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Abstract. Graph realizations of finite metric spaces have widespread applications, 
for example, in biology, economics, and information theory. The main results of 
this paper are: 

1. Finding optimal realizations of integral metrics (which means all distances are 
integral) is NP-complete. 

2. There exist metric spaces with a continuum of optimal realizations. 

Furthermore, two conditions necessary for a weighted graph to be an optimal 
realization are given and an extremal problem arising in connection with the 
realization problem is investigated. 

1. Introduction 

To find graph realizations of  metrics or distance matrices is an area of  research 
which has been given much attention (see [1]-[16] and [18]-[21]). The subject 
has widespread applications, perhaps most interesting is its use in a biological 
model to reconstruct phylogenetic trees from matrices, whose entries represent 
certain genetic distances among contemporary living species. 

In this paper  we present several new results on the topic. Section 2 supplies 
two local conditions (redundant edges, redundant edge pairs) necessary for 
optimal realizations, which are helpful tools in checking the optimality of a given 
realization. In Section 3 the optimal realization problem for integral metrics 
(which means all distances are integral) is shown to be NP-hard, while Section 
4 supplies its NP-membership.  Hence a quick (or at least a polynomial) algorithm 
for the realization problem is very unlikely to exist. Section 5 contains, beside 
other examples, a metric with a continuum of  optimal realizations, which dis- 
proves a conjecture of  Dress [5] and gives rise to an interesting new question. 
Section 6 investigates extremal quotients of total edge lengths in optimal realiza- 
tions and total distances in the underlying metric (M, d),  where tMI = m is fixed. 
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The infimum for these quotients is shown to be 4/m 2 if m is even, and 4 / (m 2 - 1) 
if m is odd. The supremum is bounded from below by ~ and from above by 1 
for all m --- 1. 

Let G = G( V, E, w) be a finite undirected simple graph with vertex set V, edge 
set E, and w: E-->R >° a function which assigns a positive weight or length to 
every edge of G. Let de(x, y) denote the length of a shortest path from vertex x 
to vertex y in G. The weighted graph G realizes a finite metric (M, d) if M c V 
and d( i , j )  = dc( i , j )  for all i, j of  M. 

The elements in V - M  are called auxiliary vertices of the realization. A 
realization G(V, E, w) of (M, d) is optimal if ~e~E w(e) is minimal among all 
realizations of  (M, d). 

Recall the following known results: 

Theorem A [5], [14]. Every finite metric ( M, d) has an optimal realization. 

Theorem B [5, p. 396]. For every optimal realization G( V, E, w) of a metric ( M, d) 
with IMI-- m 

l{ v ~ V ldeg v > 2}1 ~ m( m - 1 )2(m - 2) _< m4" 
4 

Theorem C [14]. Let G = G( V, E, w) be a realization of ( M, d) with M = V. Then 
G is the unique optimal realization of (M, d) iff the following two conditions are 
satisfied: 

(a) d(x, z) = d(x, y) + d(y, z) for all edges {x, y} and {y, z} of G. 
(b) d ( x , y ) + d ( t ,  z )<max{d(x ,  t )+d(y ,  z), d(x, z )+d(y ,  t)} for all edges 

{x, y}, {t, z} with no common endpoints. 

Theorem D [9]. I f  a metric has a tree realization, this realization is unique and 
optimal. 

Theorem E [7, p. 194]. The problem of finding maximal independent sets in graphs 
without triangles and with all vertices having degree at least 2 is NP-complete. 

2. Necessary Local Conditions for Optimal Realizations 

The following statement is well known (see [18]). 

Lemma 2.1. Every optimal realization G( V, E, w) of a metric ( M, d) satisfies the 
following two conditions: 

(a) For every e ~ E there exist i, j ~ M, such that every shortest path from i to j 
in G contains e. 

(b) Let e, e' e E be two edges with a common endpoint in G. Then there exist i, 
j ~ M, such that at least one shortest path from i to j contains the edge 
sequence ee '. 
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Proof Assume that (a) is not valid for some e e E, then by deleting e from G 
obtain another realization of (M, d) with a smaller total length. 

Similarly, if (b) fails for some ee' with a common vertex x, find another 
realization of  (M, d) with a smaller total length by replacing the subgraph in 
Fig. 1 with that in Fig. 2 for some small e > 0  and an additional auxiliary 
vertex t. [] 

Definition 2.2. Let (M, d) be a metric with realization G(V, E, w). G is called 
minimal, if: 

(a) G contains no edge e such that G - e  realizes M (redundant edge). 
(b) G contains no edge pair ee' with common vertex such that every shortest 

path with endpoints in M omits at least one of e, e' (redundant edge pair). 

