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Abstract: After a brief survey of a variety of optimal stopping problems in sequential

testing theory, we give a unified treatment of these problems by introducing a gen-

eral class of loss functions and prior distributions. In the context of a one-parameter

exponential family, this unified treatment leads to relatively simple sequential tests

involving generalized likelihood ratio statistics or mixture likelihood ratio statistics.

The latter have been used by Robbins in his development of power-one tests, whose

optimality properties are also discussed in this connection.
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1. Introduction

Probability theory began with efforts to calculate the odds and to develop
strategies in games of chance. Optimal stopping problems arose naturally in this
context, determining when one should stop playing a sequence of games to max-
imize one’s expected fortune. A systematic theory of optimal stopping emerged
with the seminal papers of Wald and Wolfowitz (1948) and Arrow, Blackwell and
Girschick (1949) on the optimality of the sequential probability ratio test (SPRT).
The monographs by Chow, Robbins and Siegmund (1971), Chernoff (1972) and
Shiryayev (1978) provide comprehensive treatments of optimal stopping theory,
which has subsequently developed into an important branch of stochastic con-
trol theory. The subject of sequential hypothesis testing has also developed far
beyond its original setting of a simple null versus a simple alternative hypothesis
assumed by the SPRT. Although it is not difficult to formulate optimal stopping
problems associated with optimal tests of composite hypotheses, these optimal
stopping problems no longer have explicit solutions that are easily interpretable
as in the case of the SPRT. Moreover, numerical solutions of the optimal stop-
ping problems require precise specification of prior distributions, loss functions
for wrong decisions and sampling costs, which may be difficult to come up with
in practice. In Sections 2 and 3 we develop an asymptotic approach to solve
approximately a general class of optimal stopping problems associated with se-
quential tests of composite hypotheses. The asymptotic solutions provide natural
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analogues of the classical likelihood ratio or generalized likelihood ratio (GLR)
tests in nonsequential testing theory. In addition, we also show that the different
procedures developed by Schwarz (1962), Chernoff (1961, 1965a,b) and Robbins
(1970) are in fact asymptotic solutions corresponding to different loss functions
and prior distributions within this general class of optimal stopping problems. In
the remainder of this section we give a brief survey of various optimal stopping
problems in sequential hypothesis testing theory.

1.1. Optimality of SPRTs and approximate optimality of 2-SPRTs

Let X1,X2, . . . , be i.i.d. with common density f with respect to some mea-
sure ν. To test the simple null hypothesis H0 : f = f0 versus the simple al-
ternative H1 : f = f1, Wald’s SPRT uses the likelihood ratio statistics Rn =∏n
i=1(f1(Xi)/f0(Xi)) and stops sampling at stage N = inf{n ≥ 1 : Rn ≤

A or Rn ≥ B}. The Wald-Wolfowitz theorem states that this SPRT minimizes
both E0(T ) and E1(T ) among all tests whose sample size T has a finite expec-
tation under both H0 and H1 and whose type I and type II error probabilities
are less than or equal to those of the SPRT. To prove this theorem, a Lagrange-
multiplier-type approach to handle the error probability constraints leads to the
so-called “auxiliary Bayes problem” of minimizing over all stopping rules T and
terminal decision rules δ

p{w0P0[δ rejects H0] + cE0(T )} + (1 − p){w1P1[δ rejects H1] + cE1(T )}. (1.1)

The optimal solution to this problem turns out to be an SPRT and the Wald-
Wolfowitz theorem then follows by varying the parameters p, c, w0 and w1 (cf.
Ferguson (1967)). This solution to the auxiliary Bayes problem also implies
further refinements of the Wald-Wolfowitz theorem (cf. Simons (1976)).

Although the SPRT for testing θ0 versus θ1 can still be used to test one-sided
composite hypotheses of the form H0 : θ ≤ θ0 versus H1 : θ ≥ θ1(> θ0) in the
case of parametric families with monotone likelihood ratio in θ and although it
has minimum expected sample size at θ = θ0 and θ = θ1, its expected sample size
may be quite unsatisfactory at other parameter points, particularly those between
θ0 and θ1. In the case of an exponential family fθ(x) = eθx−ψ(θ), Kiefer and
Weiss (1957) considered the problem of minimizing Eλ(T ) at a fixed parameter
λ subject to Pθ0 [Reject H0] ≤ α and Pθ1 [Reject H1] ≤ β. Again a Lagrange-
multiplier-type argument leads to the Bayes problem of minimizing

pPθ0 [Reject H0] + qPθ1 [Reject H1] + c(1 − p− q)Eλ(T ). (1.2)

Lai (1973) and Lorden (1980) studied this optimal stopping problem in the nor-
mal case and the general one-parameter exponential family, respectively, and
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showed that the asymptotic shape of the continuation region (as c → 0) agrees
with that of the 2-SPRT with stopping rule

T ∗(B,B′)=inf
{
n≥1 :

n∏
i=1

(fλ(Xi)/fθ0(Xi))≥B or
n∏
i=1

(fλ(Xi)/fθ1(Xi))≥B′}.
(1.3)

The 2-SPRT rejectsH0 if
∏T ∗

1 (fλ(Xi)/fθ0(Xi)) ≥ B and rejectsH1 if
∏T ∗

1 (fλ(Xi)
/fθ1(Xi)) ≥ B′. Letting n(B,B′) denote the infinum of Eλ(T ) over all sequen-
tial tests whose type I and type II error probabilities are less than or equal to
those of the 2-SPRT with stopping rule (1.3), Lorden (1976) also showed that
EλT

∗(B,B′) − n(B,B′) → 0 as min(B,B′) → ∞.

