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On Optimal Strategies for Upgrading Networks 

(Extended Abstract) 

S. 0. Krumke H. Noltemeier M. V. Marathe S. S. Ravi R. Ravi R. Sundaram 

July2, 1996 

Abstract 

We study budget constrained optimal network upgrading problems. Such problems aim at finding 
optimal strategies for improving a network undea some cost measure subject to certain budget constraints. 
Given a edge weighted graph G( V ,  E), in the edge bused upgrading model, it is assumed that each edge 
e of the given network has an associated function c(e) that specifies the cost of upgrading the edge by a 
given amount. A reduction strategy specifies for each edge e the amount by which the length t ( e )  is to 
be reduced. In the node based upgrading model a node v can be upgraded at an srpense of cost (v )  . Such 
an upgradereduces thecost of each edge incident on er by a fixed factor e. where 0 < e < 1. For a given 
budget B, the goal is to find an improvement strategy such that the total cost of reduction is at most the 
given budget B and the cost of a subgraph (e.g. minimum spanning tree) under the modified edge lengths 
is the best over all possible strategies which obey the budget constraint. M e  an (a, p)-approXimation 
algorithm as a polynomial-time algorithm that produces a solution within CY times the optimal function 
value, violating the budget constraint by a factor of at most p. 

The results obtained in this abstract include the following. 

1. We show that in general the problem of computing optimal reduction strategy for modifying the net- 
work as above is NP-hard. 

2. In the node based model, we show how to devise a near optimal strategy for improving the bottleneck 
spanning tree. The algorithms has a performance guarantee of (2 In n, 1). 

3. For the edge based improvement problems we present improved (in terms of performance and time) 
approximation algorithms. 

4. We also present pseudo-polynomial time algorithms (extendable to polynomial time approximation 
schemes) for a number of edgdnode based improvement problems when restricted to the class of 
treewidth-hded graphs. 
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1 Introduction 

Several problems arising in arm such as communication networks and VLSI design can be expressed 
in the following general form: Enhance the pe~€ormance of an underlying network by carrying out upgrades 
at certain nodes and/or edges of the network [32,31,25]. 

Consider the following scenario which best illustrates the type of problems we investigate. A large com- 
munication company is approached by a client with the requirement to interconnect a set of cities housing 
the client's offices (e.g. banks with high transaction rates between branches). The company has a list of 
feasible links that it can use to construct a network to connect these cities. Each link has a construction cost 
associated with it. One of the main concerns of the client is to build a communication network of minimum 
cost. This is the ubiquitous minimum spanning tree problem. With the advent of optical communication 
technology, the client would like to upgrade the communication network and has allocated a k e d  budget to 

do so. In communication networks, upgrading a node corresponds to installing faster Communication quip- 
ment at that node. Such an upgrade reduces the communication delay along each edge emanating from the 
node. Similarly upgrading an edge can be achieved by replacing the old line with a new o p t i d  cable. In 
general, there is a cost for improving each link (node) in the existing network by a unit amount. The goal is 
to design a stratem to upgrade the links of the network so that the total mt of upgrading the links (nodes) 
is no more than the fixed budget, and the cost of a minimum spanning tree for the upgraded network is the 

least over all the possible improvements of the network satisfying the budget constraint. 
Although substantial work has been done in Sndng optimal networks (e.g. spanning trees) in graphs, 

there has been little work on how to modify a graph so as to optimize the cost of the network in the re- 
sulting graph. In this paper, we formulate and study such network upgrade problems and call them budget 

constrained optimal network upgrading problems. 

The paper is organized as follows. Section 2 introduces the node and edge based upgrading models. 
In Section 3 we formally define the problems under study. Section 4 briefly summarizes our results. In 
Section 5 we briefly justify our claims that our formulation is indeed general and robust. In Section 6 we 
present our approximation algorithm for the bottleneck node upgrading problem on general graphs and es- 
tablish its performance guarantee. In Section 7 give pseudo-polynomial time algorithms for node upgrading 
problems. It is shown in Appendix B how these algorithms can be converted into fully polynomial approx- 
imation schemes. In Section 8 we treat the edge upgrading problem under study. Appendix C contains the 
hardness results. 

2 Node versus Edge Based Models for Network Upgrade 

Throughout the presentation we assume that G = (V, E) is a connected undirected graph. Let d be a 
nonnegative edge-weight function defined on G. For a spanning tree T = (V, ET) of G, we the bottleneck- 
delay of T under d is defined to be the weight of the heaviest edge in T .  The total weight of T under the 

cost function d is the sum of the weights d(  e) of the edges e E T .  Finally, the diameter of T (with respect to 

d) is the length of a longest simple path in 2'. We now describe our node based and the edge based upgrade 
model. 

In the node based upgrading model we are given the following situation: With each edge e E E from 
the graph G, the nonnegative number l ( e )  represents the Zength or delay of the link e. When a node e, is 
upgraded, the delay of each edge incident on Y decreases by a fixed factor e, where 0 < < 1. Thus, if 
e = (v, u) is an edge, its delay after upgrading exactly one of 'u and u is @(e);  the delay of e falls to e21(e), 

if both w and u are upgraded. The cost of upgrading a node Y is denoted by cost(v). For a subset V' of V, 
the cost of up&ading all the nodes in V', denoted by cost(V'), is equal to CYEV, cost(v). 

In the edge based upgrading model, with each edge e E E, there are associated three nonnegative values 
as follows: (e) denotes the length of the edge e and emin (e) denotes the minimum length to which the edge e 
can be reduced. Consequently, we assume throughout the presentation that &in@) 5 4?(e). The nonnegative 
value c(e)  indicates how expensive it is to reduce the length of e by a certain amount: shortening e by t units 
will involve a cost of tc(e). 
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Given a budget B, we define a feasible reduction to be a nonnegative function r defined on E with the 
following properties: For all edges e E E, t ( e )  - r(e) 2 &,;,(e) and C e E ~  c(e) . r (e)  5 B. If r is a 
(feasible) reduction, in G we can consider the graph G with edge weights given by the “reduced lengths”, 
namely (e - r )  (e )  := l ( e )  - .(e) (e E E). We denote the total weight of a minimum total length spanning 
tree with respect to the weight function .t by MSTG (e).  Similarly, if r is a reduction in G then MSTG(L - r )  

denotes the weight of a MST with respect to the reduced lengths t ( e )  - r ( e )  (e f E). 

3 Problem Formulations and Notion of Approximation 

We are now ready to define the problems studied in this paper. Our formulation of these problems is 
based on the work of [29]. A generic noddedge based network upgrade problem (f1, f2, S) ,  is defined by 
identifying two minimization objectives , - fi and f2, - from a set of possible objectives, and specifying 
a membership requirement in a class of subgraphs, - S. The problem specifies a budget value on the first 
objective, f1, under one cost function, and seeks to find a network having minimum possible value for the 
second objective, fi, under another cost function, such that this network is within the budget on the first 
objective. The solution network must belong to the subgraph-class S. 