Remark 2.3. Lemma 2.1 states that every optimal realization is minimal. The 
inverse does not hold as may be seen by the following example. 

Example 2.4. The graphs G~(V~, E~, w~) in Fig. 3 and G : ( ~ ,  E2, w2) in Fig. 4 

a b 2 c 

i 1 .,,,. 1 0 ........ 

- /  o 1 ~ 1 2 f e d 
Fig. 3 

a b 

1 1 ~ I 0 I A I 

1 v 1 0 1 -- i f e 

c 

~d 

Fig. 4 
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are both minimal realizations of the same metric d on M := {a, b, c, d, e,f}. G: 
is not optimal as ~e~E2 w:(e)= 16-- > 15 =~e~e, w,(e). 

Remark 2.5. By going through the proof [5, p. 396] it may be observed that 
Theorem B is valid for realizations without redundant edges and not only for 
the more special optimal realizations. So, in particular, it holds for minimal 
realizations. 

3. Searching for Optimal Realizations is NP-Hard 

The realization problem has a simple solution for tree realizable metrics [17]. 
On the other hand, no good algorithm is known for arbitrary metrics, even with 
integral distances only. That this problem is NP-hard, follows from Theorem 3.2 
below. This theorem reduces the search for minimal transversals in certain graphs 
to the construction of  optimal realizations for corresponding metrics. 

Definition 3.1. Let G(V, E)  be a simple, undirected graph. A transversal T is a 
subset of V, such that each edge has at least one endpoint in T. 

Thus transversals are the complements of  independent sets. Finding maximal 
independent sets is known to be NP-hard. Theorem E states this result for the 
graph class examined in Theorem 3.2. 

For every unweighted graph G( V, E) with transversal T the following construc- 
tion supplies a weighted graph H~-( V, E, if,). 

Construction. Subdivide every edge e of G by a new vertex "e." Include a new 
"central point" z and connect it with all vertices in T. Assign length ½ to all edges 
in the resulting graph Hr. 

Figure 5 shows HT(V, E, v~) for the 4-cycle with vertices {v,, v2, v3, v4} and 
T = {v,, v3}. 

1 e 1 1 i 
V4 g e 3 ~ ~v3 

Fig. 5 
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In general, H r  induces a metric (Mo, d) on Mo = E u {z} 

if x = y ,  

if z e { x , y } , x # y ,  

if x, y are edges in G with a common endpoint, x # y, 

otherwise. 

Observe that (Me,  d) does not depend on T. 

Theorem 3.2. Let G( V, E)  be a simple undirected unweighted graph without 
triangles and with degree at least 2 for all vertices. Let T c  V={1 . . . .  , n} be a 
minimal transversal in G. Then HT( V, E, ~,) is an optimal realization of  ( M•, d) 
and has total edge length I~1 ÷½1 T1. 

The conditions "without triangles" and "deg-> 2" are necessary, as is shown 
by two examples. The underlying graphs are the complete graphs on three vertices 
(Figs. 6 and 7) and on two vertices (Figs. 8 and 9). All edges have length ½. 

Proof of  Theorem 3.2. Obviously H~- has total edge length [E t + ~l T]. So it remains 
to show that no other realization has a smaller total length. For this let H(  V, E, if) 
be an arbitrary minimal realization of (Mo,  d). Without loss of generality let 
deg x -> 3 for all x e 17"- Mo. /~ is partitioned by 

/~' := {6e/~ [~ lies on a shortest path from el to e 2 for some eL, e2 e E 
with a common endpoint in G and thus d(e~, e2) = 1}, 

~,,:-_ ~ - ~ , .  

vIA e I v 2 
'0 ....... ~ ?z 

1 
e3 Z e2 0 

e3 e2 
%J 

Fig. 6 Fig. 7 
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L e m m a  3.3 be low yields E ~ , f f ( ~ ) - > I E  [, in L e m m a  3.4 E~ , . f f (~ ) ->½1TI  is 
shown,  th us a l together  ~ ~ ff (~) - I E[ + ½l 7"1. [ ]  