1.2. Bayes sequential tests of one-sided hypotheses and their GLR
approximations

Sobel (1953) and Schwarz (1962) studied Bayes sequential tests ofH0 : θ ≤ θ0
versus H1 : θ ≥ θ1 for the natural parameter θ of an exponential family, assuming
a cost c per observation, a prior distribution G on the natural parameter space
Θ and a loss function �(θ) for the wrong decision. Letting Θ0 = (−∞, θ0] ∩ Θ
and Θ1 = [θ1,∞) ∩ Θ, the Bayes risk of a sequential test (T, δ) with stopping
rule T and terminal decision rule δ is given by

r(T, δ) = c

∫
Θ
EθTdG+

∫
Θ0

�(θ)Pθ{δ rejects H0}dG+
∫

Θ1

�(θ)Pθ{δ rejects H1}dG.
(1.4)

Sobel showed that the optimal stopping rule for this problem has the form inf{n :
Sn ≥ an(c) or Sn ≤ bn(c)}, where Sn =

∑n
1 Xi. Assuming that �(θ) > 0 for

θ /∈ (θ0, θ1) and that G(I) > 0 for every open interval I ⊂ Θ, Schwarz proved the
following asymptotic shape for the continuation region B(c) of the Bayes rule:
As c→ 0,

B(c)/| log c| →
{
(t, w) : 1 + min

i=0,1
(θiw − tψ(θi)) > sup

θ
(θw − tψ(θ))

}
. (1.5)

Thus, writing n = t| log c| and Sn = w| log c|, Schwarz’s approximation to the
Bayes rule stops sampling at stage

Nc = inf
{
n ≥ 1 : max[

n∏
i=1

(f
θ̂n

(Xi)/fθ0(Xi)),
n∏
i=1

(f
θ̂n

(Xi)/fθ1(Xi))] ≥ ac
}

(1.6)

with log ac ∼ log c−1, and uses the terminal decision rule δ̃ that accepts H0 iff
θ̂n < θ∗, where θ̂n is the maximum likelihood estimate of θ, θ∗ ∈ (θ0, θ1) is such
that I(θ∗, θ0) = I(θ∗, θ1) and

I(θ, λ) = Eθ log(fθ(X1)/fλ(X1)) = (θ − λ)ψ′(θ) − (ψ(θ) − ψ(λ)) (1.7)
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denotes the Kullback-Leibler information number. Wong (1968) showed that as
c→ 0,

inf
(T,δ)

r(T, δ) ∼ c| log c|
∫

Θ
{max[I(θ, θ0), I(θ, θ1)]}−1dG(θ) ∼ r(Nc, δ̃), (1.8)

with ac = c−1 in (1.6). Note that Schwarz’s stopping rule (1.6) can be regarded
as replacing the λ in the 2-SPRT stopping rule (1.3) by its maximum likelihood
estimate θ̂n at every stage n and putting B = B′ = ac in (1.3).

Schwarz’s asymptotic theory assumes a fixed indifference zone (θ0, θ1) as
c → 0. Optimal stopping problems associated with sequential tests of one-sided
hypotheses of the form H0 : θ < θ0 versus H1 : θ > θ0 without an indifference
zone were first considered by Chernoff (1961, 1965a,b) and Moriguti and Robbins
(1962). Moriguti and Robbins studied the Bayes test of H1 : p ≤ 1

2 versus H1 :
p > 1

2 , with respect to a Beta prior on a Bernoulli parameter p, so the posterior
distribution of p is also a Beta distribution that can be expressed in terms of the
number of successes and failures so far observed. They assumed a loss of |p− 1

2 | for
the wrong decision and derived numerical solutions and analytic approximations
of the dynamic programming equations defining the value function and stopping
boundary. Lindley and Barnett (1965) and Simons and Wu (1986) carried out
further analysis of this optimal stopping problem for Bernoulli random variables.
Chernoff (1961, 1965a,b) and Breakwell and Chernoff (1964) studied a similar
problem of testing H0 : θ < 0 versus H1 : θ > 0 for the mean θ of a normal
distribution with unit variance, assuming a loss of |θ| for the wrong decision,
cost c per observation and a normal prior distribution on θ. Instead of the
absolute value loss function, Bather (1962), Bickel and Yahav (1972) and Bickel
(1973) considered the case of 0-1 loss for testing the sign of a normal mean.

Lai (1988a,b) gave a unified treatment of (i) the 0-1 loss and the absolute
value loss as special cases of more general loss functions, (ii) the Bernoulli and
normal distributions as special cases of exponential families, and (iii) one-sided
hypotheses separated by an indifference zone considered by Schwarz (1962) and
one-sided hypotheses without an indifference zone considered by Chernoff (1961,
1965a,b) and by Moriguti and Robbins (1962). The basic idea is to approximate
the highly complex Bayes procedures by relatively simple sequential tests in-
volving GLR statistics and easily interpretable and implementable time-varying
boundaries for these test statistics. The methods and results will be discussed in
greater detail in Section 2 where they are further extended to more general loss
functions in a unified framework within which properly chosen constant or time-
varying stopping boundaries for mixture or generalized likelihood ratio statistics
are shown to provide asymptotically optimal solutions.

Extensions of Schwarz’s approximation (1.5) of the Bayes rule to multipa-
rameter testing problems were considered by Kiefer and Sacks (1963), Schwarz
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(1968), Fortus (1979) and Woodroofe (1980). Recently Lai and Zhang (1994a,b)
extended the ideas of Lai (1988a) to construct asymptotically optimal GLR tests
in multiparameter exponential families under the 0-1 loss, with an indifference
zone separating the null and alternative hypotheses and also without an indif-
ference zone, in the case of one-sided hypotheses concerning some smooth scalar
functions of the parameters (such as testing the sign of a normal mean in the
presence of an unknown variance which can be regarded as a nuisance parameter).

1.3. Approximate optimality of sequential mixture likelihood ratio
tests

To test a simple null hypothesis H0 : f = f0 based on i.i.d. observations
X1,X2, . . . with a common density function f with respect to some σ-finite mea-
sure ν, suppose that one continues sampling until one has enough evidence against
H0, whereupon one rejects H0. Assuming a simple alternative f1 and a cost c
per observation under f1, Chow, Robbins and Siegmund (1971), pages 107-108,
showed that the optimal stopping rule that minimizes P0(T <∞) + cE1(T ) is of
the form

τ = inf
{
n ≥ 1 : (

n∏
i=1

f1(Xi))/(
n∏
i=1

f0(Xi)) ≥ B
}

(inf ∅ = ∞), (1.9)

which is the stopping rule of a one-sided SPRT. Choosing B such that P0(τ <
∞) = α, the stopping rule (1.9) also minimizes E1(T ) among all stopping times
T with P0(T <∞) ≤ α, by a Lagrange-multiplier-type argument.

