiertt,, involves a pair of KL divergenceslj)g and Dé, which are related to one
another in a nontrivial manner. Hence, establishing asgtigppptimality of LLR-based rules for this cost
function does not follow from existing results, but ratheguires further understanding of the interplay
between these two KL divergences.

The following lemma concerns certain “unnormalized” vatsaof the Kullback-Leibler (KL) diver-
gence. Given vectors = (ag,a1) andb = (bo, b1), we define functionsD® and D! mapping fromR?%

to the real line as follows:
~0 ap bo
D%(a,b) = aplog— + bglog — (25a)
al b1
~1 a1 b1
D (a,b) = ajlog— 4+ bylog—. (25b)
ag b()

These functions are related to the standard (normalized) ikérgence via the relation®(a,1 —a) =

D(ag,ay), andD'(a,1 — a) = D(ay, ap).

Lemma 5. For any positive scalars, b1, ¢1, ag, bg, co such thatg—; < 2—; < z—; at least oneof the two

2This last requirement of the definition is termed ttenonical likelihood ratio quantizer by Tsitsiklis [18]. Although one
could consider performing additional randomization when there aredigdater results (in particular, Lemma 7) establish that

in this case, randomization will not further decrease the optimal g)st
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following conditions must hold:
D%a,b+c¢) > D°b,c+a) and D'(a,b+c)> Db, c+a), or (26a)
D%c,a+b) > D°b,c+a) and D'(c,a+b) > D°b,c+a). (26b)
This lemma implies that under certain conditions on the angeof the probability ratios, one can
increaseboth KL divergences by re-quantizing. This insight is used in tbiotving lemma to establish
that the optimal quantizep behaves almost like a likelihood ratio rule. To state theultesecall that

the essential supremuns the infimum of the set of all such thatf(z) < n for Py-almost allz in the

domain, for a measurable functigh

Lemma 6. If ¢ is an asymptotically optimal quantizer, then for all pairg,, us) € U, uy # us, there

holds: X
L (ur) ) f(x)
) (essx:qs%%fuz @) ™ e, fo(:v)>'

Note that a likelihood ratio rule guarantees somethingwsfen: ForPy-almost allz such thatp(z) = u;,

fl(x)/f°(x) takes a value either to the left or to the right, but not to keittes, of the interval specified
above.

Lemma 7 stated below essentially guarantees quasiconaafvity, for the case of binary quantizers.
To state the result, leF : [0,1]> — R be given by

&) + C1
D(ag,al) + dy D(al,ao) +d1'

F(ao, al) = (27)

Lemma 7. For any non-negative constantsg, c1, dy, d1, the functionF defined in(27) is quasiconcave.

We provide a proof of this result in the Appendix. An immediatonsequence of Lemma 7 is that

LLR-based quantizers exist for the class of randomized qeewstiwith binary outputs.

Corollary 8. Restricting to the class of (blockwise) stationary binananqtizers, there exists an asymp-

totically optimal quantizer) that is a (deterministic) likelihood ratio threshold rule.

Proof: Let ¢ is a (randomized) binary quantizer. The sequential costficamit can be written as
Gy = F(f£3(0), f4(0)). The set of{(f3(0), f;(0)} for all ¢ is a convex set whose extreme points can
be realized by deterministic likelihood ratio thresholdesi(Prop. 3.2 of [18]). Since the minimum of a

guasiconcave function must lie at one such extreme pointhé]corollary is immediate as a consequence
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of Lemma 7. O
It turns out that the same statement can also be proved ferrdetistic quantizers with arbitrary

output alphabets:

Theorem 9. Restricting to the class of (blockwise) stationary and dutieistic decision rules, then there

exists an asymptotically optimal quantizerthat is a likelihood ratio threshold rule.

We present the full proof of this theorem in the Appendix. Thegb exploits both Lemma 6 and

Lemma 7.

VI. DISCUsSION

In this paper, we have studied the problem of sequentialrdesdized detection. For quantizers with
neither local memory nor feedback (Case A in the taxonomyesrgvalli et al. [22]), we have established
that stationary designs need not be optimal in general. M@ we have shown that in the asymptotic
setting (i.e., when the cost per sample goes to zero), tlsegeclass of problems for which there exists
a range of prior probabilities over which stationary stgie are suboptimal.