Lemma 3.3. A partition E ' =  E'~©. • . 0  ff~', all E~#@, is given by 

Ei*"-.- {~ e ff,'l e lies on a shortest path between el ,  e2 e E 
with a common endpoint i in G }, 

f f ( ~ ) =  ~ Y ff(~)-> ~ ½ d e g i = l E I .  
#eE' i=I ~eE', ieV 

Proof  o f  L e m m a  3.3. Obvious ly  / ~ ' =  (._)i=,/~', and/~'~ # @ for  all i 6  V, as every 
vertex i has  degree at least 2. The  disjointness is p roved  by contradict ion.  Assume 
i, j e V ,  i ~ j ,  a n d ~ e  *' " El  n E~. Hence  there are e , ,  e2 e E with a c o m m o n  endpoin t  
i e V and e3, e4e E with a c o m m o n  endpoin t  j e V in G, such that  a shortest  
pa th  f rom e, to e2, and also a shortest  pa th  f rom e 3 to e4, in H contains ~. The 
set A = {e,,  e2, e3, e4}  has at least three elements ,  since otherwise,  for  example ,  
e, = e3, e2 = e4, and {e~, e2} would be a double  edge between i a n d j .  G does not 
contain  any  triangle. Hence  there are e, e ' e  A with no c o m m o n  endpoin t  in G. 
Without  loss of  general i ty e = e, ,  e ' =  e4. Therefore  

d ( e l ,  e4) = dr~(e,, e4) = 2. (1) 

Let ~ = {zl, z:}. 

Case I. e~ . . . . .  z l - z 2  . . . . .  e2 is a shortest  pa th  f rom e, to e~, e 3 . . . . .  z l -  

z2 . . . . .  e4 is a shortest  pa th  f rom e 3 to e 4. dn (e , ,  z2) -< 1, dn(z2,  e4) < 1. Hence  
dr~(el, e4)<2,  which contradicts  (1). 

Case 2. e, . . . . .  z ~ - z 2  . . . . .  e2 and e 4 . . . . .  z l - z  2 . . . . .  e 3 are shortest  
pa ths  f rom e~ to e2 and e4 to e 3 . d n ( e , ,  z,) < 1, dA(z , ,  Ca) < 1. Hence  dFt(et, e4) < 2 ,  

again contradic t ing (1). 
In the part ial  g raph  H~(V, /~ ,  v~) o f / 1  all pairs el ,  e2c E with a c o m m o n  

endpoin t  i in G have  dis tance 1. Hence  H~ realizes a metric (B~, d,), where  
B~ = {e e E I i is an endpo in t  o f  e in G} and d~(e~, e2) = 1 for  all e, # e~ e B~. The 
star  in Fig. 10 realizes (B~, di) with a total length ½deg i. Center  c is an auxil iary 
vertex. By Theorem D this tree is the opt imal  realization of  (B,, d,). Thus 
Y~g.; ff(~) ->½ deg i, which comple tes  the p r o o f  of  L e m m a  3.3. [] 

1 

C~ • 20e 2 

edeg i 

Fig .  10 
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(Me,  d)  has a special structure with distances 1 and 2 only and d(e~, e~)= 
d(e~, z) + d(z, e2) for all e~, e~ ~ M c  with d(e~, e2) = 2. This implies that for every 
edge ~ / ~  there are two points in Mc  at distance 1, such that every shortest 
path between these two points contains ~. Thus: 

Every ~ ~/~" lies on every shortest path from some e c E to z. (2) 

Lemma 3.4. ~ ,  ~(~)->~ITI. 

Proof of  Lemma 3.4. Let /4(~',/~, if) be the connected componen t  in subgraph 
H"( V, E", if) o f / 4 ,  which contains z. 

Claim 1. t21 is a tree. 

Proof of Claim 1. We indicate a bijection between ~ ' - { z }  and /~: let ~c/~,  
= {x, y}. By (2) there is e ~ E, such that every shortest path from e to z in /4 

contains 6. Let z . . . . .  x - y  . . . . .  e be such a path. ~ is mapped  on y ~  V - { z } .  
If  both el, e2 ~ E were mapped  on the same y ~ V -  {z}, one o f  el and e2 would 
be redundant ,  unless ~ = e2. Thus, by the minimality o f  H, the constructed 
mapping  is injective. This yields I l-< I V-^{z}l Moreover,  I l-I -{z}l as /4 is 
connected.  Therefore equality holds and H is a tree. 

Claim 2. For every terminal vertex x ~ ~ ' -  {z} in H dr~(x, z) >- ½. 

Proof of  Claim 2. Case 1. x ~ E. Hence dA(x, z) = 1 and therefore d~(x, z) >- 1 >- ½. 
Case 2. x is an auxiliary vertex in/4.  When deg x >13, only one o f  these edges 

containing x is in /~". Let 6 c / ~ '  be another  edge with endpoint  x. ~ lies on a 
shortest path f rom e~ to e2 for e~, e2~ E, d(e~, e2) -- 1. Without  loss of  generality 
d~(e~, x) -<- ~, 

1 = dr~(e~, z) <- d r~(e~, x) + dr~(x, z) <- I+  d~(x, z). 

Hence dh(x, z)>-½. 