Instead of a simple alternative f1, suppose that one has a parametric family
of densities {fθ, θ ∈ Θ} with respect to the measure f0dν, where the parameter
space Θ is some subset of the real line. To treat composite alternatives, Robbins
(1970) proposed to generalize (1.9) to

τG = inf
{
n ≥ 1 :

∫
Θ

n∏
i=1

fθ(Xi)dG(θ)/
n∏
i=1

f0(Xi) ≥ B
}
, (1.10)

where G is a probability measure on Θ. Since {∏n
i=1(fθ(Xi)/f0(Xi)), n ≥ 1} is a

martingale under P0, so is {∫Θ

∏n
i=1(fθ(Xi)/f0(Xi))dG(θ), n ≥ 1} and therefore

P0{τG <∞} = P0

{ ∫
Θ

n∏
i=1

(fθ(Xi)/f0(Xi))dG(θ) ≥ B for some n ≥ 1
}
≤ B−1,

which gives a simple upper bound for the type I error P0{τG < ∞} of the se-
quential mixture likelihood ratio test. For the case of an exponential family
fθ(x) = eθx−ψ(θ) and Θ a closed interval [a, b] not containing 0, Pollak (1978)
proved the following asymptotic optimality property of the rule (1.10) in which
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G has a positive continuous density function on [a, b] with respect to Lebesgue
measure: As B → ∞,

sup
a≤θ≤b

I(θ, 0)Eθ(τG) = logB + (log logB)/2 +O(1)

= inf
{

sup
a≤θ≤b

I(θ, 0)Eθ(T ) : T is a stopping time andP0(T<∞)≤B−1
}
+O(1), (1.11)

where I(θ, λ) denotes the Kullback-Leibler information number (1.7). His proof
uses certain bounds in the Bayesian optimal stopping problem of minimizing
ω

∫ b
a cEθ(T )dG(θ) +(1−ω)P0(T <∞), which corresponds to cost c per observa-

tion under Pθ for θ ∈ [a, b] and unit loss upon stopping under P0 and to a prior
distribution ωG+ (1 − ω)G0 in which 0 < ω < 1 and G0 puts all its mass at 0.

Without assuming the set of alternatives to be bounded away from the simple
null hypothesis, Lerche (1986b) assumed a cost of cµ2 per observation under Pµ
for µ 
= 0 in testing H0 : µ = 0 for the drift coefficient µ of a Wiener process
w(t), t ≥ 0. Specifically he studied the Bayesian optimal stopping problem of
minimizing

ρc(T ) = ω

∫ ∞

−∞
cµ2Eµ(T ) g(µ)dµ + (1 − ω)P0(T <∞), (1.12)

where g is the density function of a zero-mean normal distribution. Let B(c) be
the continuation region of the Bayes rule and let R(a) = {(x, t) : β(x, t) > a},
where β(x, t) is the posterior risk if stopping occurs at time t when w(t) = x.
Lerche showed that there exists M > 2 such that for every c > 0, R(Mc/(1 +
Mc)) ⊂ B(c) ⊂ R(2c/(1 + 2c)). He also used this to show that the Bayes risk
(1.11) of a suitably chosen sequential mixture likelihood ratio test is asymptoti-
cally minimal up to an o(c)-term, i.e.,

ρc(τ(c)) = inf
T
ρc(T ) + o(c)

= ωc
{
2 log ac + log log ac + 2 + log 2 − 4

∫ ∞

0
φ(x) log xdx+ o(1)

}
(1.13)

as c→ 0, where ac = (1 − ω)/(2ωc), φ denotes the standard normal density and

τ(c) = inf
{
t ≥ 0 :

∫ ∞

−∞
g(θ) exp(θw(t) − tθ2/2)dθ ≥ ac

}
. (1.14)

Moreover, in addition to the normal prior distribution on the real line as in (1.12),
he also obtained similar results for the case of a half-normal prior distribution
on (0,∞), i.e., with g in (1.12) given by g(θ) =

√
2/π exp(−θ2/2) if θ > 0 and

g(θ) = 0 if θ ≤ 0.
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In Section 3 we give a more general theory concerning the optimality of
Robbins’ test (1.10) and other “power-one tests”, which Neyman (1971) described
as a “remarkable achievement” in the subject of hypothesis testing.

2. A Unified Asymptotic Theory for One-sided Hypotheses

The preceding survey of optimal stopping problems in sequential hypothesis
testing shows a wide diversity of loss/cost functions and asymptotically optimal
solutions. A common property, however, of these asymptotically optimal sequen-
tial tests is that they all involve (simple, generalized or mixture) likelihood ratio
statistics and can be represented as boundary crossing times of these likelihood
ratio statistics. In this section we give a unified treatment which yields relatively
simple approximations to the stopping boundaries of these problems and their
generalizations.

We begin with a brief review of the different asymptotic theories of Chernoff
(1961, 1965a,b) and Schwarz (1962) for testing one-sided composite hypotheses
H0 : θ ≤ θ0 versus H1 : θ ≥ θ1 for the natural parameter of an exponential
family, assuming cost c per observation. Chernoff only considered the normal
case (with mean θ and variance 1) for the special loss function �(θ) = |θ| for
the wrong decision and under a normal prior distribution G with mean 0 and
variance σ2. The Bayes terminal decision rule δ∗ accepts H0 : θ < 0 iff Sn < 0
when stopping occurs at stage n, and the optimal stopping problem is to find the
stopping rule T that minimizes (1.4) with Θ0 = (−∞, 0), Θ1 = (0,∞) and δ = δ∗.
To study the optimal stopping problem, Chernoff introduced the normalization
t = c2/3(n + σ−2), w = c1/3Sn (which is different from Schwarz’s normalization
t = n/| log c| and w = Sn/| log c|). With this normalization, Chernoff obtained
a limiting continuation region of the form {(t, w) : |w| < h(t)} as c → 0. The
stopping boundary h(t) arises as the solution of the corresponding continuous-
time stopping problem involving the Wiener process and an asymptotic analysis
yields

h(t) ∼ (4t)−1 as t→ ∞, h(t) =
√
t{3 log t−1− log 8π+o(1)}1/2 as t → 0. (2.1)

Instead of the absolute value loss, Lai (1988a) considered the 0-1 loss and
gave a unified treatment of the problem of testing (i) H0 : θ < 0 versus H1 : θ > 0
and (ii) H ′

0 : θ ≤ −∆ versus H ′
1 : θ ≥ ∆ (with an indifference zone) for the mean

θ of i.i.d. normal random variables with unit variance, assuming cost c per
observation and a prior distribution G on θ. Letting t = cn,w(t) =

√
cSn, µ =

θ/
√
c and γ = ∆/

√
c, note that w(t) is a Wiener process with drift coefficient µ

and with τ restricted to the set Ic = {c, 2c, . . .}. As c → 0, Ic becomes dense
in [0,∞). Moreover, for any prior distribution G that has a positive continuous
density G′, the density function of µ = θ/