For example, the node based upgrading problems studied here can be formulated as follows. Given a 
node and edge weighted graph G as above, a speedup factor 0 < e < 1 and a bound B, (Node-cost, 
Bottleneck, Spanning Tree) is to upgrade a set V‘ V of nodes of cost cost(V’) at most B such that the 
bottleneck delay of a bottleneck spanning tree in the resulting graph is minimized. The problems (Node- 
cost, Total-weight, Spanning Tree) and (Node-cost, Diameter, Spanning Tree) are defined similarly. 
Similarly, the edge based upgrading problem can be stated as: The (Edge-cost, Total-weight, Spanning 
Tree)is to find an (edge-) reduction r of cost at most B such that MSTG (l - r )  has the least possiblevalue. 

We argue in Section 5 that this approach for modeling network upgrade problems is both general as 
well as robust. Next, we now discuss what we mean by finding appmximation algorithms for such upgrade 
problems. 

Definition 3.1 We say that a polynomial-time algorithm is an (a, p)  -approxh?afion algorifhm for one 
of the problems (fi, f2, S) defined above, if for each instance of the problem, it produces asolution 
in which the first objective (fi) value, is at most Q times the budget, and the second objective (fi) 
value, is at most p times the minimum for any solution that is within the budget on fl. The solution 

produced must belong to the subgraph-class S. 

For example, an (a, p)-approximation algorithm for (Edge-cost, Total-weight, Spanning Tree) finds 

a reduction r of cost at most p times the budget B such that f ~ ! ~ ~ ~ ~ ) l  5 a, where r* denotes an optimal 

edge-reduction on G of cost at most B. 

4 Summary of Results 

For the first time, we study the complexity and approximability of a number of node weighted and edge 
weighted upgrade network improvement problems. We consider three objectives to evaluate the cost of 
the spanning tree in the modified network: the bottleneck delay, the diameter and the total cost. We show 
that the problems are hard even for very restricted classes of graphs. The hardness results contrast with 
the results in C25l about the complexity of edge based upgrading probZem. For instance, while (Edge- 
cost, Total-weight, Spanning Tree) is polynomial time solvable on trees [25], we show that (Node-cost, 
Total-weight, Spanning Tree) and (Node-cost, Diameter, Spanning Tree) are NP-hard even on achain. 
Given the hardness of finding optimal solutions, we focus on devising approximation algorithms with good 
performance guarantees. 

1. We believe that the discussion in the previous section provides a sound formulation for studying 
network improvement problems. Following [29], we can show that the formalism is both robust 
and general. It is more general because it subsumes the case where one wishes to minimize some 
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Cost Measures Bottleneck Diameter Total Cost 

( 1 9 1  + 4 
Node-Cost polynomial-time (weakly NP-hard) (weakly NP-hard) 

( 1 9 1  + 4 

Table 1: Results for node based spanning tree upgrade problems restricted to treewidth-bounded graphs. 
The row is indexed by the budgeted objective. As mentioned all the results directly extend to finding Steiner 
trees instead of spanning trees. Similar results also hold for edge based problems. 

functional combination of the two criteria. It is more robust because the quality of approximation is 
independent of which of the two criteria we impose the budget on. Section 5 provides justification for 
these claims. 

2. For the edge based improvement problems we present improved (in tenns of performance and time) 
approximation algorithms. The algorithms are based on an elegant technique introduced by Megiddo 
[30] and can be extended to obtain approximation algorithms for more general network design prob- 
lems such as those considered in 115,161. This includes problems such as generalized Steiner trees, 
k-connected subgraphs, etc. 

3. We show that the bottleneck upgrading problem (Bottleneck, Node-cmt, Spanning Tree) is NP- 
hard for any fixed 0 < Q < 1 even when there are unit costs on the nodes, Le. cost(o) = 1 for a l l  

v E V and even for bipartite graphs. 

We provide a polynomial time approximation algorithm for (Bottleneck, Node-cost, Spanning 
Tree) with a performance guarantee of (2 In n, 1). We counterbalance this approximation result with 
the following lower bound result: Unless NP 5 DTIME(nloglogn), there can be no polynomial 
time approximation algorithm for (Node-cost, Bottleneck, Spanning Tree) with a performance 
guarantee of (a, p) for any Q < In n and j3 < l/e, where 0 < e < 1 is the speedup factor given in 
the instance. 

Our results constitute the first approximation algorithms for node weighted network improvement 
problems in the literature. The technique for establishing the logarithmic performance is of indepen- 
dent interest and might be useful in obtaining bounds for other node based improvement problems. 

4. For the class of treewidth-bounded graphs we give algorithms with improved time bounds and per- 
formance guarantees for each of the three performance measures of a tree mentioned above. This is 

done in two steps. First we develop pseudopolynomial-time algorithms based on dynamic program- 
ming. We then present a general method for deriving fully polynomial-time approximation schemes 
(BAS)  from the pseudopolynomial-time algorithms. The results for treewidth-bounded graphs are 
summarized in Table 1. 

The FPAS for a number of node/edge based network improvement problems restricted treewidth- 
bounded graphs are based on fairly general techniques. Our research in this direction is motivated 
by the fact that communication networks encountered in practice usually have a small treewidth (e.g. 
rings, trees, near-trees, series parallel graphs, outerplanar graphs, etc). 

4.1 Related Work 

To the best of our knowledge, the problems considered in this paper have not been previously studied. 
The node upgrading model used in this paper was introduced in a recent paper by Paik and Sahni 1311, 
although they considered different problems than the ones considered here. Frederickson and Solis-Oba 
[12] considered the problem of increasing the weight of the minimum spannix@ tree in a graph subject to 

a budget constraint where the cost functions are assumed to be linear in the weight increase. In contrast to 
the work presented here, they showed that the problem is solvable in strongly polynomial time. Berman 131 
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considers the problem of upgrading edges in a given tree to minimize its shortest path tree weight and shows 
that the problem can be solved in polynomial time by a greedy algorithm. Phillips C321 studies the problem 
of finding an optimal strate& for reducing the capacity of the network so that the residual capacity in the 

modified network is minimized. Reference [25] considers network improvement problems under a different 
model where there are cost functions associated with improving edge weights. 

Finally, some important questions remain unsolved. these include approximation algorithms for the 
node based minimum total cost spanning trees, minimum diameter spanning trees, etc. 

5 Formulation: General and Robust 

In Section 3, we claimed that our formulation for bicriteria problems is robust and general. In this 
section, we justify these claims. 

We claimed that our formulation is robust because the quality of approximation is independent of which 
of the two criteria we impose the budget on. To see this note that there are two naaual ways to formulate 
a bicriteria problem: (i) (f1, f2, S)- find a subgraph in S whose fl-objective value is at most B and which 
has minimum f2-objective value, (ii) (f2, f1, S)- find a subgraph in S whose f2-objective value is at most 
B and which has minimum fl-objective value. Using ideas similar to the ones in [29], we can show that 

Theorem 5.1 Any (a, p)-approximation algorithm for (fl, f2, S )  can be transformed in polynomial 
time into a (p, a)-approximation algorithm for (f2, f1, S). 

Thus our approximation results for ( f~ , f2, S) problems in the following sections will also yield approx- 
imation algorithms for the symmetric problem (f2, f1, S) . 

For justifying our claims of generality, let f1 and f2 be two objective functions and let us say that we 
wish to minimize the sum of the two objectives f1 and f2. Call this an (f1 +f2, S) problem. Let BiAlg (G, B) 
be any (a, p) -approximation algorithm for (f1, fi , S) on graph G with budget B specified for the objective 
f1. Using a binary search on the range of values of f1 with an application of the given approximation 
algorithm, BiAlg, at each step of this search we obtain the following theorem. 