There are a number of open questions raised by the analysisismpéper. First, our analysis has
established only that the best stationary rule chosen frdimita set of deterministic quantizers need not
be optimal. Is there a corresponding example with an infinit@imer of deterministic stationary quantizer
designs for which none is optimal? Second, Corollary 8 eistiabé the optimality of likelihood ratio rules
for randomized decision rules that produce binary outpukss proof was based on the quasiconcavity
of the functionG,; that specifies the asymptotic sequential cost coefficienthiks function G, also
guasiconcave for quantizers other than binary ones? Sucsioguaavity would extend the validity of

Theorem 9 for the general class of randomized quantizers.
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a

1—-10;

(b1 —bo)/bl 1—bo ag

Fig. 1: lllustration of the domairA.

By renormalizing, we can assume w.l.0.g. that+ b1 + ¢1 = ag + by + co = 1. Also w.l.0.g, assume
thatb, > bg. Thus,c; > ¢g anda; < ag. Replacinge; =1 —a1 — by andeg = 1 — ag — by, the inequality
c1/co > b1 /bo is equivalent toa; < agby/bp — (b1 — bo)/bo.

We fix values ofb, and consider varying € A, where A denotes the domain fdiug, a;) governed

by the following equality and inequality constraints< a; <1 —b1; 0 < ag <1 —bg; a1 < ag and
a] < aobl/b() — (bl — bo)/bo. (28)

Note that the third constrain{ < ag) is redundant due to the other three constraints. In paaticu
constraint (28) corresponds to a line passing throl@h— bo)/b1,0) and (1 —bg, 1 — by) in the (ag, a1)
coordinates. As a resul is the interior of the triangle defined by this line and two othees given
by a; =0 andag = 1 — by (see Figure 1).
Since bothD(a, 1—a) and D' (a, 1 —a) correspond to KL divergences, they are convex functionk wit
a1 (1—aq)

respect to(ag, a1). In addition, the derivatives with respect 49 are af(ll_—a(fl) < 0 andlog =) < 0,

respectively. Hence, both functions can be (strictly) lmdfrom below by increasing; while keeping

ap unchanged, i.e., by replacing by a} so that(ao, a/) lies on the line given by (28), which is equivalent

to the constraint; /co = b1 /bo. Let ¢} =1 — by —a; thend] /ey = b1 /bo. Our argument has established
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inequalities (a) and (b) in the following chain of inequiakt

(@) a) bi + ¢

Dl(a,b+c¢) > dlog aTl) + (b1 + ) log bo 1 o (29a)
® a) log Zi + ¢ log Zi + by log Z(l) (29b)
(g) (a} + ¢})log Zi i Zi + by log Z(l) (29c¢)
= DYa+c¢b), (29d)

inequality (c) follows from an application of the log-sumeguality [9]. A similar conclusion holds for

D%a,b+c).

Proof of Lemma 6
Suppose the opposite is true, that there exist two $§gtsSs with positive Po-measure such that
d(X) = ug for any X € S; U Se, and

Y8 fHur)  fH(S9)
S = ) = (S

By reassigningS; or S, to the quantileu;, we are guaranteed to have a new quantizesuch that

(30)

DY, > Dj. andDj, > Dj., thanks to Lemma 5. As a result, has a smaller sequential cogf,, which

is a contradiction.

Proof of Lemma 7

The proof of this lemma is conceptually straightforward, the algebra is involved. To simplify the
notation, we replace, by z, a; by y, the functionD(ag,a1) by f(x,y), and the functionD(aq, ag) by
g(x,y). Finally, we assume thal, = d; = 0; the proof will reveal that this case is sufficient to estdblis
the more general result with arbitrary non-negative ssafgrandd;.

We havef(z,y) = xlog(z/y)+ (1 —=)log[(1-z)/(1-y)] andg(z,y) = ylog(y/z)+ (1 —y)log[(1 -
y)/(1 — z)]. Note that bothf and g are convex functions and are non-negative in their domaind,
moreover that we havé(x,y) = co/f(z,y) +c1/9(z,y). In order to establish the quasiconcavity /6f
it suffices to show that for anyz,y) in the domain ofF, for any vectorh = [hg hi] € R? such that
hT'VF(x,y) = 0, there holds

RIV2F (2, y) h <0 (31)
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(see Boyd and Vandenberghe [4]). Here we adopt the standdedion of V' for the gradient vector
of F, and V2F for its Hessian matrix. We also ugg, to denote the partial derivative with respect to

variablez, F, to denote the partial derivative with respectatandy, and so on.