√
c is

√
cG′(

√
cx) ∼ √

cG′(0). This
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leads to the problem of testing H0 : µ < 0 versus H1 : µ > 0 (or H ′
0 : µ ≤ −γ

versus H ′
1 : µ ≥ γ) for the drift coefficient µ of a Wiener process {w(t), t ≥ 0},

assuming the 0-1 loss, a flat prior on µ, and a cost of t for observing the process
for a period of length t. The optimal stopping rule is of the form τγ = inf{t >
0 : |w(t)| ≥ hγ(t)}, in which hγ has the following asymptotic behavior: For fixed
0 ≤ γ <∞, as t→ 0,

hγ(t) =
{
2t[log t−1 +

1
2

log log t−1 − 1
2

log 4π + o(1)]
}1/2

, (2.2)

and hγ(t) ∼ 1
4

√
2/πt−1/2 exp(−1

2γ
2t) as t → ∞. Moreover, (2.2) still holds as

γ → ∞ and t→ 0 such that t = o((γ2 log γ2)−1) (cf. Section 2 of Lai (1988a)).
The problem of Bayes sequential tests of H0 : µ < 0 versus H1 : µ > 0

for the drift coefficient µ of a Wiener process has also been studied by Lerche
(1986a) under the 0-1 loss and a normal prior distribution G with mean 0 and
variance σ2, but with a cost proportional to µ2t (depending quadratically on µ)
for observing the process for a period of length t. Although this cost structure
is unconventional and appears somewhat artificial, it is closely related to the
cost in (1.12) under which Lerche (1986b) established the asymptotic optimality
of the sequential mixture likelihood ratio rule (1.14). Moreover, the problem of
minimizing

r(T ) =
∫ ∞

−∞
cµ2E(T |µ)dG(µ) +

∫ 0

−∞
P{w(T ) > 0|µ}dG(µ)

+
∫ ∞

0
P{w(T ) < 0|µ}dG(µ) (2.3)

turns out to have a simple exact solution. The optimal stopping rule is that of
the “repeated significance test”

τ∗c = inf
{
t ≥ 0 : |w(t)| ≥ λc

√
t+ σ−2

}
, (2.4)

where λc is the solution of φ(λ) = 2cλ. Note that the repeated significance test
rejects H0 iff w(τ∗c ) > 0.

For the problem of testing the sign of a normal mean, instead of an artificial
sampling cost that is proportional to the square of the unknown mean θ, we
shall consider a given cost c per observation but allow the loss function for a
wrong decision to behave like |θ|p as θ → 0, with −∞ < p < ∞. We shall show
that this incorporates the essence of Lerche’s (1986a,b) theory on the optimality
of repeated significance or mixture likelihood ratio tests and unifies it with the
asymptotic theory of Chernoff (1961, 1965a,b) and its extension in Lai (1988b)
for testing one-sided hypotheses in an exponential family.
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2.1. A general class of loss functions and prior distributions

Let X1,X2, . . . be i.i.d. random variables whose common density function
belongs to an exponential family fθ(x) = eθx−ψ(θ) with respect to some σ-finite
measure ν. To test the one-sided hypotheses H0 : θ < θ0 versus H1 : θ >
θ0, we assume a sampling cost c for each observation and a loss �(θ) ≥ 0 for
the wrong decision. Let A be an open interval containing θ0 and having end-
points (−∞ ≤)a1 < a2(≤ ∞) such that for some ζ > 0, infa1−ζ<θ<a2+ζ ψ′′(θ) >
0, supa1−ζ<θ<a2+ζ ψ

′′(θ) <∞ and ψ′′ is uniformly continuous on (a1 − ζ, a2 + ζ).
Let G be a probability distribution on A having a continuous density function
G′ in some neighborhood of θ0 such that for some η > 0 and q > −1,

G′(θ) ∼ η|θ − θ0|q as θ → θ0. (2.5)

Assume that for some ξ > 0 and −∞ < p <∞ with p+ q > −1,

�(θ) ∼ ξ|θ − θ0|p as θ → θ0 and
∫
A
�(θ)dG(θ) <∞. (2.6)

Since θ is known to lie in A, the maximum likelihood estimate θ̂n at stage n is
defined by

ψ′(θ̂n) = max{ψ′(a1), min[Sn/n, ψ′(a2)]}. (2.7)

In the case p > −1, the assumptions (2.5) and (2.6) with q = 0 are the
same as those in Theorem 1 of Lai (1988b). More generally, if q < 1, then since
p > −q − 1, it follows that p > −2. Part (i) of the following theorem assumes
q < 1 and generalizes Theorem 1 of Lai (1988b) (which only considers p > −1
and q = 0) to cover the case p > −2 in (2.6). It uses a result of Brezzi and Lai
(1996) stated in Lemma 1 below. Part (ii) of the theorem deals with q > 1 and
contains the special case p = −2 which is closely related to Lerche’s (1986a,b)
optimality theory, as will be explained in Section 3. Note that in the case q > 1,
(2.5) implies that

∫
A(θ−θ0)−2−εdG(θ) <∞ for every 0 ≤ ε < q−1, and therefore

in particular that
∫
A(I(θ, θ0))−1dG(θ) <∞.

Lemma 1. Let w(t), t ≥ 0, be a Wiener process with mean function µt and
variance function t. Let 1 > q > −1, s > −1 and a > 0. Then the optimal
stopping rule that minimizes the Bayes risk

ρ(τ ; q, s, a) =
∫ ∞

−∞
|µ|qE(τ |µ)dµ + a

∫ 0

−∞
|µ|sP{w(τ) > 0|µ}dµ

+a
∫ ∞

0
µsP{w(τ) < 0|µ}dµ (2.8)

is of the form τ∗ = inf{t ≥ 0 : |w(t)| ≥ bq,s,a(t)}, where limt→∞ t−1/2bq,s,a(t) = 0
and

bq,s,a(t) = {t[(s−q+2) log t−1 +(1−s−q) log log t−1 +O(1)]}1/2 as t → 0. (2.9)



42 TZE LEUNG LAI

Theorem 1. Under the assumptions (2.6) on the loss function and (2.5) on the
prior distribution G (with q > −1 and p+ q > −1), let r(T, δ) be the Bayes risk
(1.4) of a sequential test (T, δ), with stopping rule T and terminal decision rule
δ, of H0 : θ ∈ Θ0 = (−∞, θ0)∩A versus H1 : θ ∈ Θ1 = (θ0,∞)∩A. Let δ∗ be the
terminal decision rule that accepts H0 iff θ̂n < θ0 when stopping occurs at stage
n, where θ̂n is the maximum likelihood estimator defined by (2.7). Let I(θ, λ) be
the Kullback-Leibler information number defined in (1.7).