Theorem 5.2 Let BiAlg(G, B)  be any (a, p)-approximation algorithm for (fl, f2, S) on graph G with 
budget B under A. Then, there is a polynomial time max{a, p}-approximation algorithm for the 

(f1 + f 2 ,  S) problem. 

A similar argument shows that an (a, @)-approximation algorithm BiAlg(G, B) ,  for a (fi, fi, S) prob- 
lem can be used to find devise a polynomial time a @ approximation algorithm for the (f1- f., S) problem. 
A similar argument can also be given for other basic functional combinations. 

The above discussion points out that a good solution to the ( f ~ ,  f2, S)-network upgrade problem yields 
a "good" solution to any unicriterion version (the converse is not necessarily true). It is in this sense that we 
say our formulation of network upgrade network design problems is general and subsumes other functional 
combinations. 

6 Approximation Algorithm for (Bottleneck, Node-cost, Spanning Tree) 

In this section, we present our approximation algorithm for (Bottleneck, Node-cost, Spanning Tree). 
Recall that in the (Bottleneck, Node-cost, Spanning Tree) problem we are given a bound 6 on the 
bottleneck-delay of a tree and the goal is to upgrade a set V' of the vertices of minimum cost such that 
the upgraded graph contains a bottleneck spanning tree of delay at most 6. 

6.1 Overview 

We can assume without loss of generality that all the delays on the edges of the given network are taken 
from the three element set {6/e2, 6/e, 6) .  If the delay of an edge is greater than6/e2, then vertex upgradiing 
cannot reduce its delay value to 6. Thus, in the sequel we will assume that the delay of each edge is one of 
the three above values. 
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Heuristic-(Bottleneck, Node-cost, Spanning Tree) 

Let G' := bottleneck(G, l?, 6)  and let Cl , . . . , Cr be the connected components of G'. 

Initialize S to empty and F to the set of edges in G'. 

Repeat while we have more than one component 

Let C = {Cl . . . , C,} be the set of clusters, where q = IC I is number of remaining components 
F i d  a node w E V in the graph G minimizing the ratio 

cost(v) + c;=1 c(o, Cj) 
min min 

2 9 5 9  {GI ,... ,C,t}CC r' 

Here, the cost c(w, Cj) is defined in the following way: If w E Cj or w is adjacent to a node k 
Cj via an edge of delay s/e, then c(w, Cj) := 0. If all the edges from v to Cj are of delay S/e2 
then c(o, Cj) is defined to be the minimum cost of a vertex in Cj adjacent to w. If there is nc 
edge between w and any node in Cj, then c(w, Cj) := +m. 

Let be the node and Cl , . . . , C,. be the components in C chosen in Step 6 above, where w.1.o.g 

Lete:!, . . . , e ,  beasetofedgesinGconn~~gwtoC2, ... ,C,respeCtively. 
Add the edges e 2 ,  . . . , e,. to F so as to merge C1, C 2 ,  . . . , Cr into one component.. Add TI anc 
the other endpoint of each edge from { e2,  . . . , e,.} whose delay is S/e2 to S. 

Note that the total cost of the nodes added to the solution S is exactly f( w). 

2) E c,. Let f (w) = cost(v) + c(w, Cj). 

Output S as the solution. 

figure 1: The approximation algorithm for (Bottleneck, Node-cost, Spanning Tree). 

We first give a brief overview of our algorithm. The algorithm maintains a set S of nodes, a set F of 
edges and a set C of clusters which partition the vertex set V of the given graph G. The set C of clusters 
is initialized to be the set of connected components of the bottleneck graph bottlene&(G, l?, S), which is 
defined to be the edge-subgraph of G containing only those edges e which have a delay 4(e) of at most S. 
The set S of upgrading nodes is initially empty. 

The algorithm iteratively merges clusters until only one cluster remains. To this end, in each iteration it 
determines a node o of minimum quotient cost. 

The algorithm Heuristic-(bttleneck, Node-cost, Spanning Tree) is shown in Figure 1. Step 6 can 

be implemented in polynomial time by using ideas similar to those in [211. We omit the details due to lack 

It is easy to see that the set S output by algorithm Heuristic-(Bottleneck, Node-cost, Spanning Tree) 
is indeed a valid upgrading set, since all the edges added to F in Step 9 will be of delay at most 6 after 
upgrading the nodes in S. In the sequel, we use V* to denote an optimal upgrading set; i.e. an upgrading set 
of minimal cost OPT := cost(V*). We now proceed to prove the performance guarantee provided by the 
algorithm. Our proof (of Theorem 6.4) relies on several lemmas, which are presented below. We estimate 
the cost of the nodes added by the heuristic in each iteration by first establishing an averaging lemma and 
then using a potential function argument.. The notion of a cZaw decomposition which is introduced below 
will be a crucial tool in the analysis. 

of space. 

Definition 6.1 A claw is either a single node or a K1,, graph for some r 2 1. If there are at most 
two nodes in the claw then we can choose any of the nodes as its center. Otherwise, the node 
with degree greater than 1 is the unique center. The vertices in the claw different from the center 
are said to be the fingers of the claw. A claw with at least two nodes is cdled a non-trivhl claw. 

Let G be a graph with node set V .  A claw decomposition of V in G is a collection of node- 
disjoint nontrivial claws, which are all subgraphs of G and whose vertices form a partition of V. 
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The following theorem can be proven by induction on the number IVl of nodes. 

Theorem 6.2 Let G be a connected graph with node set V ,  where IVl 2 2. Then there is a claw 
decomposition of V in G. 

6.2 An Averaging Lemma 

Lemma 6.3 Let w be a node chosen in Step 6 and let C denote the total cost of the nodes added 
to the solution set S in this iteration. Let there be Q clusters before w is chosen and assume that in 
this iteration r clusters are merged. Then: C / r  5 OFT/q. 

Proof: Let T* be an optimal tree with the nodes V* be the upgraded nodes. Let C = CI, . . . , C, be the 
clusters when the node e, was chosen and let T*(w) be the graph obtained from T* by contracting each Cj 
to a supernode. T* (v )  is connected and contains all supernodes. We then remove edges (if necessary) from 
T* (w) so as to make it a spanning tree. Note that all the edges in this tree have original delay at least &/e. 

Let H C V* be the set of nodes in the optimal solution that are adjaant to another cluster in T* (w). 
Clearly, the cost of these nodes is no more than OFT. Take a claw decomposition of T* (e , )  . We now obtain 
a set of claws in the graph G itself in the following way: Initialize E' to be the empty set. For each claw in 
the decomposition with center Ci and fingers C;, . . . , Ci we do the following: For each edge (Ci , Cj) the 
optimal tree T* must have contained an edge (u, w) with u E Ci and w E Ci. Notice that since this edge 
was of original delay at least &/e, at least one of the vertices u and w must belong to H & V*. We add 

It is easy to see that the subgraph of G induced by the edges in E' consists of disjoint nontrivial claws. 
Also, all edges in the claws were of original delay at least &/e and the total number of nodes in the claws js 
at least q. We need one more useful observation: If a claw center is not contained in H, then all the fingers 
of the claw must be contained in H, since the edges in the claw were of original delay at least &/e. 

