
On Optimal Replication of Data Object at
Hierarchical and Transparent Web Proxies

Xiaohua Jia, Deying Li, Hongwei Du, and Jinli Cao

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS’05)

On Optimal Replication of Data Object at Hierarchical and Transparent Web Proxies – p. 1/46

Outline

• Introduction
• Problem Formulation
• Computing the Induced Tree of Proxy Nodes
• Proxies with Unlimited Storage Capacities
• Proxies with Limited Storage Capacities
• Simulations

On Optimal Replication of Data Object at Hierarchical and Transparent Web Proxies – p. 2/46

Overview

• This paper investigates the optimal replication of data objects at
hierarchical and transparent web proxies.

• Two cases of data replication at proxies are studied: 1) proxies
having unlimited storage capacities and 2) proxies having limited
storage capacities.

• For the former case, an efficient algorithm for computing the
optimal result is proposed.

• For the latter case, they prove the problem is NP-hard, and
propose two heuristic algorithms.

On Optimal Replication of Data Object at Hierarchical and Transparent Web Proxies – p. 3/46

Proxy and Data Replication

• Typical web caching techniques

• In this paper, they address the problem of data replication at
proxies.

• Data replication proactively places a copy of data and anticipates
many clients to make use of the copy at a proxy.

• By transparent, they mean the proxies are capable of intercepting
users’ requests and forwarding the requests to a higher level
proxy if the requested data are not present in their local cache.

On Optimal Replication of Data Object at Hierarchical and Transparent Web Proxies – p. 4/46

Outline

• Introduction
• Problem Formulation
• Computing the Induced Tree of Proxy Nodes
• Proxies with Unlimited Storage Capacities
• Proxies with Limited Storage Capacities
• Simulations

On Optimal Replication of Data Object at Hierarchical and Transparent Web Proxies – p. 5/46

Problem Formulation

• The network is modeled by a connected graph G(V, E).

• For a link (u, v) ∈ E, d(u, v) is the distance of the link.

• Let s be the origin server. Suppose there are k proxies that can
be used by s to host its contents, denoted by P = {p1, p2, . . . , pk}.

• The locations of the k proxies are given in prior.

• Each proxy, pi, has a limited storage allocation to this server s,
denoted by ci.

• The origin server has a set of m data objects, denoted by
O = {o1, o2, . . . , pm}. Each data object, oi, has a size zi.

• Every node, u ∈ V , has a read frequencey to data object oi,
denoted by r(u, oi), i ≤ i ≤ m. Each data object, oi, has an
update frequency w(oi).

On Optimal Replication of Data Object at Hierarchical and Transparent Web Proxies – p. 6/46

Problem Formulation (Cont.)

• The distance function to path π(u, v) between nodes u and v is
d(u, v) =

∑

(x,y)∈π(u,v) d(x, y).

• Let d(v, oi) denote the distance from node v to object oi.

• d(v, oi) is d(v, pj) if a request for retrieving oi is served by proxy pj

and it becomes d(v, s) if the request is missed by all the proxies
and is finally served by the origin server s.

• The cost of the user at node v to retrieve oi is
r(v, oi) × d(v, oi) × zi.

• The total retrieval cost of oi by all cilents in the network is
readCost(oi) =

∑

v∈V r(v, oi) × d(v, oi) × zi.

On Optimal Replication of Data Object at Hierarchical and Transparent Web Proxies – p. 7/46

Problem Formulation (Cont.)

• The replicas of a data object at proxies need to be updated when
the original copy is modified.

• When data object oi is updated, the new version of oi needs to be
transmitted to the proxies that hold oi.

• They assume the multicast model is used for the server to
transmit updated data to proxies. That is, the route for
multicasting from server s to proxies is a multicast tree (MT).

• Let P (oi) denote a set of proxies where oi is replicated (including
the server s) and MT (s, P (oi)) the multicast tree rooted from s to
reach all proxies in P (oi).

• The updating cost (write cost) of oi is

writeCost(oi) = w(oi) × zi ×
∑

(x,y)∈MT (s,P (oi))

d(x, y).

On Optimal Replication of Data Object at Hierarchical and Transparent Web Proxies – p. 8/46

Problem Formulation (Cont.)

• readCost(oi) + writeCost(oi) is the total access cost to oi by all
clients in the network:

Cost(oi) =
∑

v∈V

r(v, oi)×d(v, oi)×zi+w(oi)×zi×
∑

(x,y)∈MT (s,P (oi))

d(x, y).