(i) Suppose that q < 1. Then p > −2. Let a = ξ(ψ′′(θ0))−p/2 and B(t) =
b2q,p+q,a(t)/2t, where bq,s,a(t) is given in Lemma 1 and ξ, η are given by (2.5) and
(2.6). Then as c→ 0,

inf
(T,δ)

r(T, δ) ∼ η(ψ′′(θ0))−(q+1)/2ρ(τ∗; q, p + q, a)c(p+q+1)/(p+2) ∼ r(T ∗
c , δ

∗),

where ρ(τ ; q, s, a) and τ∗ are given in Lemma 1 and

T ∗
c = inf{n ≥ 1 : nI(θ̂n, θ0) ≥ B(c2/(p+2)n)}. (2.10)

(ii) Suppose that q > 1. Then
∫
|θ−θ0|<1[(log |θ− θ0|−1)/(θ− θ0)2]dG(θ) <∞,

and as c→ 0,

inf
(T,δ)

r(T, δ) ∼ c| log c|
∫
A
(I(θ, θ0))−1dG(θ) ∼ inf r(Tc,h, δ∗),

where Tc,h = inf{n ≥ 1 :
∫ a2+ζ
a1−ζ e

(θ−θ0)Sn−n(ψ(θ)−ψ(θ0))h(θ)dθ ≥ c−1} and h is a

positive continuous function such that
∫ a2+ζ
a1−ζ h(θ)dθ <∞.

2.2. Proof of Theorem 1(i) and Wiener process approximation for the
case q < 1

For the case 1 > q(> −1), since p + q > −1, it follows from the asymptotic
behavior (2.9) of the stopping boundary bq,p+q,a and Lemma 1 of Lai (1988c)
that as |µ| → ∞,

E(τ∗|µ) ∼ (p + 2)µ−2(log µ2), P{w(τ∗)sgn(µ) < 0|µ} = O(|µ|−(p+2)(log µ2)q−1).
(2.11)

Hence
∫ ∞
−∞ |µ|qE(τ∗|µ)dµ < ∞ and

∫ ∞
−∞ |µ|p+qP{w(τ∗)sgn(µ) < 0|µ}dµ < ∞,

recalling that q < 1 and p + q > −1. Let r = (p + 2)−1. By Theorem 1 of Lai
(1988c) and an argument similar to that of Lemma 5 of Lai (1988a),

EθT
∗
c =O((θ−θ0)−2 log{c−2r(θ−θ0)2}) uniformly in θ ∈ A with (θ−θ0)2 ≥ 2c2r,

(2.12)
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Pθ{(θ̂Tc − θ0)(θ − θ0) < 0} = O({c−2r(θ − θ0)2}−(p+2)/2{log[c−2r(θ − θ0)2]}q−1)
(2.13)

uniformly in θ ∈ A with |θ − θ0| ≥ cr, in view of (2.9) and (2.10).
Define wc(t) = cr(Sn−nψ′(θ0))/

√
ψ′′(θ0) at t = c2rn, n ∈ {1, 2, . . .}, wc(0) =

0, and define wc(t) by linear interpolation at other positive values of t. Then for
every M ≥ 2 and B > 0, the process {wc(t), 0 ≤ t ≤ B} under P

θ0+µcr/
√
ψ′′(θ0)

converges weakly to the Wiener process {w(t), 0 ≤ t ≤ B} with drift coefficient µ,
the convergence being uniform in −M ≤ µ ≤ M (cf. Lemma 4 of Lai (1988a)).
Making use of this weak convergence and the estimates (2.11)–(2.13) together
with (2.5) and (2.6), we can proceed in the same way as the proof of Theorem 3
of Lai (1988a) to prove part (i) of Theorem 1. In particular, as in Lai (1988a),
p. 870, we have for θ̂n near θ0,

nI(θ̂n, θ0) ∼ nψ′′(θ0)(θ̂n − θ0)2/2 ∼ n(ψ′′(θ0))−1{ψ′(θ̂n) − ψ′(θ0)}2/2

= (2c2rn)−1(cr/
√
ψ′′(θ0))2(Sn − nψ′(θ0))2.

If the Xi are i.i.d. N(θ, 1) random variables and θ0 = 0, then the preceding
transformation (t, wc(t), µ) = (c2rn, crSn, θ/cr) produces a Wiener process wc(t)
with drift coefficient µ and with t restricted to the set {c2r, 2c2r , . . .} which be-
comes dense in [0,∞) as c → 0. Thus the discrete-time Bayes sequential testing
problem of minimizing the Bayes risk r(T, δ) in Theorem 1 can be approximated
by the continuous-time optimal stopping problem in Lemma 1, as was first noted
by Chernoff (1961) in the case q = 0 and p = 1. For the general exponential fam-
ily, a key observation in the preceding argument is that the stopping rule in the
normal case can be re-expressed in terms of the generalized likelihood ratio statis-
tics S2

n/2n, which generalize to nI(θ̂n, θ0) in an exponential family, with I(θ, λ)
the Kullback-Leibler information number (1.7). Although the wc(t) is now only
approximately a Wiener process with drift coefficient µ = (θ − θ0)

√
ψ′′(θ0)/cr

under Pθ for −M ≤ µ ≤M , approximation of the discrete-time Bayes sequential
testing problem in Theorem 1(i) by the Wiener process optimal stopping problem
in Lemma 1 is still valid because of (2.12) and (2.13), which imply that the contri-
bution of the integral of the risk function over the region {θ ∈ A : |θ−θ0| ≥Mcr}
to the Bayes risk of (T ∗

c , δ
∗) becomes negligible as M → ∞. In the special case

q = 0 and p = 0, this was noted by Lai (1988a) who also showed that similar
Wiener process approximations are still valid under the 0-1 loss even when there
is an indifference zone which separates the null and alternative hypotheses, thus
providing a refinement of Schwarz’s (1962) asymptotic theory so that it can yield
the preceding asymptotic solution to the testing problem without an indifference
zone by letting the size of the indifference zone in Schwarz’s problem shrink to 0.