Let H, be the set of nodes from H acting as centers in the just generated claws. Let H;le denote 
the fingers of the claws contained in H which are connected to their claw center via an edge of delay 

&/e, whereas stands for the set of fingers adjacent to the center via an edge of delay &/e2 and also 
contained in H. For each claw with exactly two nodes we designate an arbitrary one of the nodes to be the 

center. Then by construction, H,, Hf61e and Hf6lQ2 are disjoint. Therefore, 

(u, w) to E'. 

For a node u E H,, let Nu denote the number of vertices in the claw centered at u. We have seen that if a 
center is not in H ,  then all the fingers belong to the optimal solution. Thus, we can estimate the total number 
of nodes in the claws from above by summing up the cardinalities of the claws with centers in H and for all 
other claws adding twice the number of fingers. Hence 

Nu + 21 H;le1 2 I { w : w belongs to some claw}/ 2 q, 
u€Hc 

since the total number of nodes in the claws is at least q. 

We now estimate the first sum in (1). If u E H,, then the quotient cost of u is ut most the cost of u plus 

the cost of the Sngers in the claw that are in Hf6lQ2 divided by the total number of nodk in the claw. This 
in turn is ut least C / r  by the choice of the algorithm in Step 6. By summing up over all those centers, this 
leads to 



NOW, for a node zL in H;/Q, its quotient cost is at most cost(zL)/2, which again is at least c / r .  n u s  

C 

r 
- cost(u) 2 2- = 

Using (3) and (4) in (1) yields 

This proves the claim. 0 

Theorem 6.4 Algorithm Heuristic-(Bottleneck, Node-cost, Spanning Tree) is a polynomial time 
(2 Inn, 1)-approximation algorithm for (Bottleneck, Node-cost, Spanning Tree). 

Proof: Let OPT denote the cost of an optimal upgrading set. Assume that the algorithm uses f iterations of 
the loop and denote by w1, . . . wf the vertices chosen in Step 6 of the algorithm. 

Let q5j denote the number of clusters @fer choosing vertex wj in this iteration. Thus, for instance, 
#O = q, the number of components at the beginning of this iteration in (S, F) . Let the number of clusters 
merged using vertex vi be rj and the total cost of the vertices added in that iteration be c j .  Then we have 

0 5 j 5 f. Thus, we obtain the recurrence 
#j = $j-1 - (r j  - 1). Since Tj  2 2, we have $j 5 4 j - 1  - irj. By Lemma 6.3: r j  2 'g&' for all 

2 om 2 - OPT 

Observe that #j  2 2 for j = 0, . . . , f - 1, since the algorithm does not stop before the f-th iteration. Notice 
also that q5f >_ 1. We now use an analysis technique due to Wighton and Rao [27] to complete the proof as 
in [21]. Using the recurrence (6), we obtain 

f 

j=1 

Taking natural logarithms on both sides and simplifying using the estimate In (1 + z) 5 z, we get 

(7) 

Notice that by Lemma 6.3 we have C j  5 OPT -& 5 OPT < 2 - OFT, and so the logarithms of all the 

terms in the product of (7) are well defined. Note also that #O 5 n and q5f = 1 and hence from (8) we get 

xi=l cj 5 2 - OPT In(n). Notice that the total cost of the nodes chosen by the algorithm is exactly the 

0 sum xizl cj. This completes the proof. 

7 Treewidth-Bounded Graphs 

In this section we will provide improved algorithms for the node upgrading problems under study if re- 
stricted to the class of treewidth-bounded graphs. Treewidth-bounded graphs were introduced by Robertson 
and Seymour (see [34,2] and &e references therein). Independently, Bern, Lawkr and Wong 141 introduced 
the notion of decomposable graphs. Later, it was shown [23 that the class of decomposable graphs and the 
class of treewidth-bounded graphs coincide. A class of treewidth-bounded graphs can be specified using a 
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finite number of primitiye graphs and a finite collection of binary composition rules. We use this character- 
ization for proving our results. A class of treewidth-bounded graphs r is defined in [4]. For completeness 
the definition is also given & the appendix. Let I? be any class of decomposable graphs. Let the maximum 
number of terminals associated with any graph G in I? be k. Following [4], it is assumed that a given graph 
G is accompanied by a parse tree specifying how G is constructed using the rules and that the size of the 
parse tree is linear in the number of nodes. Moreover, we may assume without loss of generality that the 
parse tree is a binary tree. The first main result of this section is the following theorem which states the ex- 
istence of pseudopolynomial-time algorithms for the node weighted network improvement problems given 
in the Table 1, when restricted to the class of treewidth-bounded graphs. Note that the theorem is symmetric 
in that we could interchange the budget and objective values, 

Theorem 7.1 Every problem in Table 1 can be solved exactly in O((n + B)"(l))-tirne for any class 
of treewidth bounded graphs with no more than k terminals, for fixed k and a budget B on the first 
objective. 

Proof: Bottleneck Problem: Suppose that the maximum cost of nodes that can be upgraded is B. Let a be 
a partition of the terminals of G. We keep the following information along with each partition a of terminals 

ofGandeach0 5 i 5 B: 
Cost7 := Minimum bottleneck cost of a tree for each block of a) such that the terminal nodes oc- 

curring in each tree are exactly the members of the corresponding block of a, no pair of 

trees is connected, every vertex in G appears in exuctly one tree, and the cost of nodes 

updated in the tree is exactly i .  
For the above defined cost, if there is no forest satisfying the required conditions the value of Cost is 

defined to be +oo. 
Note that the number of cost values associated with any graph in I' is O(kkB). We now show how the 

cost values can be computed in a bottom-up manner given the parse tree for G. To begin with, since r is 
fixed, the number of primitive graphs is finite. For a primitive graph, each cost value can be computed in 
constant time, since the number of forests to be examined is fixed. Now consider computing the cost values 
for a graph G constructed from subgraphs GI and G2, where the cost values for G1 and G2 have already 
been computed. Notice that any forest realizing a particular cost value for G decomposes into two forests, 
one for G1 and one for G2 with some cost values. Since we have maintained the best cost values for all 
possibilities for GI and G2, we can reconstruct for each partition of the terminals of G the forest that has 
minimum cost value among all the forests for this partition obeying the diameter constraints. We can do this 

in time independent of the sizes of G1 and G2 because they interact only at the terminals to form G, and we 
have maintained all relevant information. 

Hence we can generate all possible cost values for G by considering combinations of all relevant pairs 
ofcostvaluesforG1 andG2. Thistakes timeO(k4) percombinationforatotaltimeofO(bkB2). Asin [4], 

we assume that the size of the given parse tree for G is O(n). Thus the dynamic programming algorithm 
takes time 6( kknnB2). This completes the proof of the bottleneck problem. 

The case of total cost spanning tree is similar to the bottleneck spanning tree and is omitted. The only 
difference is that we need to keep track of the total cost of the spanning tree instead of bottleneck cost. In 
case of the diameter problem, we need to keep more information about each subtrees. Specifically, we need 
to keep information about the distance of each node from every other node in the tree in a particular partition 
as well certain other distances. We omit the discussion due to lack of space. 

The pseudopolynomial-time algorithms described in the previous section can be used to design fully 
polynomial-time approximation schemes (FPAS) for these problems for the class of treewidth-bounded 
graphs. We describe this in the Appendix. 