Claim 3. The set /~ o f  all edges with endpoint  z in /4 is in /~". Contrariwise 
assume {x, z} ~/~'.  Thus there are e~, e~ ~ E with distance 1, such that e~ . . . . .  x - 
z . . . . .  e2 is a shortest path from e~ to e2 in H. Thus 1 = drAel, e2)> dr~(z, e~), 
which is a contradiction.  

Claims 1, 2, and 3 together  yield 

Y~ f f (~) ->½deg~ z. (3) 

Claim 4. 

deg~ z -> min I T'I, T '  transversal in G. (4) 

Proof of Claim 4. For ~ = {x, z} ~/~ define 

E~ :-- {e ~ E I ~ lies on a shortest path from z to e}. 

Every pair  e~, e2 c E~ satisfies dr~(e~, x) < 1, dr~(e2, x) < 1. Therefore d(ej ,  e2) = 1, 
and el,  e2 have a c o m m o n  endpoint  i in G. Thus el ={i , j},  e2={i, k} for some 
£ k ~  V , j ~ k .  
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Pick another edge e3E E~. iE e3, since otherwise j c e 3 because of d ( e 3 ,  e~) = 1 
and k e  e3 because of d(e3, e2) = 1, which yields a forbidden triangle ele2e3 in G. 
Put i = v(~), so {i}c_("l~Ee. 

Thus E ~  {eli= v(~) is an endpoint of e in G}. It remains to show that the 
set v ( ~ ) =  {v(~) I ~ c / ~ }  is a transversal in G. But for any e ~ E there exists a 
path z -  x . . . . .  e of  length 1. Hence for the edge {z, x} the associated vertex 
v({z, x}) is both an endpoint of  e in G and an element of v(/~.). Altogether 

ff(~) ~ ½ deg~ z -> ½] TI, 
~e~" (4) 

which proves Lemma 3.4. [] 

4. Edge Lengths in Optimal Realizations 

In the last section we have shown that the optimal realization problem is NP-hard. 
In this section we will show that in the special case of integral metrics it is a 
member of NP. This follows from the fact that integral metrics have optimal 
realizations, in which all edge lengths are relatively simple fractionals. Together 
these two results will imply that our problem is NP-complete (for the NP-concept 
see [7]). Our first lemma deals with tree realizable metrics. 

Lemma 4.1. Let T( V, E, w) be a weighted tree without vertices of degree 2 and 
all pairs of terminal vertices having integral distance. Then 2w(e) e N for all edges 
ein E. 

Proof. Follows trivially from analysis in [5], for instance. [] 

For arbitrary optimal realizations such a simple result cannot hold. Neverthe- 
less, Theorem 4.2 implies the NP-membership of  the realization problem for 
integral metrics. 

Theorem 4.2. Let G( V, E, w) be a realization of an integral metric ( M, d) without 
redundant edges and with all auxiliary vertices having degree at least 3, IMf = m. 
Then there exists a further edge weighting g,: E ~ R ~°, such that G( V, E, ~ ) is also 
a realization of (M, d) and satisfies: 

(a) Shortest paths between any two points of M in G remain shortest paths for 
these points in t~. 

(b) ~.eEe ff~(e)-<~e~e w(e). 
(c) ff:(e)=pe/q ~Q; pe, q~N; q-<2m" for all e~ E. 

Before presenting the proof  we want to illustrate Theorem 4.2 by a little 
example: 

Let G(V, E, w) be given by Fig. 11. Figure 12 shows the best ~ossible choice 
of ~ to minimize ~e~E ~'(e). One has ~e~e ~ ( e ) =  2, 5 -  < 2+  1/,J3 = ~ e  w(e), 
and q -- 2. 
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Proo f  G does not contain redundant  edges. Thus for every edge e with an 
endpoin t  z there exists some i e M, such that every shortest path from z to i in 
G begins with e. This implies deg z ~< m for all z e V. Furthermore,  1VI -< m 4 by 
Remark 2.5. Altogether 

IEI _ m s. (5)  

For the further p roof  a linear program L P ( * )  is defined: 

1. Every edge e e E supplies a variable x~. 
2. Every path i -  e~ . . . . .  e r - j  of  length d ( i , j )  in O between two points i, 

j e M supplies the (=)-const ra in t  x~, + .  • • + x¢~ = d (i, j) .  
3. Every simple path i = e~ . . . . .  e~ - j  of  arbitrary length between two points 

i, j c M supplies the (->)-constraint Xe, +" " " + X¢, -> d ( i, j ). 
4. xe->0 for all e e  E. 
5. There are no other  constraints. 
6. The objective funct ion is min Z = x~, + . . - +  x~,, where E = { e l , . . . ,  e,}. 