Specifically, to test H0 : θ ≤ θ0 versus H1 : θ ≥ θ1 under the 0-1 loss, let
γ = 1

2(θ1 − θ0)
√
ψ′′(θ0)/c and let hγ be the optimal stopping boundary (2.2) for
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the corresponding problem of testing H ′
0 : µ ≤ −γ versus H ′

1 : µ ≥ γ for the drift
coefficient µ of a Wiener process. Let Bγ = {hγ(t) + γt}2/2t and let

Nγ,c = inf{n ≥ 1 : max[nI(θ̂n, θ0), nI(θ̂n, θ1)] ≥ Bγ(cn)}. (2.14)

Let δ̃ be the same terminal decision rule as in (1.8). Making use of (2.2) to obtain
analogues of (2.12) and (2.13) for the rule (2.14), Lai (1988a) showed that not only
is the test (Nγ,c, δ̃) asymptotically Bayes risk efficient in the sense of (1.8) with
Nc replaced by Nγ,c when the indifference zone parameters θ0 and θ1 are fixed,
but that it is also asymptotically Bayes risk efficient as c → 0 and θ1 − θ0 → 0
such that (θ1−θ0)2/c converges to a positive constant or to ∞. Moreover, letting
θ1 = θ0 in (2.14) yields the stopping rule (2.10) with q = p = 0, B = Bγ and
γ = 0.

In Lai (1988a), simple closed-form approximations to the stopping bound-
aries Bγ(γ ≥ 0) are given for easy implementation of these tests, and simu-
lation studies of their risk functions show that these stopping rules not only
provide approximate Bayes solutions with respect to a large class of priors but
also have nearly optimal frequentist properties. In the case A = Θ, note that
Schwarz’s stopping rule (1.6) for testing H0 : θ ≤ θ0 versus H1 : θ ≥ θ1 can
be expressed in terms of the Kullback-Leibler information number I(θ, λ) as
Nc = inf{n ≥ 1 : max[nI(θ̂n, θ0), nI(θ̂n, θ1)] ≥ log ac}. Thus, the stopping
rule (2.14) simply modifies Schwarz’s rule by replacing the constant bound-
ary log ac ∼ log c−1 by a time-varying boundary Bγ(cn) that is of the order
of log(cn)−1. Alternatively we can regard (2.14) as an adaptive 2-SPRT in which
the λ in the 2-SPRT stopping rule (1.3) is replaced by θ̂n and the constant thresh-
old B = B′ is replaced by Bγ(cn) that incorporates the time-varying uncertainties
in the parameter estimates θ̂n.

3. The Case q > 1 and Asymptotic Optimality of Power-one Tests

In this section we prove Theorem 1(ii) and show that the special case q =
2 = −p is closely related to Lerche’s (1986a,b) optimal stopping problems that
involve a cost cθ−2 per observation. In this connection we also study certain
properties of the power-one tests developed by Robbins (1970) and Robbins and
Siegmund (1970, 1973).

Let q > 1. To begin with, consider the special case of Theorem 1(ii) in which
θ0 = 0, A = (a1, a2) is an open interval containing 0, G′(θ) = η|θ|q exp(−θ2/2σ2)
and �(θ) = θ−2 for a1 < θ < a2. Then K :=

∫ a2
a1

|θ|q−2e−θ2/2σ2
dθ < ∞ and

therefore π(θ) := K−1|θ|q−2e−θ2/2σ2
is a density function on (a1, a2). Moreover,

the Bayes risk (1.4) of (T, δ) under the prior distributionG, cost c per observation
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and loss �(θ) for the wrong decision can be expressed as

r(T, δ) = η

∫ a2

a1
{c|θ|qEθT + |θ|q−2Pθ(δ is wrong)}e−θ2/2σ2

dθ

= ηK

∫ a2

a1
π(θ){cθ2EθT + Pθ(δ is wrong)}dθ, (3.1)

which is ηK times the Bayes risk of (T, δ) under the 0-1 loss, cost cθ2 per obser-
vation and prior density π. Hence the 0-1 loss and cost function considered by
Lerche (1986a) can be tansformed to a special case of Theorem 1(ii).

In particular, for q = 2 and A = (−∞,∞), π is the density function of a
normal distribution with mean 0 and variance σ2. Lerche (1986a) used this choice
of π but considered a continuous-time Wiener process w(t) with drift coefficient µ
instead of i.i.d. N(θ, 1) random variables Xi in (3.1). He showed that in this case
the optimal stopping rule τ∗c for testing the sign of µ has the simple form (2.4)
and that its Bayes risk (2.3) is given by r(τ∗c ) = Φ(−λc)+ cλ2

c with φ(λc) = 2cλc.
Here and in the sequel we let Φ and φ denote the standard normal distribution
and density functions. Since λ2

c ∼ 2 log c−1 and Φ(−λc) ∼ φ(λc)/λc = 2c as
c → 0, it follows that r(τ∗c ) ∼ 2c log c−1 as c → 0. This asymptotically optimal
Bayes risk can also be attained by the mixture likelihood ratio stopping rule τ(c)
defined by (1.14), in which we take g = φ and ac = (2c)−1 for definiteness so
that (1.14) reduces to

τ(c) = inf{t ≥ 0 : |w(t)| ≥ (t+ 1)1/2[log(t+ 1) + 2 log(2c)−1]1/2} (3.2)

(cf. Robbins (1970)). In fact, it will be shown later that
∫ ∞
−∞ µ2E(τ(c)|µ)dΦ(µ) ∼

2 log c−1 as c→ 0. Moreover, letting w∗(t) denote driftless Brownian motion, we
have for µ > 0,

P{w(τ(c)) < 0|µ}
≤ P{w∗(t) ≤ −(t+ 1)1/2[log(t+ 1) + 2 log(2c)−1]1/2 for some t ≥ 0} ≤ 2c

(cf. Robbins (1970), Eq. (18)). Hence r(τ(c)) = 2c| log c|(1 + o(1)) + O(c) ∼
2c log c−1 as c→ 0. We next use similar arguments to prove part (ii) of Theorem
1.