8 Fast Approximation Algorithms for Edge-Improvemept Problems 

In this section we are going to present a fast approximation algorithm for the (Edge-cost, Total-weight, 
Spanning Tree) problem. This algorithms improves on the results in [25] in terms of performance and 

8 



running time. Recall that in the (Edge-cost, Total-weight, Spanning Tree) problem, the task is to find 
an edge-improvement strategy r of cost at most B such that MSTG(~  - r) is as small as possible. In E251 
(Edge-cost, Total-weight, Spanning Tree) has been shown NP-hard. 

8.1 The Basic Ideas for an Improved Improvement Algorithm 

Let 7 > 0 be an accuracy parameter. Define an interval by Z := [v mintmii,(e), maxt(e)]. 

Note that if MSTG(t - r*) denotes the total weight of a minimum spanning tree after an optimal reduction 
r* then $ MSTG (C - r*) E Z. For each K E Z we define compoupul weights h~ for the edges of G in the 
following way: 

e E E  e E E  

Thus, for each edge e,  the compound weight hK(e) viewed as a function of K is a linear function with 
exactly one breakpoint at B/c(e) .  For K 5 B/c(e) ,  the function has the constant value l?(e), while for 

K 2 B/c(e)  it has slope (t(e)-emin(e))c(e) B . If we plot the compound weight hK(e) for each edge e E E, 
for increasing K we get a linear function with exactly one breakpoint at B/c(e) .  It is easy to see that, given 
two edges e and e', their ordering with respect to the compound weights hK changes at most twice when K 
varies. Also, these at most two values of K, can be computed in constant time. 
The proofs of the following two lemmas can be found in the appendix. 

Lemma 8.1 if MSTG(~K,) 5 (l+y)K' for some K' > 0, then M S T G ( ~ K )  5 (l+y)K for all K 2 K'. 
Let K* be the minimum value K E Z such that MSTG(hK) 5 (1 + y)K. Then K* 5 OPT/y. 

Lemma 8.2 If the ordering of the edges with respect to their hK*-weights is known, we can con- 
struct a tree T and a reduction 9- in time O(n + m log p(m, n)) with the following properties: 

(i) The cost CeEE c(e)r(e) of the reduction r is at most (1 + y)B. 

(ii) The weight (e - r)(T) in the modified graph is no more than (1 + l/y)OPT. 
Lemma 8.2 suggests finding an ordering of the edges in the graph zlccording to their compound weight 

at I<*. Basically we wish to sort the set (hK* ( e l ) ,  . . . , hK* (e,)} where K* is not known. However, for 
any K we can decide whether K* 5 K or K* > K by one MST computation: We compute an MST with 
respect to edge weights given by hK and compare its weight to (1 + y)K. If the weight is bounded fi-om 
above by (1 + y ) K ,  then we know that K 5 K*. Otherwise, we can conclude that K* > K. 

Using the idea from above in Conjunction with a standard sequential sorting algorithm, we could find 
the ordering of the edges at K* by O(m log m) minimum spanning tree computations. However, using the 
elegant technique of Megiddo 1303, we can speed up the algorithm substantially, 

8.2 Speeding Up the Algorithm 

The crucial trick is to use an adaption of a sequentialized parallel sorting algorithm such as Cole's 
scheme [71. Recall that a comparison essentially consists of a MST computation, so comparisons are ex- 
pensive. Using the parallel sorting scheme, we basically accept a greater total number of comparisons, but 
we can use the parallelism to group the independent comparisons made in one stage of the parallel machine 
and then answer all of them together efficiently. 

Cole's algorithm uses m processors to sort an array of m elements in parallel time O(1og m). The 

algorithm is simulated serially, employing one "processor" at a time, according to some fixed permutation, 
letting each perform one step in each cycle. When two values hK* ( e )  and h@ (e') have to be compared, 
we compute the critical values where the ordering changes. The crucial observation is that the intersection 
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points can be computed independently, meaning that each of the “ p r ~ s o r s ”  does not need any knowledge 
about the critical points computed by the other ones. 

After the first of the O(Iog m) stages, we are given at most 2m critical values of K, say K1 5 K2 5 
- - 5 Kr with r 5 2P. For convenience set KO := --oo and Kr+l := +m. Using binary search, we find 
an interval [K;, K;+1], where K* must be contained. 

This is done in the following way: Start with low := --oo and high := +m. Then compute the median 
M := KL(.+~)/~J of the Kj in O(r) time. We then decide whether K* 5 M by computing a MST T with 
edge weights given by hM. If hM(T) 5 (1 + y)M, then we know that K* 5 M. Otherwise, K* > M. 
In the first case, we set high := M and remove all values Kj with Kj > M from our set of critical values. 
Similarly, in the second case we set low := M and remove the values smaller than the median M. Clearly, 
this can be done in O(r) time. Since M was the median of the Kj  the number of critical values decreases 
by a factor of one half. 

Then, the total time effort Zme(r) for the binary search satisfies the recurrence: 

nme(r) = Zme(r/2) + TMT + O(r) ,  

where TWT is the time needed for one MST computation. The solution of the recurrence is Zme(r) = 
O(r + TMsTlog r ) .  Since r E O(m), this shows that we obtain the interval [K;, K;+1] containing K* by 
O(1og m) MST computations plus an overhead of O(m) elementary operations. 

Notice that by construction the interval [K;,  Kj+1] does not contain any critical points in the interior. If 
K; = K;+l, then we know that K* = K; = Ki+l. This way we have determined K*. In this case we 
can compute the order of all edges with respect to h p  in O(m log m) time and stop the modified sorting 
algorithm. Lemma 8.2 then enables us to compute a reduction with the properties (i) and (ii) stated there. 

Otherwise, the interior of [K; , K;+l] is nonempty. We compute a minimum spanning tree T with respect 
to hKi and test whether hKi (T) 5 (l+y)K;. If this is the case, then K* 5 K;, which implies that K* = K; 

since we know that K* E [Ki, K;+1]. Again, the adopted sorting procedure can stop after having computed 
the ordering of all edges with respect to hK*. 

It remains the case that K; < K* 5 &+I. In this case it is easy to see that the ordering of the edges 
from the first round with respect to their h p  -weights coincides with the ordering with respect the weights 
given by hT, where T E (K; ,  &+I) is any interior point of the interval [Kj, K;+1]. 

Thus, at the end of the the first round, our algorithm has either found K* and thus the ordering of aZZ 
edges in the graph with respect to their h p  -weights, or we can answer the comparisons from the first round 
using the ordering of the edges with respect to h,. 

The above process is repeated O(1og m) times, once for each parallel step of the parallel sorting ma- 
chine. Since in each of the O(1og m) rounds we answer all comparisons of the parallel sorting scheme, 
upon termination we have found the ordering of the edges with respect to the hp-weights. We then use 
Lemma 8.2 to compute a reduction strategy r .  

The time needed for the algorithm above can be estimated as follows: There are O(1og m) cycles alto- 
gether. In each round we evaluate O(m) intersection points. Also, we need O(1og m) minimum spanning 
tree computations plus the overhead of O (m) .  his results in an overall time of O (m log m + TMST log2 m) , 
where TMST = S(n + m log p(m, n)) is the time needed for computing a minimum spanning tree. This 
gives us the following theorem: 

Theorem 8.3 For any fixed y > 0 the algorithm presented above is a (1 + l/y, 1 + 7)-approximation 
algorithm for (Edge-cost, Total-weight, Spanning Tree). The running time of the algorithm is 

0 
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Appendix 

A Proofs for the Edge Improvement 

A.l Proof of Lemma 8.1: 

The proof uses the following two results: 

Lemma A.1([25]) Define F on by F ( K )  := v. Then F is monotonically nonincreasing 

on Rp>o. 