• The overall cost for all clients to access all m objects in the

network is
Cost =

m
∑

i=1

Cost(oi).

On Optimal Replication of Data Object at Hierarchical and Transparent Web Proxies – p. 9/46

Problem Formulation (Cont.)

• Since each proxy has a limited storage capacity for s, the total
size of s’s data objects replicated at this proxy should not exceed
this capacity. The constraint can be represented as:

∀i :

m
∑

j=1

δij × zj ≤ ci,

where|δij =







1, if pi ∈ P (oj)

0, otherwise
, 1 ≤ i ≤ k.

On Optimal Replication of Data Object at Hierarchical and Transparent Web Proxies – p. 10/46

Outline

• Introduction
• Problem Formulation
• Computing the Induced Tree of Proxy Nodes
• Proxies with Unlimited Storage Capacities
• Proxies with Limited Storage Capacities
• Simulations

On Optimal Replication of Data Object at Hierarchical and Transparent Web Proxies – p. 11/46

Stable Routing

• If the routing in the network is stable, requests would always take
the same route to the origin server.

• In this case, the routes from all clients to access the origin server
s form a tree, where the root of the tree is s and all the leaf nodes
are clients. Some (not all) nonleaf nodes are proxy nodes.

• Let Ts denote such a routing tree from all clients to the server s.

• Since we only concern about data replication at proxies and the
proxy nodes are given in prior, we can focus on the induced tree
that contains only proxy nodes.

• Let Ts(P) denote the induced tree of Ts.

On Optimal Replication of Data Object at Hierarchical and Transparent Web Proxies – p. 12/46

Induced Tree

On Optimal Replication of Data Object at Hierarchical and Transparent Web Proxies – p. 13/46

Aggreate Read Frequency

• Let Tp denote a subtree of Ts and the root of Tp is p.

• p′ is said to be a direct child proxy of p if p′ is a proxy node in the
subtree of Tp and there is no other proxy nodes in the path
between p and p′ along the tree.

• For any p ∈ Ts(P), let C(p) denote the set of direct child proxies of
p in Ts.

• Fro any p ∈ Ts(P), the aggregate read frequency of oj is:

r+(p, oj) =
∑

v∈Tp−∪p′∈C(p)Tp′

r(v, oj).

On Optimal Replication of Data Object at Hierarchical and Transparent Web Proxies – p. 14/46

Another Representation of Cost(oi)
• Let p(v), v ∈ V , be the first proxy node from v to root s along tree Ts. The

distance d(v, oi) consists of two parts: d(v, p(v)) and d(p(v), oi). Notice that
d(p(v), oi) = 0 if p(v) holds oi,

Cost(oi) =
∑

v∈V

r(v, oi) × (d(v, p(v)) + d(p(v), oi)) × zi + writeCost(oi)

=
∑

v∈V

r(v, oi) × d(v, p(v)) × zi+

∑

v∈V

r(v, oi) × d(p(v), oi) × zi + writeCost(oi)

=
∑

v∈V

r(v, oi) × d(v, p(v)) × zi+

∑

p∈Ts(P)





∑

v∈Tp−∪p′∈C(p)Tp′

r(v, oi) × d(p(v), oi) × zi



 + writeCost(oi)

=
∑

v∈V

r(v, oi) × d(v, p(v)) × zi+

∑

p∈Ts(P)

r+(p, oi) × d(p, oi) × zi + writeCost(oi)
On Optimal Replication of Data Object at Hierarchical and Transparent Web Proxies – p. 15/46

An Example

On Optimal Replication of Data Object at Hierarchical and Transparent Web Proxies – p. 16/46

Saving Gain by Replicating oi at p1





∑

u∈Tp1

r(u, oi)



 × d(p1, s) × zi − w(oi) × d(p1, s) × zi

=





∑

u∈Tp1

r(u, oi)



 × d(p1, p2) × zi +





∑

u∈Tp1

r(u, oi)





× d(p2, s) × zi − w(oi) × d(p1, p2) × zi − w(oi) × d(p2, s) × zi

On Optimal Replication of Data Object at Hierarchical and Transparent Web Proxies – p. 17/46

Saving Gain by Replicating oi also at
p2

• When oi is also replicated at p2, all nodes in (Tp2 − Tp1) will come
to p2 to read oi.

• The distance saved for reading oi at p2 is d(p2, s).