Proof of Theorem 1(ii). Let κ >
∫
A(I(θ, θ0))−1dG(θ) and let Fc be the class

of all sequential tests (T, δ) such that r(T, δ) ≤ κc| log c|. We first show that

inf
(T,δ)∈Fc

r(T, δ) ≥ c| log c|
{ ∫

A
(I(θ0, θ))−1dG(θ) + o(1)

}
as c→ 0. (3.3)

For (T, δ) ∈ Fc, since
∫
|θ−θ0|≤| log c|−1 �(θ)Pθ{δ is wrong}dG(θ) ≤ κc| log c|, it

follows from (2.5) and (2.6) that for all sufficiently small c there exist θ′c and θ′′c
belonging to A such that 0 < θ′c − θ0 < | log c|−1, 0 < θ0 − θ′′c < | log c|−1 and

max(Pθ′c{δ accepts H0}, Pθ′′c {δ accepts H1}) ≤ 2κ(p + q + 1)c| log c|p+q+1/(ξη),
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recalling that p + q > −1. Hence by Hoeffding’s (1960) lower bound for the
expected sample size of a sequential test (cf. Lemma 11 of Lai (1988a)), as
c→ 0,

inf
(T,δ)∈Fc

EθT ≥ (1 + o(1))| log c|/max{I(θ, θ′c), I(θ, θ′′c )}

uniformly in θ ∈ A. Since I(θ, θ′c) → I(θ, θ0) and I(θ, θ′′c ) → I(θ, θ0), it then
follows that

inf
(T,δ)∈Fc

r(T, δ) ≥ inf
(T,δ)∈Fc

c

∫
A
EθTdG(θ) ≥ (1 + o(1))c| log c|

∫
A
(I(θ, θ0))−1dG(θ).

Hence inf(T,δ)r(T, δ)≥(1+o(1))c| log c| ∫A(I(θ, θ0))−1dG(θ), noting that r(T, δ) >
κc| log c| if (T, δ) /∈ Fc.

We next show that this asymptotic lower bound is attained by the test
(Tc,h, δ∗). For θ > θ0,

Pθ{θ̂Tc,h
≤ θ0} =

∫
{θ̂Tc,h

≤θ0}
exp{(θ − θ0)STc,h

− Tc,h(ψ(θ) − ψ(θ0))}dPθ0

≤ Pθ0{θ̂Tc,h
≤ θ0},

since on {θ̂Tc,h
≤θ0}, STc,h

/Tc,h≤ψ′(θ̂Tc,h
)≤ψ′(θ0)≤(ψ(θ)−ψ(θ0))/(θ−θ0) by (2.7)

and the convexity of ψ. Moreover, since {∫ a2+ζ
a1−ζ e

(θ−θ0)Sn−n(ψ(θ)−ψ(θ0))h(θ)dθ,

n≥1} is a martingale under Pθ0 , Pθ0{θ̂Tc,h
≤θ0}≤Pθ0{Tc,h<∞}≤c ∫ a2+ζ

a1−ζ h(t)dt.
A similar argument for Pθ{θ̂Tc,h

≥θ0} in the case θ<θ0 then yields Pθ{δ∗is wrong}
≤ c

∫ a2+ζ
a1−ζ h(t)dt for all θ 
= θ0. From (2.5) (with q > 1) and Lemma 2 below

it follows that
∫
AEθTc,hdG(θ) ∼ | log c| ∫A(I(θ, θ0))−1dG(θ) as c → 0. Since∫

A �(θ)dG(θ) <∞, it then follows that r(Tc,h, δ∗) = c| log c|{∫A(I(θ, θ0)−1dG(θ)+
o(1)} +O(c) as c→ 0, completing the proof of Theorem 1(ii).

Lemma 2. With the same notation as in Theorem 1(ii), for any ε > 0, EθTc,h ∼
| log c|/I(θ, θ0) as c → 0, uniformly in θ ∈ A with |θ − θ0| ≥ ε. Moreover, as
c→ 0 and θ → θ0,

EθTc,h ∼ 2(log c−1 + log |θ − θ0|−1)/{(θ − θ0)2ψ′′(θ0)}. (3.4)

For the stopping rule (3.2) of the continuous-time Wiener process w(t) with
drift coefficient µ, a straightforward modification of the proof of Lemma 2 in
the Appendix shows that analogous to Lemma 2, we again have E(τ(c)|µ) ∼
2| log c|/µ2 uniformly in |µ| ≥ ε and E(τ(c)|µ) ∼ 2µ−2(log c−1 + 1

2 log µ−2) as
c → 0 and µ → 0. This result is an extension of Theorem 2 of Lai (1977) and
Theorem 4 of Jennen and Lerche (1982) where c is assumed to be fixed as µ→ 0.
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Example. Let X1,X2, . . . be i.i.d. N(θ, 1) random variables and consider the
problem of testing H0 : θ < 0 versus H1 : θ > 0. Here θ0 = 0, A = (−∞,∞),
ψ(θ) = θ2/2 and nI(θ̂n, θ0) = S2

n/2n. Taking h = φ in the stopping rule Tc,h of
Theorem 1(ii), we can express it as

Tc,φ = inf{n ≥ 1 : (n+ 1)−1/2 exp(S2
n/2(n + 1)) ≥ c−1}

= inf{n ≥ 1 : nI(θ̂n, θ0) ≥ (1 + n−1)[log c−1 +
1
2

log(n+ 1)]}, (3.5)

which has the property Pθ0{Tc,φ < ∞} ≤ c so that Pθ{δ∗ is wrong} ≤ c for
all θ 
= θ0, as shown in the proof of Theorem 1(ii). Note that the time-varying
boundary for nI(θ̂n, θ0) in the stopping rule (3.5) tends to ∞ as n→ ∞, with the
consequence that EθTc,φ ∼ 2θ−2(log c−1 +log |θ|−1) as c→ 0 and θ → 0 by (3.4).
This order of magnitude for EθTc,φ when θ is near 0 does not cause difficulty if
q > 1 in (2.5), under which

∫
|θ|<1 θ

−2| log |θ||dG(θ) < ∞. On the other hand, if
q < 1 in (2.5), then

∫ ∞
−∞ θ−2dG(θ) = ∞ and we therefore need a much smaller

order of magnitude for EθT than EθTc,φ when θ is near 0. Hence the boundary
B(c2/(p+2)n) of the stopping rule T ∗

c = inf{n ≥ 1 : nI(θ̂n, θ0) ≥ B(c2/(p+2)n)} in
Theorem 1(i) is markedly different from the boundary (1+n−1)[log c−1+ 1

2 log(n+
1)] in (3.5). First note how c appears in both boundaries. It appears as log c−1 in
(3.5) but as a factor of the time n in T ∗

c . Moreover, while the boundary in (3.5)
tends to ∞ with n, the boundary B(t) = b2q,p+q,a(t)/2t tends to 0 as t→ ∞. By
(2.9), B(c2/(p+2)n) ∼ 1