Consider ing the finiteness o f  G and condit ion (5), LP(*) has only a finite number  
of  constraints and at most  m 5 variables. The set K of  feasible solutions o f  L P ( * )  
is nonemtpy,  as ( w ( e ~ ) , . . . ,  w(e , ) )  is feasible. G does not contain redundant  
edges, thus O<--x~-<-max , .~Md( i , j )  for all e c E .  Hence K is a compact  convex 
polytope in W. 

In our  example (Fig. 11) we obtain the following inequalities: 

Xel ~ 1, 
Xe2 + Xe4 = 1, 

Xe3 + Xe4 = 1 

x~ + xe~ + xe~ -> 1, 

Xe~ + x ,  3 ->1, 

xe, + x~, + xe, -> 1 

Xe, -> 0 f o r  i = 1, 2 ,3 ,4 .  

Claim. Every extremal point  o f  K has the form ( p ~ / q , . . . ,  p , / q )  with p~ . . . .  , p,, 
q e [~, and q -<- 2 ' ' ° .  
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Proof o f  the claim. For any extremal point P of K one can find t linearly 
independent constrants of LP(*), which satisfy equality in P. Thus every extremal 
point of K is the unique solution of a regular equation system 

A x  = b, (6) 

where A is a (t x t)-matrix with entries 0 and 1 only, b ~1~'. (In all constraints 
of  LP(*)  only the coefficients 0 and 1 occur on the left-hand side.) 

In our example the first three and the fifth line constitute the matrix 

A =  0 1 " 

1 1 

Let x* = ( x * , . . ,  x*) be a solution of (6). By Cramer's rule 

ith column 

det • 

a~l . . .  b, " '"  a .  J 
x* - -  

J a i l  • . , a l i  • . . a l l  [ 
-1 

/ det 

a t l  • • • a a  " " " a t t  j 

for i=  I , . . . ,  t. 

Both determinants are integers. By Hadamard's inequality for determinants 

de tA  < - a o < t = t , 
j = l  i=l  j = l  (5) 

An extremal optimal solution ( x ~ , . . . ,  x,) of LP(*)  induces a weighting function 
~: E ~ R  ~° by ff(ei):= x; for i=  1 , . . . ,  t. G,(V, E, ~) satisfies conditions (a)-(c) 
of the theorem. [] 

Remark 4.3. Let d be an integral metric on M = { 1 , . . . ,  m}. Theorem 4.2 supplies 
an optimal realization G(V, E, w) of (M, d) with Ivl  m', IEl-< m 5, and w(ei)= 
PJq,  Pi, q c ~ ,  q-<-2 ' '° .  Thus this graph can be calculated by a nondeterministic 
algorithm in polynomial time relative to the input length of distance matrix d [7]. 

The combination of  NP-membership and NP-hardness yields that the realiz- 
ation problem is NP-complete. Thus it is a hopeless enterprise to search for a 
quick algorithm for the general realization problem. 

In addition, we point out that the combinatorial dimension (a parameter 
introduced by Dress [5, p. 380]) of  the metrics (Mo, d) constructed in Section 3 
is at most two (this may be proved by a case-by-case consideration for any tuple 
of six points in Me).  Hence, while in the case of tree realizable metrics (i.e., for 
dim¢omb(M,d)<-l)  the optimal realization problem is well known not to be 
NP-hard, it becomes NP-hard for spaces with dim¢omb(M, d)---2. 
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5. Examples of Optimal and Minimal Realizations 

5.1. Dress [5] gave the following example of a metric with two essentially 
different optimal realizations: GI(V, ,  E, ,  wl) in Fig. 13 and G2(V2, E2, w2) in 
Fig. 14 are different optimal realizations of  the same metric on M = {a, b, c, d, e}. 
Dress conjectured that every metric (M, d) has only a finite number of  different 
optimal realizations. More precisely, he observed that, for any given unweighted 
graph G( V, E) with M c V, the set of length-functions w: E-~, 0~ >° which realize 
(M, D) in an optimal fashion form a compact  convex polytope, and he conjectured 
that this may always consist of  one point only. Theorem 5.2 gives, as a counter- 
example, a metric with a continuum of optimal realizations, al with the same 
underlying unweighted graph. 

Theorem 5.2. Every graph O~ ( V, E, w~ ) in Fig. 15 with - ½ ~ e <- ½ is an optimal 
realization o f  the same metric d on M = {a, b, c, d, e, f}.  