We haveVF = —C"JZf — Clgfg. Thus, it suffices to prove relation (31) for vectors of the form

T
— _Cofy _ gy Cofa CiGx
h - |:( f2 gz ) ( fz + g2 ):|

It is convenient to writeh = covp + c1v1, Wherevy = [—f, /2 fo/fAF andvy = [—g,/9® 92/9%]".

The Hessian matri¥’2F can be written as&/?>F = c¢oHy + coH1, where

H 1 [ fxxf_Qfo fxyf—Qf:cfy :|
0= 73 ’
U fugf = 2fufy  fouf —2F2
and

1 Gxxg — 29:% 9zy9g — 29191/

Hl - —73 9 .
9L Goyg — 2929y 9yy9 — 29,

Now observe that
thth = (Covg + Clvl)T(CoHo + ClHl)(Covo + 61’01),

which can be simplified to

WI'V2Fh = c3vl Hovg + ol Hivy + cier (208 Hovy + vl Hiv) + cocd (208 Hyvy + v Hovy).

This function is a polynomial inyg and ¢;, which are restricted to be non-negative scalars (at least
one of which is assumed to be non-zero). Therefore, it sufficgedve that all the coefficients of this
polynomial (with respect t@y andc;) are strictly negative. In particular, we shall show that

(i) v&Hovo <0, and

(i) 2’1)ng01}1 + ngwo <0,.
where in both cases equality occurs onlyzif= gy, which is outside of the domain of. The strict
negativity of the other two coefficients follows from entiednalogous arguments.

First, some straightforward algebra shows that inequai)tys(equivalent to the relation

foaly + Fyyfe = 2fufyfey.

But note thatf is a convex function, s¢,, f,, > :?y- Hence, we have

(a) ®)
fmmfi‘f’fyyfg? > 2\/frxfyy|fmfy‘ Z 2f:rfyfry>
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thereby proving (i). (In this argument, inequality (a) falls from the fact that.? + v > 2ab, whereas
inequality (b) follows from the strict convexity of. Equality occurs only ifx = y.)

Regarding (ii), some further algebra reduces it to the iadtyu
G1+ Gy — Gz >0, (32)
where

Gy = 2(fygyfa:ac + fmgxfyy - (fyga: + f:c.%;)fa:y)»
Gy = figmc + f;ggyy - 2fxfygacy7

Gz = (fygz — f:vgy)2~

2
9

At this point in the proof, we need to exploit specific informat about the functiong and g, which
are defined in terms of KL divergences. To simplify notatiom®, Mtu = z/y andv = (1 —z)/(1 —y).

Computing derivatives, we have

fa(z,y) = log(z/y) —log((1 —2)/(1 —y)) = log(u/v),

fyz,y) = 1—-2)/(1-y)—x/y=v—u,
go(z,y) = (1—9)/(A—2z)—y/z=1/v—1/u,
gy(w,y) = log(y/r) —log((1—y)/(1—x)) =log(v/u),
SR ot d —aty
V2f($,y) = x(l_lz) l_y(l—y) ) and VQg(x,y) —| (-2 X x r(ll—m)
Tal-w) Oy T Tii-o  y(1-p)

Noting thatf, = —gy; gzy = —faz; foy = —gyy, We See that equation (32) is equivalent to

2
;(fyg:c - fa:gy)Q‘ (33)
To simplify the algebra further, we shall make use of the @ity (log¢2)? < (t—1/t)?, which is valid

2(fxgxfyy + fyg:cgyy) - fg?gyy + f;gx:c >

for any ¢. This implies that
Fyge = (v —w)(1/v = 1/u) < fagy = —(log(u/v))* = —f7 = —g; < 0.

Thus, _fg?gyy > fy9x9yy and%(fygx - fwgy)2 < %fygx(fygx — fzgy). As a result, (33) would follow
if we can show that

2
Q(fachfyy + fyg:vgyy) + fygacgyy + f;g:m > gfygx(fygm - f:rgy)-
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For all z # y, we may divide both sides by f,(z,y)g.(z,y) > 0. Consequently, it suffices to show
that:
(fzgy - Q:chy)a

Q| N

—2fxfyy/fy - fygx:p/gz - 3gyy >

or, equivalently,

2log(U/v)<uil + 1ﬁv>+<1ﬁx +;> - y(l?’_y) > z<(u;vv)2 - (logZ)2>,

or, equivalently,

u—v)(u+v— u—v)*(u+v—4uww u—v)? u
210g(u/v)( (u—)g)(—li_—v)l) ( uv(iﬁl—;(l—i) )252;(( uv) —(logU)Q). (34)