∑

u∈(Tp2−Tp1)

r(u, oi)



 × d(p2, s) × zi

=





∑

u∈Tp2

r(u, oi)



 × d(p2, s) × zi −





∑

u∈Tp1

r(u, oi)



 × d(p2, s) × zi

On Optimal Replication of Data Object at Hierarchical and Transparent Web Proxies – p. 18/46

Saving Gain by Replicating oi also at
p3

• Considering also replicating oi at p3, which is similar to the case at
p1, the net gain by replicating oi at p3 is:
(

∑

u∈Tp3
r(u, oi)

)

× d(p3, s) × zi − w(oi) × d(p3, s) × zi

On Optimal Replication of Data Object at Hierarchical and Transparent Web Proxies – p. 19/46

Total Gain

• The net gain by replicating oi at p1, p2, and p3:
(

∑

u∈Tp1
r(u, oi) − w(oi)

)

× d(p1, p2) × zi +
(

∑

u∈Tp2
r(u, oi) − w(oi)

)

× d(p2, s) × zi +
(

∑

u∈Tp3
r(u, oi) − w(oi)

)

× d(p3, s) × zi

• Notice that the distances d(p1, p2), d(p2, s), and d(p3, s) above are
the distances from a proxy that has oi to its first ancestor that also
holds oi in Ts(P).

• Let d(p, oi), p ∈ Ts(P), denote the distance from a proxy p to its
first ancestor holding oi in Ts(P). For example, d(p1, oi) is
d(p1, p2).

• The total net gain of replicating oi at all proxies in P (oi) against
the case of no replication of oi is
∑

p∈P (oi)

((

∑

u∈Tp
r(u, oi) − w(oi)

)

× d(p, oi) × zi

)

.
On Optimal Replication of Data Object at Hierarchical and Transparent Web Proxies – p. 20/46

Cost

• Assuming there is no replica of oi placed at any proxies, i.e., only
the server holds oi, the total cost for accessing oi is: Cost0(oi) =
∑

v∈V r(v, oi) × d(v, p(v)) × zi +
∑

p∈Ts(P) r+(p, oi) × d(p, s) × zi.

• The cost of accessing oi: Cost(oi) = Cost0(oi) −
∑

p∈P (oi)

((

∑

u∈Tp
r(u, oi) − w(oi)

)

× d(p, oi) × zi

)

.

• The overall cost for the accesses to all m objects is:

Cost =

m
∑

i=1

Cost(oi) =

m
∑

i=1

Cost0(oi)−

m
∑

i=1

∑

p∈P (oi)









∑

u∈Tp

r(u, oi) − w(oi)



 × d(p, oi) × zi





On Optimal Replication of Data Object at Hierarchical and Transparent Web Proxies – p. 21/46

Outline

• Introduction
• Problem Formulation
• Computing the Induced Tree of Proxy Nodes
• Proxies with Unlimited Storage Capacities
• Proxies with Limited Storage Capacities
• Simulations

On Optimal Replication of Data Object at Hierarchical and Transparent Web Proxies – p. 22/46

Independent between Each Other

• If proxies have unlimited storage, the optimal replication of all
objects at proxies consists of the optimal replication of each object
at proxies. The optimal replication of each object is independent
from the others.

On Optimal Replication of Data Object at Hierarchical and Transparent Web Proxies – p. 23/46

Lemma 1

Lemma 1 If P (oi) is the optimal replication of oi in Ts(P), for any path
π(p1, p2) in Ts(P), where p1, p2 ∈ P (oi), then P (oi) ∪ {p|p ∈ π(p1, p2)}

is still an optimal replication.

On Optimal Replication of Data Object at Hierarchical and Transparent Web Proxies – p. 24/46

Minimal Number of Replicas

• Notice that Lemma 1 states that if oi is replicated at p1 and p2 and
they are in a path in Ts(P), then oi can be replicated at any proxy
node in between p1 and p2, because it does not incur any extra
cost for updating the object but save the cost for reading the
object.

• However, if there is no read access to oi at a proxy node, there is
no need to replicate it.

• So an optimal set of replicas also contains only the minimal
number of replicas.

On Optimal Replication of Data Object at Hierarchical and Transparent Web Proxies – p. 25/46

Lemma 2

Lemma 2 Let P (oi) =
{

p|
∑

u∈Tp
r(u, oi) > w(oi), p ∈ Ts(P)

}

. Then,

P (oi) is the optimal replication of oi in Ts(p).
Proof: Prove it by contradiction. Assume P (oi) is not optimal and P opt

i

is the optimal replication of oi. Then, there must exist a proxy
p′ ∈ P opt

i , but p′ /∈ P (oi). Since p′ /∈ P (oi), we have
∑

u∈Tp′
r(u, oi) ≤ w(oi). Consider the two cases:

Case
∑

u∈Tp′
r(u, oi) < w(oi):

Case
∑

u∈Tp′
r(u, oi) = w(oi):

The two case contradict to the assumption. So the lemma follows.