Proof. G~ realizes (M, d) with ~e~ w wF (e) = 9 for all - ~ -< e ~ ~. Hence it remains 
to show that, for every realization of (M, d), the total edge length is at least 9. 
Though there may be shorter proofs of this simple fact relying on some more 
general principles concerning optimal realizations, we find it instructive to prove 
this result in a rather straightforward way by exhaustive case-by-case consider- 
ations. 

So, let G(V,  E, ~,) be a realization of (M, d), 

O:-- {(a, b), (b, c), (c, d),  (d, e), ( e , f ) ,  (f,  a)}. 

b111 l a  1-m _ I+~ 1 e f 

c I-~ I+~ d 
Fig. 15 
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Claim I. For every two distinct pairs ( i , j ) ,  (k, 1) e Q no vertex v of  a shortest 
path from i to j is an interior point of a shortest path from k to I in G. 

Proof of Claim 1. All cases are proved by contradiction. 
Case 1: (a ,b ) ,  (b,c) .  Assume v E V  with de(a,v)=e,  d e ( v , b ) = l - e ,  

de(v,c)=6,  0<-e<- l ,  and 0 < 6 < 1 .  Thus d~(a,c)<-de(a,v)+de(v,c)<2.  
Contradiction. 

Case 2: (a,b),(e,d).  Assume r e ! ?  with de(a,v)=e,  d e ( v , b ) = l - e ,  
d~(e,v)=6, d e ( v , d ) = 2 - 3 ,  0<-e<- l ,  0-<3-<2,  and 0 < e + 8 < 3 .  Thus 
de(a, c)+ d~(b, d)<-de(a, v)+ d~(v, d)+ de(b, v)+ de(v, d)=3 
< d(a, c) + d(b, d) = 5. Contradiction. 

Case 3: (a ,b) ,  (d,e). Assume v ~ "  with de(a,v)=e,  d e ( v , b ) = l - e ,  
de(d,v)=6,  d e ( v , e ) = l - 6 ,  0<-e<- l ,  0<-8<-1,  and 0 < e + 3 < 2 .  Thus 
de(a, d) + de(b, e) <- 2 < d ( a, d) + d ( b, e) = 7. Contradiction. 

Case 4: (a,b), ( e , f ) .  Assume v ~ V  with de(a,v)=e,  d e ( v , b ) = l - e ,  
de(e,v)=3,  d e ( v , f ) = l - ~ ,  0<-e<- l ,  0<-3<-1,  and 0 < e + 3 < 2 .  Thus 
de(a, e) + de(b, f )  <- 2 < d(a, e) + d(b, f )  = 6. Contradiction. 

Case 5: (a,b) ,( f ,a) .  Assume v ~ l ?  with d e ( a , v ) = l - e ,  de(v,b)=e,  
d e ( f , v ) = 3 .  0< -e<- l ,  0<-3<-2,  and 0 < e + 6 < 3 .  Thus d e ( b , f ) < 3 = d ( b , f ) .  
Contradiction. 

Case 6: (a , f ) , (c ,d) .  Assume v ~  7 with de(a,v)=e,  d e ( v , f ) = 2 - e ,  
d~(c,v)=6, d e ( v , d ) = 2 - 6 ,  0<-e<-2,  0<-3-<2,  and 0 < e + 6 < 4 .  Thus 
de(a, d) + de(e, f )  <- 4 < d(a, d) + d (c,f)  = 6. Contradiction. 

Every other constellation of  (i,j), (k, I) is solved by one of these six cases 
with a symmetry argument. This proves Claim 1. 

As a consequence of  Claim 1, graph G~ in Fig. 16 is a subgraph of  G. G1 has 
a total edge length of  8. Theorem 5.2 holds if inserting a path with length 3 from 
a to d into t ~  yields a total edge length >9. 

Claim 2. In (~, shortest paths from a to d and from b to c do not intersect. 

ProofofClaim2. A s s u m e v c V w i t h d e ( b , v ) = e ,  d e ( v , c ) = l - e ,  de(a,v)=6,  
de( v, d) = 3 - 3, 0 < - e < - l ,  and 0<-3<-3. Thus de(a,c)+d~(b,d)<-4< 
d(a, c)+d(b, d) = 5. Contradiction. 

By symmetry, Claim 2 is also valid for the pair (a, d), (e,f).  

Claim 3. In t3, a shortest path from a to d does not contain both an inner point 
of  a shortest path from a to b and an inner point of  a shortest path from a to f. 

b 

C 2 

Fig, 16 

) f 

1 

) e  

d 
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Proof of Claim 3. Assume a shortest path a . . . . .  v . . . . .  w . . . . .  d from a 
to d, where v is an inner  po in t  of  a shortest path from a to b and  w is an inner  

point  of  a shortest path from a to f do(b,f)=do(b,a)+do(a,f)  forces 
do(v, w) = do(v, a)+ d~(a, w). Thus do(a, w) = dd(a, v)+ do(v, w) = do(a, v)+ 
do(v,a)+dd(a, w)>dd(a, w). Contradic t ion.  The same idea solves the other 
case with v between a and  f, and w between a and  b. 