Due to the symmetry, it suffices to prove (34) for< y. In particular, we shall use the following

inequality for logarithm mean [13], which holds far# v:

3 < logu — logv < 1
2y/uv + (u+v)/2 u—v (uv(u +v)/2)1/3

We shall replacé‘% in (34) by appropriate upper and lower bounds. In additioa,slall also bound

g(z,y) from below, using the following argument. When< y, we haveu < 1 < v, and

B Y 1—y 3y(y —x) (1—y)(z—y)
g@y) = ylog +(-ylee s > 5 e e =9 =) — (@ + )/
_ 3(1—v)(1—w) (u—1)(1—0v) S0

(u—v)2Vu+F)  (u—v)(v(v+1)/2)1/3
Let us denote this lower bound layu, v).
Having got rid of the logarithm terms, (34) will hold if we cammove the following:
6(u—v)%(u+v—1) (u —v)%(u+ v — duv) - 2 <(u—v)2 9(u —v)? )7

(2v/uv + (u+v)/2)(u — 1)(1 — v) wu—1)(1-v) — q(u,v) w (2 + (u+v)/2)2
or equivalently,

< 6(u+v—1) Jr(u+v—4uv)>( 3 B 1 )
@V + (u+0)/2) o (v —wevat S (o0 D27

1 9
S 2<uv e <u+v>/2>2>’ (39)

which is equivalent to

(u+ v — 2y/uv)((u 4 v)/2 4 3y/uv + 4uv)  3(v(v+1)/2)Y3 — (2y/u + (u +1)/2)

(2o + (u+ 0)/2)uo (0 —w)@va+ (ut 1)/2)(e(0 + 1)/2)73
- (u+v —2y/uv)((u+v)/2 + 5\/uv) (36)
- wo(2y/uwv + (u +v)/2)?
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and also equivalent to

(w4 v)/2 + 2v/u0) ((u + v)/2 + 3v/uv + 4uv)[3(v(v +1)/2)3 — (2vVu + (u +1)/2)]
> (2vu+ (u+1)/2)(v(v + 1)/2)Y3((u + v)/2 + 5v/uv) (v — u).  (37)

It can be checked by tedious but straightforward calculas itequality (37) holds for any < 1 < v,

and equality holds when =1 =, i.e.,z = .

Proof of Theorem 9
Suppose that) is not a likelihood ratio rule. Then there exist positiidg-probability disjoint sets

51,52,53 such that for anyX1 € 51,X2 S SQ,X?, € Ss,

o(X1) = ¢(X3) = w1 (38a)
P(X2) = uz # (38b)
fHX)  fNXe)  fH(X3)

(X)) = (%)~ O(Xy) (38¢)

Define the probability of the quantiles as:
fOur) == Po(¢(X) = 1), and fO(uz) :=Po(p(X) = ug),
fHur) :=Pi(o(X) = 1), and fH(ug) :=Pi($(X) = up).
Similarly, for the setsSy, Sy and S3, we define
ap = f2(S1), bo=r"(S2) and co = f°(S3),
ar = f1(S1), b= f1(S2), and ¢ = f1(Ss).
Finally, let pg, p1, g0 and¢; denote the probability measures of the “residuals”
po = f(uz) - bo, p1 = fH(uz) = by,
G = fo(u1)—ao—co7 q = fl(ul)_al_cl-

Note that we have@ < 2—1 < C—l In addition, the sets; and S3 were chosen so thaé% < Z—; < 4,

Co

u) ao’ co

From Lemma 6, there hoId%l ~(ua) ¢l Cl) We may assume without loss of generality that

p1+b1 al p1+by by Pl p1+b1 ;
poe < o Then, Zogs < b, s0 2 < 2. Overall, we are guaranteed to have the ordering

b b
P1 P1+ 1<al< 1<01

39
Do Po+bo ag by co (39)
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Our strategy will be to modify the quantizeronly for thoseX for which ¢(X) takes the values;
or us, such that the resulting quantizer is defined by a LLR-basedlibid, and has a smaller (or equal)
value of the corresponding cogf. For simplicity in notation, we usel to denote the set with measures

underPy andP; equal toayg andai; the sets3, C, P and Q are defined in an analogous manner. We

begin by observing that we have eith%r < gligl < bl or bl < glig < gl Thus, in our subsequent
manipulation of sets, we always bundlewith either. A or C accordlngly without changing the ordering
of the probability ratios. Without loss of generality, theame may disregard the corresponding residual
set corresponding t@ in the analysis to follow.