CorollaryA.2 ( [W])  If MSTG(~KI) 5 (1 + y)K' for some K' > 0, then MSTG(~K) 5 (1 + 7)K for 
all K 2 K'. 

In view of Lemma A.l and Corollary A.2 it suffices to show that MSTG(~E) 5 (1 + K), where 

k = OPT/y. Let r* be an optimal feasible reduction and let T* be a minimum spanning tree in G with 
respect to the weight Eunction t - r*. Let OFT := (e - r*) (T*) be its total weight in the graph with the 
edge lengths resulting from the optimal reduction r*. 

For each edge e E T* we can estimate the weight hR ( e )  in the following way 

Summing up the inequalities iq (10) over all e E T*, we obtain: 

K 
~ E ( T * )  < OPT+ --B = OPT+I?T. 

B 
- 

We have seen that the weight of T* under hR is no more than OPT + I?. Consequently, the minimum 

spanning tree with respect to h~ has +weight at most OPT+ k = y k + k  = (1 ++y) .K. This completes 
the proof. 

A.2 Proof of Lemma 8.2: 

Given the ordering of the edges according to their weights, we can use the minimum spanning tree 
algorithm of Gabow et. al. [13] to compute a minimum spanning tree with respect to the hp-weights. 
without actually knowing these weights. The ordering suffices for this purpose. The algorithm given in [ 131 
runs in time O(n + m log /3(m, n)) 

Let T be a minimum spanning tree with respect to h p .  We define a reduction r on T in the following 
way: 

I 

if K* 2 B/c(e) ,  

{ O  l ( e )  - !,,(e) if K* < B/c (e ) .  
.(e) := 

By constmction of the reduction P it then follows that 

K* 

B 
hK* (T) = t ( e )  - r (e)  + --c(e)r(e) 2 (.e - r ) (T) .  

eET 

J 

Since hK* 5 (1 + y ) K *  and K* 5 OFT/y this yields: 

(t - r)(T) 5 (1 + Y)K* 5 (1 + y)OJ?"/7 = (1 + l/Y)OPT. 
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The cost CeET r (e)c( e) of the reduction r can be estimated as follows. We have that 

Dividing the last chain of inequalities by 
We have just shown that there is a reduction r on the particular tree T which involves a budget of at 

most (1 + y ) B  and which reduces the weight of T to at most (1 + l/y)OpT. In fact, if we knew K* we 
could construct the reduction 9- from above in time O(n) once we know the tree T. 

But by the assumption of the lemma, we only have knowledge only about the ordering of the edges and 
not about K* or h p .  Nevertheless, this is not grave. It is easy to see [251 that, given a tree and a budget, 
we can construct an optimal reduction on this tree for that budget in O(n) time by a Greedy-type algorithm 
that repeatedly reduces the length of the cheapest edge until the budget is exhausted. Thus, if we compute 
such a reduction r1 on our tree T with the budget set to (1 + y) B, the length of T under I! - Y' will be at 
most (e - r )  (2') , which we have shown to be bounded from above by (1 + l/+y)OPT. 

B Fully Polynomial-Time Approximation Schemes 

The basic technique underlying our algorithm for the diameter case is approximate binary search using 
rounding and scaling, a method similar to that used by Hassin [ 171 and Warbmn 1361. 

As in the previous subsection, let G be a treewidth-bounded graph. Let B be a bound on the cost of 
the nodes to be upgraded. Let E be an accuracy parameter. Without loss of generality we assume that 
is an integer. Let Alg(G, 4, cost, C) be a pseudopolynomial time algorithm for (Total-weight, Node-cost, 
Spanning Tree) on treewidth-bounded graphs, i.e. Alg(G, e, cost, C) outputs a tree of upgraded length no 
more than C and minimizes the cost of the upgrading set6. Let the running time of Alg be p (  n, C) for some 
polynomial p. For carrying out our approximate binary search we need a testing procedure Test which is 
shown in Figure 2. 

yields that CeET r(e)c(e)  5 (1 + y) B. 

Procedure Test(M): 
Input: G - treewidth bounded graph, C - bound on length of the upgraded tree, M - testing parameter, 
Alg - a pseudopolynomialtime algorithm for (Total-weight, Node-cost, Spanning Tree) on treewidth- 
bounded graphs, E - an accuracy parameter. 

1 

2 IfthereexistsaCin[O, 91 suchthatAlg(G, l~-J,COsfC)prOduceSaspanningtreewifh 

Output: HIGH/LOW. 

Let [&I denote the cost function obtained by setting the cost of edge e to L&l. 

total upgraded length at most C then output LOW otherwise output HIGH. 

Figure 2: Test Procedure. 

Claim B.1 summarizes the property of Procedure Test(A.4). Fially, Azgorithm FPAS-Upgrade shown 
in Figure 3, which uses Test, describes the overall strategy to compute near optimal solution. In the sequel 
we denote by OPT the optimal upgraded length of a mininum spanning tree T* after upgrading a vertex set 
of cost at most B. 

Claim B.l If OPT 5 M then Procedure Test(M) outputs LOW. If OPT > M ( 1 +  E )  then the result 
of Test(M) is HIGH. 

!Note that (Totabweight Nodecost, Spanning Tree) is symmetric to the problem (Nodecost, Total-weight, Spanning 
Tree). 

15 



. 

Algorithm FPAS-Upgrade 

Input: G - treewidth-bounded graph, B - bound on the node upgrading cost, Alg- a pseudopolynomial 
time algorithm for (Total-weight, Node-cost, Spanning Tree) on treewidth-bounded graphs, E - an 
accuracy parameter. 
1 

2 

3 
4 

5 Run Alg(G, I&], cost, C) for all C in [ 0 , 2 ( 9 ) ]  and among all the trees with total up- 

grading cost at most B the tree with the lowest total weight (in the upgraded network). 
Output: A spanning tree with total upgrading cost at most B and with total weight at most (1 + E )  times 
that of the optimally upgraded minimum spanning tree. 

Let Chi  be an upper bound on the total weight of an MST after upgrading a node set of cost no 
more than B. Let LB = 0 and UB = Chi. 

while UB 2 2LB do 

Let M = (LB + UB) /2 .  
if Test(M) returns HIGH then set LB = M else set UB = M(l + E ) .  

Hgure 3: Approximation scheme on treewidth-bounded graphs. 

Lemma B.2 Algorithm FPAS-Upgrade outputs a spanning tree with total node weight at most B 

and with total length in the upgraded network of at (1 + &)OFT. 

Proof: It follows easily from Claim B.l that the loop in Step 2 of Algorithm FPAS-Upgrade executes 
O(1ogChi) times beforeexiting with LB 5 OPT 5 UB < 2LB. 