Symmetry makes Cla im 3 also valid for the triple (a, d) ,  (d, c), (d, e). 
By Claims 2 and  3, t~ contains  one of the four graphs in Figs. 17-20 as a 

subgraph.  

a T A 2-)- f a 

I I 

b, 
b - e 

I-~ I 

c d 
2 c 

B ~ 2-8 

(S+Y) 

2-T  T 

• .-, f 

d 

~4 

Fig. 19 Fig. 20 
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Casel. ( ~ 2 c ( ~ w i t h 0 - < e - < l ,  0-<6<-l .  

4=dd(b, e)<-(1-e)+ 3 - ( e  + ~5)+ (1 -6 )=  5-2(e  + 6). 

Thus e+6<-½ and 3 - ( e + 6 ) - > ~ .  Therefore 

Z if(e)-> 8 + ~ >  9. 
eEE 

Case 2. (33c(~ with 0-< e -< l, 0 - < y ~ 2 .  

3 = d o ( b , d ) < - ( 1 - e ) + 3 - ( e + y ) + y = 4 - 2 e ,  thus e ~ .  

2=dc3(a , c )<-e+3- (e+y)+(2-y )=5-2y ,  thus y _ 3 .  

(7) 

(8) 

Case 3. 
Case 2. 

Case 4. 

By (7) and (8), 3 - (e + y) -> 1, which yields 

5~ ff (e)~-8+ 1 =9. 
eEE 

t~4 c (~ yields a total edge length ->9 by the same arguments as in 

(~5c (~ with 0-<3-<2,  O -  < y ~ 2 .  

3 = d d ( c , f ) < - - ( 2 - f l ) + 3 - ( f l + y ) + ( 2 - y ) = 7 - 2 ( y + ~ ) .  

Thus 3' + 13 -< 2, and 3 - (3 + 3') -> 1. Therefore 

~ ( e ) ~ 8 +  1 =9.  [] 
e~E 

Dress [5] defined hereditarily optimal realizations G( V, E, w) of finite metric 
spaces (M, d) by induction: if IM[-< 2, then any optimal realization of (M, d) is 
defined to be hereditarily optimal. If [M I = k and if hereditarily optimal realiz- 
ations have been defined already for all metric spaces (M, d) with tMt < k, then 
a realization H = H(V, E, w) of (M, d) is defined to be hereditarily optimal if 
for any 1~ ~ M there is some subgraph /4 of  H such that /4 is a hereditarily 
optimal realization of (/~t, d is ) ,  and if ~ w(e) is minimal with respect to this 
property. 

Dress [5] has shown that hereditarily optimal realizations are unique up to 
isomorphy. 

The above disproved conjecture of Dress was hoped to be a corollary of the 
much stronger conjecture that any optimal realization G of  a finite metric space 
(M, d) can be derived from its hereditarily optimal realization H = H(M, d) by 
"merely" deleting some edges of H (though it may be NP-hard to decide which 
edges to delete). But while the above example disproves this conjecture as well, 
it suggests a possibly positive answer to the following interesting new question, 
relating optimal and hereditarily optimal realizations of finite metric spaces in a 
more subtle way: given a finite metric space (M, d) and a finite undirected simple 
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a d 

b e 

c f 

Fig. 21 

graph (V, Ec_(V))with M_cV, consider the (possibly e m p t y ) s e t  W= 
(M, d; V, E)  of  all weight functions w: E->R ~° which make G= G(V, E, w) an 
optimal realization of (M, d). Noting that W is a compact convex polytope in 
R E one may ask whether at least its extremals can be derived from H(M, d) 
"merely" by edge deletion (in the above example W is an interval and its two 
endpoints can indeed be derived in that way). Of course, to decide which edges 
are to be deleted might again be NP-hard, but at least a positive answer to this 

41 42 43 

I f 1  
1 1 ~  31 

12 ~ ,, 32 

13 

I I I 
21 22 23 

Fig. 22 

33 
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question would improve the result of Theorem 4.2(c) impressively, since in 
hereditarily optimal realizations of metric spaces with only integral distances all 
edge lengths are integral multiples of i (proof in [5]). 

Remark 5.3. Optimal realizations of metrics need not be planar. The graph in 
Fig. 21 with all edges having length 1 is the unique optimal realization of the 
underlying metric on M ={a, b, c, d, e,f}.  The optimality may be proved by 
Theorem C. 