On Optimal Replication of Data Object at Hierarchical and Transparent Web Proxies – p. 26/46

Opt-replic Algorithm

On Optimal Replication of Data Object at Hierarchical and Transparent Web Proxies – p. 27/46

Theorem 1

Theorem 1 P (oi) produced by Opt-replic algorithm is the set of optimal
replication of oi

Proof: According to Lemma 2, P (oi) is the optimal replication of oi.

On Optimal Replication of Data Object at Hierarchical and Transparent Web Proxies – p. 28/46

Theorem 2

Theorem 2 Opt-replic algorithm can produce the optimal replication of
oi in time O(|P |2), and the optimal replication of m objects in time
O(m|P |2), where |P | is the number of nodes in Ts(P).
Proof:

• The algorithm searches nodes in Ts(P) at most once.

• At each node p, it computes
∑

u∈Tp
r(u, oi) > w(oi), which takes

time O(|Tp|).

• Thus, Opt-replic has complexity of
∑

p∈Ts(P) |Tp| = O(|P |2).

• Because the optimal replication of objects is independent from
each other, by using Opt-replic algorithm to compute the optimal
replication of m objects, it takes time O(m|P |2).

On Optimal Replication of Data Object at Hierarchical and Transparent Web Proxies – p. 29/46

Outline

• Introduction
• Problem Formulation
• Computing the Induced Tree of Proxy Nodes
• Proxies with Unlimited Storage Capacities
• Proxies with Limited Storage Capacities
• Simulations

On Optimal Replication of Data Object at Hierarchical and Transparent Web Proxies – p. 30/46

Theorem 3

They refer the problem of optimal replication of data objects at proxies
that have limited storage capacities as ORLS.

Theorem 3 The ORLS problem is NP-hard.

On Optimal Replication of Data Object at Hierarchical and Transparent Web Proxies – p. 31/46

A Greedy Heuristic

• The greedy algorithm traverses the nodes in Ts(P) in a
breadth-first fashion, starting from root s.

• At each node p it traverses, it evaluates the gain of replicating oi at
p defined as: gain(p, oi) = (

∑

v∈Tp
r(u, oi) − w(oi)) × d(p, oi) × zi.

• The objects are sorted in descending order according to their
gains (the objects with 0 or negative gains are dropped out).

• Then, the algorithm simply replicates at p the first k objects that
have the largest gains and can be accommodated at p.

• For the rest of the storage at p, the objects from the rest of the list
are chosen to fill it up.

On Optimal Replication of Data Object at Hierarchical and Transparent Web Proxies – p. 32/46

A Greedy Heuristic (Cont.)

On Optimal Replication of Data Object at Hierarchical and Transparent Web Proxies – p. 33/46

Theorem 4

Theorem 4 The time complexity of Greedy algorithm is
O(|P |2m + |P |mlgm).
Proof:

• Greedy algorithm computes the replication at each node in Ts(P)

by calling subroutine greedy-call(p).

• At each node p, it computes gain(p, oi) for all objects, which take
time O(|Tp|m).

• The sorting of gain(p, oi) for 1 ≤ i ≤ m takes time O(mlgm).

• Therefore, computing the replication at all nodes in Ts(P) takes
time:

O





∑

p∈Ts(P)

(|Tp|m + mlgm)



 = O(|P |2m + |P |mlgm).

On Optimal Replication of Data Object at Hierarchical and Transparent Web Proxies – p. 34/46

A Knapsack-Based Heuristic

• The overall gain of replicating all possible objects is:

m
∑

i=1









∑

u∈Tp

r(u, oi) − w(oi)



 × d(p, oi) × zi



 xi

wherexi =







1, if oi is replicated;

0, otherwise.
(1)

On Optimal Replication of Data Object at Hierarchical and Transparent Web Proxies – p. 35/46

A Knapsack-Based Heuristic (Cont.)

• Let µi =
(

∑

u∈Tp
r(u, oi) − w(oi)

)

× d(p, oi) × zi, which is a

constant for a given oi at p.