Sin= 

we get that Step 5 of Algorithm FPAS-Upgrade dehitely outputs a spanning tree. Let T be the tree output. 
Then we have that the length C ( e )  of T in the upgraded network is given by 

Here T ~ ,  E {l,l/e, l/e2}, and reflects the way each edge has been upgraded in the heuristic and an 
optimal solution respectively. But since Step 5 of Algorithm FPAS-Upgrade outputs the spanning tree 
with minimum length we have that 

Therefore i 

This proves the claim, 

I3 

As mentioned before, similar theorems hold for the other problems in Table 1 and all these results extend 
-I directly to Steiner trees. 
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Figure 4 Reduction from Set Cover for the hardness of (Bottleneck, Node-cost, Spanning Tree). 

C Hardness Results 

C.l Hardness of Bottleneck %ee Upgrading Problems 

Theorem C.l (Bottleneck, Node-cost, Spanning Tree) is NP-hard for any fixed speedup factor 0 < 
e < 1 and bound S > 0 on the bottleneck delay of the tree even for bipartite graphs and even if 
cost(v) = 1 for all v E V .  

Proof: We show that Set Cover ([SPS] in [14]) reduces to (Bottleneck, Node-cost, Spanning Tree) 
in polynomial time. An instance of Set Cover consists of a set Q of ground elements {q l ,  . . . , qn}, a 
collection Q1, . . . , Qm of subsets of Q and an integer K. The question is whether one can pick at most K 
sets such that their union equals Q. 

Given an instance of Set Cover, we first construct the natural bipartite graph, one side of the partition 
for set nodes Qj, j = 1,. . . , m, and the other for element nodes qi, i = 1,. . . , n. We insert an edge 
{Qj, q;}  iff q; E Qj. We now add one more node R (the “root”) and connect R to all the set nodes. 

In the remainder of this proof, we do not distinguish between a node and the set or element that it 
represents. Note that the resulting graph is a bipartite (with R and the element nodes on one side and the set 
nodes on the other side). An example of the graph constructed is shown in Figure 4. 

For each edge of the form (R, Q i ) ,  the delay is 6, while each edge the form (ai, qj)  has delay b / e  (in 
Figure 4 each of the dotted lines has delay 6 and the solid lines have each delay &/e). We set the bound on 
the bottleneck delay parameter to S. 

We now claim that there is an upgrading set of size K resulting in a bottleneck spanning tree of bottle- 
neck delay at most 6 for the instance of (Bottleneck, Node-cost, Spanning Tree) just constructed if and 
only if the Set Cover instance has a cover of size at most K. 

Frrst assume that we can cover the elements in Q by at most K sets. Without loss of generality assume 
that the set cover consists of exactly K sets, which are Q1. . . , QK. We then upgrade the corresponding set 
nodes. Consider the resulting graph. For each element node qj there is now an edge of delay S connecting qj 

to some set node S(qj) from Q1, . . . , QK (If qj appears in two or more sets whose corresponding nodes are 
upgraded, then choose one such set node arbitrarily). Then the set { (r,  Qi)  : i = 1, . . . , m} u { (q j ,  S(qj)) : 

j = 1, , . . , n} is the edge set of a spanning tree of G, where none of the edges has weight more than 6. 

Now assume conversely that there is an upgrading set of size at most K for $e instance of (Bottleneck, 
Node-cost, Spanning Tree) constructed above. Let V‘ C V, lV’l 5 IC be a set of nodes that are upgraded 
and let T = (V, ET) be a spanning tree in the resulting graph of bottleneck cost at most 6. 
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We now transform the tree T into a tree 2'' of at most the same bottleneck cost such that each set node 
Q j  is adjacent to R in T'. To this end, do the following for each set node Q j ,  j = 1, . . . , m: If (R, Qj) E T, 
then continue with the next set node. Otherwise, since T is connected, there must be a path P from Q j to 

R in T. By the bipartiteness of G, the first two edges in this path are of the from ( Q j ,  qi) and (qj, Qy) for 
some element node q; and some other set node Qjt. Adding the edge (R, Qj) to T will induce a simple 
cycle in T containing the edges in P and (R, Qj) .  Thus if we remove (Qj, q;) from T the resulting graph 
will again be a spanning tree of G. 

Observe that the bottleneck cost of the tree does not increase during the procedure from above, since 
each edge (R, Q j )  inserted has already delay b in the original graph. 

Now, consider the set V' of upgraded nodes. If R E V', we can safely remove from V' without affecting 

the bottleneck cost of our spanning tree T'. For each element node 4i E V', we have at least one set node 
S(Q;) adjacent to q; in T'. We replace q; by S(q;) in V' and, continuing this, obtain a set V'' of at most K 
set nodes, which are upgraded. 

We will now argue that the set nodes from VN form a set cover. To this end, consider an arbitrary element 
node q; . If qi E V', Le. qi was one of the upgraded element nodes, then we have added some set node S (4;) 
to V' that is adjacent to q; in G. Thus, S(q;) E VI' contains q; and, consequently, q; is covered by the set 
in V". In the other case, q; # V'. The tree T' contains at least one edge (Qj ,  q;) of delay at most 6. But, 
since qj was not upgraded, the only possibility of ( Q j ,  qj) having delay 6 is that Q, had been upgraded, i.e. 
Q j E V'. Since we have not removed any set node from V' in the transition to V'', it follows that Qj E V" 

0 

Note that the reduction in the proof of Theorem C. 1 preserves approximations. Any set cover of size K 
becomes an upgrading set of size K and any upgradhg set of size K becomes a cover of size at most K. 
Combining this approximation preserving transformation with the nonapproximability results of Feige [ 1 11 
about the the optimization version of Set Cover we get the following theorem. 

and thus, again, q; is covered by the sets in VI'. 

Theorem C.2 Unless NP DTIME(nlog'og"), there can be no polynomial time approximation algo- 
rithm for (Bottleneck, Node-cost, Spanning Tree) with a performance of (a, p) for any fwed a < In n 

and p < l / ~ ,  where 0 < e < 1 is the speedup factor occuring in the instance. 

C.2 Hardness of Diameter Upgrading Problems 

Theorem C.3 (Node-cost, Diameter, Spanning Tree) is NP-hard even for bipartite graphs and even 
if cost(v) = 1 for all Y E V. 

Proof: Again, we use a reduction from Set Cover. Without loss of generality we will assume for the rest 
of the proof K < n and that there is no single set Qj covering all the elements. 

Given any instance of Set Cover, we first construct the natural bipartite graph. We also add the "roof' 
R and make it adjacent to all the set nodes. Now we add "enforcer" nodes f; , one for each element node qi, 

where fj is adjacent exactly to qi in the graph. An example of the graph constructed can be seen in Figure 5. 
The edges incident with R have delay 1, all the other edges have delay equal to 8. We now set 6 := 13 and 
the number of nodes to be upgraded to K + n, where n is the number of elements. 

Assume that there is a set cover of size at most K. Then we upgrade the corresponding set nodes and, 
moreover, upgrade also aZZ element nodes. The result is a feasible upgrading set. Since we have upgraded 
all the element nodes and the nodes corresponding to a set cover, for each element node q; we have an edge 
(qi , S (qi) ) in the resulting graph of delay equal to 2. We let the tree T consist of all these edges (qi , S (q j )  ) 
plustheedgesfrom{(R,Qj) : j  = 1 ,..., m } U { ( q ; , f ; )  : i = 1 ,..., n}. It iseasytoseethatThasa 
diameter of at most 13. 

Now, suppose conversely that there is a feasible upgrade set V' in G resulting in a diameter spanning 
tree T of diameter at most 13. 