5.4. By Remark 2.5 minimal realizations of a metric (M, d) contain at most 
IMI' auxiliary vertices. For n -> 1 there exist metrics (M, d) and minimal realiz- 
ations G( V, E, w) with IMI = 4n, l v[--4n2+ 4n, that means G has quadratically 
many auxiliary vertices. Figure 22 shows such a graph G for n = 3. All edges 
have length 1, (M, d) with M ={11, 12, 13,21,22,23,31,32,33,41,42,43} is the 
metric induced by G. e~ lies on the unique shortest path from 11 to 23. 

6. Extremal (Metric, Optimal Realization) Pairs 

For every metric (M, d) with M = { 1 , . . . ,  m} define 

Z w(e)  
Q ( M , d ) : =  e~E 

Z d(i,j)' 
l < i < j ~ m  

where G( V, E, w) is an optimal realization of (M, d). Extremal values of Q(M, d) 
for certain classes of metrics yield necessary conditions for the corresponding 
optimal realizations: 

For m = 2, p,, - q,, = 1. 

Theorem 6.1. 

Proof. 

ad p,,. 

p,,, := inf Q(M,  d),  
I~1=,,, 

q,. := sup Q(M, d). 
IMl=m 

4 
m2 if m is even, m >- 2, 

P" = 4 i f  m is odd, m >- 3. 
m 2 - 1  

½< q,,, <- 1 foral l  m>_2. 

Let (M, d) be a metric and G(V,  E, w) an optimal realization o f (M,  d), 
M = {1 , . . ,  m}. For every edge e 

Ue := {{i, j}c M[e lies on a shortest path from i to j}. 
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Claim. 

if m is even, 

if m is odd, 

for every edge {x, y} ~ E. 

Proof of the claim. M is divided in two subsets by 

M, := {i 6 M ldo(i , x) <- do(i, y)}, 

M2 := M - M1. 

For {i,j}~ U~x.y~ either i~ M ~ , j E  M2 o r j c  M1, i e  M2. Thus 

/ ( 2 )  2 i f m  is even ,  

I u x,y l-< IM,I. IM21-< 
[ ( m 2 1  ) (re+l)2 i f m i s o d d ,  

and the claim holds. 

For every pair i, j c M let 

Ei, j := {e ~ E l e lies on a shortest path from i to j}. 

With this notation 

Q(M, d)= 
Z w(e) Y~ w(e) 

e ~ E  e ~ E  

I ~ i ' < j ' < m  e J,t 

(9) 

(lo) 

Y~ w(e) Z w(e) 
e ~ E  e ~ E  

E w(e) e~E 
e c E  { i , j  U e 

with i ' < j  

l n ~-5 if m is even, 

~7~) ___4_ if m is odd. 
mZ-1  
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)2 

1 

Fig. 23 

m+ I 
2 

2 

m 

• e ° 
• • • 

Fig, 24 

m-1 
2 

Thus 4/m 2 and 4/(m ~- 1) are lower bounds for Q(M, d) with m even or odd, 
respectively. The optimality of these bounds is shown by the following metrics. 
Let m - 2 .  For e > 0 ,  

t 
2e 

d~(i,j):= 2e 
l + 2 e  

if i<-rn/2,j<-m/2, 
if i >  m/2,j> m/2, 
otherwise. 

The optimal realizations of (M, de) are given by Fig. 23 if m is even and by Fig. 
24 if m is odd. (Proof by Theorem D.) 

lim~o Q( M, dF ) - t ~ 4 ~  

[ m 2 - 1  

if m is even, 

if m is odd. 

ad q,. Q(M, d ) -  < 1 for all metrics (M, d) with tM[>-2, since an optimal realiz- 
ation does not contain redundant edges. Q(M, d) >~3 is given in the following 
examples. 

Case 1. rn is even, m -> 2. The complete bipartitie graph Kin~2,,.~2 with all edges 
having length 1 realizes the induced metric on its vertices, optimality by Theorem 
C. Thus 

Q(M,d)- 
(m/2) 2 1 

 o,2 2+2 2( 2) 3-4,m 

Case 2. m is odd, m->3. The complete bipartite graph K(,,,+l)/2.{m-I)/2 with all 
edges having length 1 realizes the induced metric on its vertices, optimality by 
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Theorem C. Thus 

((m + 1)/2)((m - 1)/2) 
Q(M, d)= 

t + l / m  

121 

[ ]  

2 / \  2 / 

6.2. Open Question. Is 

3 - 4 / m  for evenm? 

q" = + l / m  
Z ~  for oddm? 

3-1/rn" 
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