In the remainder of the proof, we shall show that either onéheffollowing two modifications of the
guantizerg will improve (decrease) the sequential cost

(i) Assign.A, B andC to the same quantization level, and leaveP to the leveluy, or

(i) Assign P, A andB to the same level», and leaver to the levelu;.

It is clear that this modified quantizer design respects #editiood ratio rule for the quantization indices
u; andusy. By repeated application of this modification for every suelir,pwe are guaranteed to arrive
at a likelihood ratio quantizer that is optimal, thereby qbeting the proof.

Let ay, b, ¢y, py, be normalized versions afy, bo, co, po, respectively (i.e.q(, = ao/(po+ ao+bo +co),
and so on). Similarly, let}, ], ¢}, p| be normalized versions af;, by, c1,p1, respectively. With this

notation, we have the relations

+ bo ap + o

Do — 0 )1 f0(u) n 1 bo)l Po " 4l
’ u;g:u e Og fH(w) (Po -+ bo) log p1+01 (a0 +¢o) log a1 + ¢
o + bg alh + cf
= Aot f) <(p0 + o) log L+ (4 o) log

= Ao+ (f2(w) + fO(u))D°(p' +b',d" + &),

+ b1 ai +c1

Dy = )1 ) £ (pr + by)log 22 + (ay 4+ ¢1)1
’ Z s og fO(u) (p1 +b1)log po + bo (a1 + 1) log ag + ¢o

UFEUL U2

= A+ (fY(w) + fHu)) DY + V', d + ),
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where we define

._ fO(w) FOlur) + £O(us)

Ay = Wﬁ%:m fO(u)log ) + (f%u1) + f2(uz))log Flun) 1 T(ua) >0,
o ) lo f1(u) Ly Lu)N o SHu) + 1 (u2)

A = ug;,wf (u)1 8 0w + (fY(u1) + fH(u2))] B ) () 2"

due to the non-negativity of the KL divergences.
Note that from (39) we have

Py _pitb _ad Y
" / / < / / < e
Po Potby T ap by

in addition to the normalization constraints thgt+ ag + b, + ¢, = p + a} + b} + ¢} = 1. It follows

DAY _ Pt
that =) < piratobra, — b

Let us consider varying the values @f, v, while fixing all other variables and ensuring that all the

above constraints hold. Thea, + b, is constant, and bot®°(p’ + b/, a’ + ¢) and D (p/ + V', d’ + )
increase a$) decreases and, increases. In other words, if we defing = q;, b = b, anda and b/

such that
af W _1-p-d

VA ! /0
ay by 1—py—cy

then we have
Dy +V,d +¢)<D(p) +0",d" +¢)andD(p' + V', +¢) < DY + 0", p" + ). (40)
Now note that vector(d],b}) in R? is a convex combination of0,0) and (aj + b, a} + by). It
follows that (p;, + b, | + bY) is a convex combination ofpy, p}) and (pf, + aj + by, py + af + b)) =

(pp + ab + by, Py +af + ).
By (40), we obtain:

7TO 7'('1
G = Ag + (fO(ur) + fOu2)) DO(p' + ¥, 0’ + ¢) T (fY(w1) + fH(ug)) DY + V', +¢)
7T0 7['1
>

Ao+ (fO(ur) + fO(uz
7T

Ao+ (fOur) + fO(uz

= + =
JDOW + Va4 ¢) A+ () + () DM@+ Y+ )

7T1

_|_
)D(pp + b5, py +8)  Ar+ (fH(ua) + fH(u2)) D(ph + bY, pf + b)

~— O ~—~
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Applying the quasiconcavity result in Lemma 7:

70 it

Ao+ (F() + F90)) Do #h) ~ Av+ (7 un) + F () Dot )’

70

Ao + (fO(u1) + fO(u2)) D(pf + ag + by, i + ai + by)

Gy > min{

_|_

1
™
A+ (fH () + fH(u2)) D(py + a) + by, pf + ag + b) }
But the two arguments of the minimum are the sequential cosfficient corresponding to the two

possible modifications of. Hence, the proof is complete.
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