First, we claim that in this m e  for each element node q; either this node or the "enforcer node" f; must 
have been updated. Assume the contrary. In this case, each edge of the form (q;, Q )  E T has length at least 
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Figure 5: Reduction from Set Cover for the Hardness of (Node-cost, Diameter, Spanning Tree). 

4. Any path from fi to another enforcer node fj must contain at least two edges (qi ,  Q), (q j ,  Q) and the 
edges (qj,  f;) and (43, fj). It is thus of length at least 4 + 2 + 8 + 2 = 16 > 13, which is a contradiction. 

We have seen that V’ contains already at least n nodes from the set {qi, f; : 1 = 1, . . . , n}. Thus, 
V‘ can have at most K set nodes that are upgraded. Consequently, if for each element node q;, the tree T 
contains an edge (q;, S(4;)) of length 2, then the set nodes s(qj), i = 1, . . . , n are a set cover of size at most 
K. 

Now for i = 1, . . . , n we do the following. If T contains an edge (qi, Qj) of length 2, we continue with 
the next element node. Otherwise a l l  edges in T connecting q; to a set node have length at least 4. 

If qj has not been upgraded, we know that f; E V’. We remove f; from V’ and replace it by q;. Clearly, 
the diameter of T does not increase during this process. If q; has been upgraded, but fj has not been 
upgraded, then we also step to the next element node. In the last case, both fi and Q; belong to the set V‘. 
Then, none of the set nodes adjacent to qi in T has been upgraded. We pick an arbitrary set node Qj such 
that (Qj, 4;) E T and upgrade Qj, removing fi from V‘. We claim that the diameter of the tree T does not 
increase in this step. In fact, assume P were a path of length greater than 13 in the tree with the new edge 
weights. Then it follows that Qj is adjacent to at least two set nodes in T (see Hgure 6). 

Moreover, the last edge of P must be (q;, fj), since otherwise P would already have been a path of 
length at least 13 in T before the operation. Now, if we consider the path P’, where we replace (qi, f;) by 
(qi, Q’), we see that P‘ is a path of the same length as P but this time in the tree T before the operation. 
This contradicts that the diameter of T is no more than 13. 

Now consider the result of the process. After the iteration, all the element nodes belong to V’. Either 
now each element is connected to a set node via an edge of length at most 2 in T, in which case we have 
found a set cover. Otherwise, there is an element node q for which still each edge connecting it to a set node 
is of delay 4 (The edges c8n not have delay 8, since q; E V‘). We now prove that this m e  can not happen, 
which then will complete the proof. 

Assume that there is an element node Q such that any edge connecting it”to a set node in the tree T 
(which is of diameter at most 13 as we recall), has length 4. 
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Rgure 6: The diameter of T does not increase. 

f q~ 4 

Q 

4 

Figure 7: Flrst case in the proof of Theorem C.3. 

Choose an arbitrary element node q' # q. In the fist case (see Figure 7), there is a set node Q adjacent to 

both q and q' in T. The length of the (unique) path in T from f to f' is then at least 4+4+4+2 = 14 > 13, 

contradicting the assumption that T is of diameter at most 13. 

In the second case, no set node is adjacent to both both q and q' in T. The path from f to f' in T then 
consists of the edge (f, q) an edge (q, Q) (of length 4), a path P from Q to another set node Q', and the 

edges (Q', 4') and (q', f') (see Figure 8). Since Q is not upgraded (otherwise the edge (Q, q) would have 

..-. . . ... . . . .  . ... . . . : . 

Q C L  "+ Q' 

4 E C2,41 

' 9' 
Q 
" 

4 E C T 4 1  

f e  f '  

d 

Figure 8: Second case in the proof of Theorem C.3. 
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length 2), the length of the path P is at least 1 + $ = (a shortest path in the graph G after the update 
always consists of the edges (Q, R) and (R, Q')). Summing up, we obtain that the distance between f and 

0 f' in T is at least4 + 4 + $-+ 2 + 2 = > 13. TMS completes the proof. 
@om the results from Theorem C.3 we can immediately conclude: 

Theorem C.4 Unless P = NP, for any fixed E > 0 there can be no polynomial time approximation 
algorithm for (Node-cost, Diameter, Spanning Tree) with a performance guarantee of (1, 

C.3 Hardness Results for Treewidth Bounded Graphs 

We h t  recall the definition of the Partition problem [14]. As an instance of the Partition problem we 
are given a multiset of (not necessarily distinct) positive integers { a1 , . . . , a,} and the question is whether 
there exists a subset I ai denotes the sum of all 
elements in A. Partition is well known to be NP-complete (cf. [14]). 

- E ) .  

(1, . . . , n} such that CiEI ai = S/2, where S := 

Theorem C.5 (Node-cost, Diameter, Spanning Tree) and (Node-cost, Total-weight, Spanning Tree) 
are NP-hard even when restricted to simple trees with maximum node degree no more than 2. 

Proof: We use a reduction from the Partition problem. Given an instance of Partition, we construct a 
tree with G with 3n vertices, x;, y; and z;, i = 1,. . . , n. and 3n - 1 edges. The edges in the tree are 
(zj, y;), (y;, z;), (zj, %;+I) for 1 5 i 5 n (excluding the edge (z,, %,+I)). We now specify the necessary 
parameters. The upgrade factor is any number 0 < e < 1. The weights on the nodes yj is ai, while the 
nodes x; and z; have all weight S := Cy=l a;. The cost of the edges (q, yi) and (y;, 2;) is is a;/2. AU 
edges (zi, xc;+1) have cost E. The simple tree constructed this way is shown in Figure 9. 

Figure 9: Chain used in the hardness proof on trees. 

Now we claim that G has a spanning tree with diamater (total cost) no more than $( 1 + e) + (n  - 1 ) ~  
under the constraint that the total cost of the nodes in the improvement set is not more than S/2, if and only 

if A can be partitioned into two sets of equal weight. Observe that the diameter and total cost of the original 
tree equal cy=l a; + (n  - l)& = s + ( n  - 1 ) E  

In fact, if I is an index set such that CifI a; = S/2, we the vertices yi with i E I form an upgrading 
set of cost S/2. Upgrading these vertices will decrease the length of the corresponding edges (zi, yi) and 
(yi, z;) to ea& Thus, after upgrading the vertices yi with i E I, this will result in a diameter (total cost) 

0 f ~ ; g I  a; + e c i G I  ai+ = s/2 + es/2 + (n - 1 ) ~  = $(I + e) + (n  - 1)~. 
Conversely, if we have an upgradiig set of cost at most S/2, this set can contain only vertices yi by the 

choice of the weights on the nodes 2; and z;. Let I be the set of indices such that yj belongs to the upgrading 
set. Again, upgrading avertex y; with i E I decreases the weight of the edges (xi, yj) and (yi, zi) to za;/2. 

Thus, after upgrading the vertices yi the tree has diameter (total cost) CigI a; + e CifI a; + ( n  - 1 ) ~  = 

S + (e - 1) CiEI a; + (n - 1)~. which is at most $ (1 + e) + (n - 1 ) ~  by assumption. Simple algebranow 
shows that CiEl aj 2 S/2. Since the total cost of the vertices y; with i E I is exactly CiEI a; which is at 
most S/2, this shows that ciEI a; = S/2. 0 
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