• The problem of finding the optimal replication of objects at p can
be formulated as

max

m
∑

i=1

µixi

s.t.







z1x1 + z2x2 + · · · + zmxm ≤ cp

xi = 0 or 1, for i = 1, 2, . . . , m.
(2)

• This is a typical knapsack problem. They use an auxiliary direct
graph GA = (VA, EA) to solve this problem.

On Optimal Replication of Data Object at Hierarchical and Transparent Web Proxies – p. 36/46

The Auxiliary Graph

On Optimal Replication of Data Object at Hierarchical and Transparent Web Proxies – p. 37/46

Knapsack-h Algorithm

On Optimal Replication of Data Object at Hierarchical and Transparent Web Proxies – p. 38/46

Theorem 5

Theorem 5 The time complexity of Knapsack-h algorithm is
O(m2

∑

p∈Ts(P) c2
p).

Proof:

• At node p, the construction of GA = (VA, EA) and the computing
of the longest path takes time O(|VA||EA|) = O(m2c2

p). Because
|VA| is m × (cp + 1) + 2, and |EA| is at most 2|VA|.

• The algorithm traverses every node p in Ts(P). It takes time
O(

∑

p∈Ts(P) m2c2
p = O(m2

∑

p∈TsP c2
p).

On Optimal Replication of Data Object at Hierarchical and Transparent Web Proxies – p. 39/46

Outline

• Introduction
• Problem Formulation
• Computing the Induced Tree of Proxy Nodes
• Proxies with Unlimited Storage Capacities
• Proxies with Limited Storage Capacities
• Simulations

On Optimal Replication of Data Object at Hierarchical and Transparent Web Proxies – p. 40/46

Simulation Parameters

• Network topologies used in the simulations are generated using
the Inet topology generator.

• The size of the networks used in the simulations is of 5,000 nodes.

• Server node, s, is randomly picked up from the graph.

• A set of proxy nodes are also randomly picked from the graph
nodes. The default number of proxies in the simulations is 50.

• The total number of data objects stored at the Web server is
10,000.

• The distribution of object sizes follows a heavy-tailed
characterization, which consists of a body and tail.

• The cut-off point of the body and the tail is approximately at 133K.
By using this setting, more than 93 percent of objects fall into the
body distribution. The mean size of objects is about 11K.

On Optimal Replication of Data Object at Hierarchical and Transparent Web Proxies – p. 41/46

Simulation Parameters (Cont.)

• The read frequency to data object oi follows the Zipf-like
distribution.

• Let p(i) be the probability of accessing the ith most popular
object. The Zipf-like distribution is: p(i) = 1

iα , where α is typically
between 0.6 and 0.8.

• During the simulations, the parameter α in the Zipf distribution is
set to 0.75.

• They simply assume all objects have the same level of read-write
ratio. Let α be the read-write ratio. The update frequency to oi is
w(oi) = α

∑

v∈Ts
r(v, oi).

On Optimal Replication of Data Object at Hierarchical and Transparent Web Proxies – p. 42/46

On Optimal Replication of Data Object at Hierarchical and Transparent Web Proxies – p. 43/46

On Optimal Replication of Data Object at Hierarchical and Transparent Web Proxies – p. 44/46

On Optimal Replication of Data Object at Hierarchical and Transparent Web Proxies – p. 45/46

On Optimal Replication of Data Object at Hierarchical and Transparent Web Proxies – p. 46/46

	Outline
	Overview
	Proxy and Data Replication
	Outline
	Problem Formulation
	Problem Formulation (Cont.)
	Problem Formulation (Cont.)
	Problem Formulation (Cont.)
	Problem Formulation (Cont.)
	Outline
	Stable Routing
	Induced Tree
	Aggreate Read Frequency
	Another Representation of $Cost(o_i)$
	An Example
	Saving Gain by Replicating o_i at p_1
	Saving Gain by Replicating o_i also at p_2
	Saving Gain by Replicating o_i also at p_3
	Total Gain
	Cost
	Outline
	Independent between Each Other
	Lemma 1
	Minimal Number of Replicas
	Lemma 2
	Opt-replic Algorithm
	Theorem 1
	Theorem 2
	Outline
	Theorem 3
	A Greedy Heuristic
	A Greedy Heuristic (Cont.)
	Theorem 4
	A Knapsack-Based Heuristic
	A Knapsack-Based Heuristic (Cont.)
	The Auxiliary Graph
	Knapsack-h Algorithm
	Theorem 5
	Outline
	Simulation Parameters
	Simulation Parameters (Cont.)