2(p + 2)| log(c2/(p+2)n)| as c2/(p+2)n → 0. In particular, if
log n = o(| log c|), then B(c2/(p+2)n) ∼ log c−1 ∼ log c−1 + 1

2 log(n+1). Note from
the proof of Theorem 1(i) that unlike (3.4), the asymptotic behavior of EθT ∗

c is
given by (2.12) (with r = 1/(p+2)) and by the weak convergence approximation

c2/(p+2)Eµc1/(p+2)(T ∗
c ) → E(τ∗|µ) as c→ 0,

uniformly for µ in compact sets, where τ∗ is defined in Lemma 1.
Instead of the one-sided hypotheses H0 : θ < θ0 versus H1 : θ > θ0, the pre-

ceding proof of Theorem 1(ii) can be modified to show that the mixture likelihood
stopping rule Tc,h is also asymptotically optimal for testing the simple hypothesis
H : θ = θ0 versus the composite two-sided alternative hypothesis K : θ 
= θ0.
The terminal decision rule δ′ of the test is to reject H upon stopping. The test
has type I error probability α := Pθ0(Tc,h < ∞) ≤ c

∫ a2+ζ
a1−ζ h(t)dt. Moreover,

logα ∼ log c as c → 0 (cf. Pollak (1986)). On the other hand, EθTc,h < ∞
and therefore Pθ(Tc,h < ∞) = 1 for θ 
= θ0. Hence the test has power one.
Subject to the type I error constraint Pθ0(T < ∞) ≤ α,EθT is minimized by
a one-sided SPRT whose stopping rule is of the form (1.9) with f1 = fθ and
f0 = fθ0, with minimal expected sample of the order Eθτ ∼ | log c|/I(θ, θ0) as
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| log c|(∼ | log α|) → ∞. Lemma 2 shows that the mixture likelihood rule Tc,h
attains this minimal order of magnitude for the expected sample size under every
fixed θ 
= θ0 as c→ 0. Moreover, the following theorem shows that under the 0-1
loss and cost c per observation if θ 
= θ0, the test (Tc,h, δ′) is asymptotically Bayes
with respect to prior distributions of the form ωG+(1−ω)G0, where 0 < ω < 1,
G0 puts all its probability mass at θ0 and G is a probability distribution satisfying
condition (2.5) with q > 1. Note that there is no sampling cost under H0, and
therefore if H0 should be true one would ideally continue to collect data forever.
To illustrate this point, suppose a drug is licensed for use based on a clinical trial
indicating a positive treatment effect of the drug, but some concern exists that
it may have deleterious side effects which will only become apparent after much
more extensive use. Monitoring of the side effects may continue indefinitely until
there is enough evidence for such side effects. Hence, under the null hypothesis
of no deleterious side effects for the licensed drug, no sampling cost is incurred
in administering the drug to patients. The sampling cost is only relevant when
the alternative hypothesis is true and can be interpreted as an ethical cost of
administering to each patient a drug whose deleterious side effects have not been
found. This is the motivation behind the open-ended, power-one tests of Robbins
(1970) and Robbins and Siegmund (1970, 1973).

Theorem 2. Let ρ(T, δ) = ω
∫
A{cEθT + Pθ(δ accepts H)}dG(θ) + (1 − ω)Pθ0(δ

rejects H) be the Bayes risk of a sequential test (T, δ) of H : θ = θ0 for the
natural parameter θ of an exponential family under the 0-1 loss, where 0 < ω < 1
and G is a probability distribution on A satisfying (2.5) for some q > 1 and η > 0
(so G({θ0}) = 0). Define the stopping rule Tc,h as in Theorem 1(ii) and let δ′ be
the terminal decision rule that rejects H upon stopping. Then as c→ 0,

inf
(T,δ)

ρ(T, δ) ∼ ωc| log c|
∫
A
(I(θ, θ0))−1dG(θ) ∼ ρ(Tc,h, δ′).

Proof. Straightforward modification of the proof of Theorem 1(ii) shows that
inf(T,δ) ρ(T, δ) ≥ {ω ∫

A(I(θ, θ0))−1dG(θ) + o(1)}c| log c| as c → 0. For the test
(Tc,h, δ′), Pθ0{δ′ rejects H} ≤ c

∫ a2+ζ
a1−ζ h(t)dt and Pθ{δ′ accepts H} = 0 for θ 
= 0.

Hence from (2.5) (with q > 1) and Lemma 2, ρ(Tc,h, δ′) ∼ ωc| log c| ∫A(I(θ, θ0))−1

dG(θ) as c→ 0.
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Appendix: Proof of Lemma 2
For fixed θ 
= θ0, Pollak and Siegmund (1975) have proved that ∞ > EθTc,h ∼

| log c|/I(θ0, θ). Simple refinements of their proof of this result show that EθTc,h ∼
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| log c|/I(θ0, θ) uniformly in θ ∈ A with |θ − θ0| ≥ ε. To prove (3.4), we can
use arguments similar to those in Section 3 and Lemma 6 of Lai (1988c). The
basic idea is as follows. Let X̄n = Sn/n and L = sup{n : |X̄n − ψ′(θ)| ≥
|θ − θ0|}. Then there exists M > 0 such that EθL ≤ M(θ − θ0)−2 for all
θ ∈ A with 0 < |θ − θ0| ≤ ε (sufficiently small) (cf. (3.14) of Lai (1988c)). For
n > max{L, (θ − θ0)−2(log |θ − θ0|−1)1/2}, application of Laplace’s method for
asymptotic evaluation of integrals as in Lemma 6 of Lai (1988c) yields

∫ a2+ζ

a1−ζ
e(t−θ0)Sn−n(ψ(t)−ψ(θ0))h(t)dt

∼ (2π/nψ′′(θ0))1/2h(θ0) exp(nI(θ̂n, θ0))

= exp{nI(θ̂n, θ0) − (log n)/2 +O(1)} as θ → θ0.

Noting that nI(θ, θ0)− 1
2 log n ∼ log c−1 ⇔ 1

2ψ
′′(θ0)(θ−θ0)2n ∼ log c−1+ 1

2 log |θ−
θ0|−2 as c → 0 and θ → θ0, we can proceed as in the proof of Theorem 3 of Lai
(1988c) to complete the proof.
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