
3

B

' LA-UR

Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36

TITLE: ON OPTIMAL STRATEGIES FOR UPGRADING NETWORKS

AUTHOR(S): S . 0. Krumke, H. Noltemeier, M. V. Marathe, S . S . Ravi, R. Ravi,
R. Sundaram

SUBMllTED TO: Symposium on Discrete Algorithms(S0DA)
January, 1997
New Orleans, LA

By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive royalty-free license to publish or reproduce

the published form of this contribution or to allow others to do so, for U.S. Government purposes.

The Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.

Los Alamos National Laboratory
0 A 0 8 0 Los Alamos New Mexico 87545

DISCLAIMER

This repon was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employets, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recorn-
mendation, or favoring by the United States Government or any agency thereof.
I h e views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

On Optimal Strategies for Upgrading Networks

(Extended Abstract)

S. 0. Krumke H. Noltemeier M. V. Marathe S. S. Ravi R. Ravi R. Sundaram

July2, 1996

Abstract

We study budget constrained optimal network upgrading problems. Such problems aim at finding
optimal strategies for improving a network undea some cost measure subject to certain budget constraints.
Given a edge weighted graph G(V , E), in the edge bused upgrading model, it is assumed that each edge
e of the given network has an associated function c(e) that specifies the cost of upgrading the edge by a
given amount. A reduction strategy specifies for each edge e the amount by which the length t (e) is to
be reduced. In the node based upgrading model a node v can be upgraded at an srpense of cost (v) . Such
an upgradereduces thecost of each edge incident on er by a fixed factor e. where 0 < e < 1. For a given
budget B, the goal is to find an improvement strategy such that the total cost of reduction is at most the
given budget B and the cost of a subgraph (e.g. minimum spanning tree) under the modified edge lengths
is the best over all possible strategies which obey the budget constraint. M e an (a, p)-approXimation
algorithm as a polynomial-time algorithm that produces a solution within CY times the optimal function
value, violating the budget constraint by a factor of at most p.

The results obtained in this abstract include the following.

1. We show that in general the problem of computing optimal reduction strategy for modifying the net-
work as above is NP-hard.

2. In the node based model, we show how to devise a near optimal strategy for improving the bottleneck
spanning tree. The algorithms has a performance guarantee of (2 In n, 1).

3. For the edge based improvement problems we present improved (in terms of performance and time)
approximation algorithms.

4. We also present pseudo-polynomial time algorithms (extendable to polynomial time approximation
schemes) for a number of edgdnode based improvement problems when restricted to the class of
treewidth-hded graphs.

Department of Computer Science, University of Wiirzburg, Am Hubland, 97074 Wiirzburg, Germany. Email:

2Los Alamos National Laboratory, P.O. Box 1663, MS K990, Los Alamos. NM 87545, USA. Email:

Department of Computer Science, University at Albany - SUNY, Albany, NY 12222, USA. Fyail: raviacs . albany . edu.

Delta Trading Co. Work done while at MlT, Cambridge MA 02139. Email: koods@theory . ICs .mi t . edu. Research

1

{krumke,noltemei)@informatik.uni-wuerzburg.de.

madhamc3. lanl . gov. The work is supported by the Department of Energy under Contract W-7405-ENG-36.
3

4GSL4, Came& Mellon University, Pittsburgh, PA 15213. Email: ravi+@cmu. edu.
5

supported by DARPA contractNOO14-924-1799 andNSF CCR 92-12184.

mailto:krumke,noltemei)@informatik.uni-wuerzburg.de

1 Introduction

Several problems arising in arm such as communication networks and VLSI design can be expressed
in the following general form: Enhance the pe~€ormance of an underlying network by carrying out upgrades
at certain nodes and/or edges of the network [32,31,25].

Consider the following scenario which best illustrates the type of problems we investigate. A large com-
munication company is approached by a client with the requirement to interconnect a set of cities housing
the client's offices (e.g. banks with high transaction rates between branches). The company has a list of
feasible links that it can use to construct a network to connect these cities. Each link has a construction cost
associated with it. One of the main concerns of the client is to build a communication network of minimum
cost. This is the ubiquitous minimum spanning tree problem. With the advent of optical communication
technology, the client would like to upgrade the communication network and has allocated a k e d budget to

do so. In communication networks, upgrading a node corresponds to installing faster Communication quip-
ment at that node. Such an upgrade reduces the communication delay along each edge emanating from the
node. Similarly upgrading an edge can be achieved by replacing the old line with a new o p t i d cable. In
general, there is a cost for improving each link (node) in the existing network by a unit amount. The goal is
to design a stratem to upgrade the links of the network so that the total mt of upgrading the links (nodes)
is no more than the fixed budget, and the cost of a minimum spanning tree for the upgraded network is the

least over all the possible improvements of the network satisfying the budget constraint.
Although substantial work has been done in Sndng optimal networks (e.g. spanning trees) in graphs,

there has been little work on how to modify a graph so as to optimize the cost of the network in the re-
sulting graph. In this paper, we formulate and study such network upgrade problems and call them budget

constrained optimal network upgrading problems.

The paper is organized as follows. Section 2 introduces the node and edge based upgrading models.
In Section 3 we formally define the problems under study. Section 4 briefly summarizes our results. In
Section 5 we briefly justify our claims that our formulation is indeed general and robust. In Section 6 we
present our approximation algorithm for the bottleneck node upgrading problem on general graphs and es-
tablish its performance guarantee. In Section 7 give pseudo-polynomial time algorithms for node upgrading
problems. It is shown in Appendix B how these algorithms can be converted into fully polynomial approx-
imation schemes. In Section 8 we treat the edge upgrading problem under study. Appendix C contains the
hardness results.

2 Node versus Edge Based Models for Network Upgrade

Throughout the presentation we assume that G = (V, E) is a connected undirected graph. Let d be a
nonnegative edge-weight function defined on G. For a spanning tree T = (V, ET) of G, we the bottleneck-
delay of T under d is defined to be the weight of the heaviest edge in T . The total weight of T under the

cost function d is the sum of the weights d(e) of the edges e E T . Finally, the diameter of T (with respect to

d) is the length of a longest simple path in 2'. We now describe our node based and the edge based upgrade
model.

In the node based upgrading model we are given the following situation: With each edge e E E from
the graph G, the nonnegative number l (e) represents the Zength or delay of the link e. When a node e, is
upgraded, the delay of each edge incident on Y decreases by a fixed factor e, where 0 < < 1. Thus, if
e = (v, u) is an edge, its delay after upgrading exactly one of 'u and u is @(e); the delay of e falls to e21(e),

if both w and u are upgraded. The cost of upgrading a node Y is denoted by cost(v). For a subset V' of V,
the cost of up&ading all the nodes in V', denoted by cost(V'), is equal to CYEV, cost(v).

In the edge based upgrading model, with each edge e E E, there are associated three nonnegative values
as follows: (e) denotes the length of the edge e and emin (e) denotes the minimum length to which the edge e
can be reduced. Consequently, we assume throughout the presentation that &in@) 5 4?(e). The nonnegative
value c(e) indicates how expensive it is to reduce the length of e by a certain amount: shortening e by t units
will involve a cost of tc(e).

1

Given a budget B, we define a feasible reduction to be a nonnegative function r defined on E with the
following properties: For all edges e E E, t (e) - r(e) 2 &,;,(e) and C e E ~ c(e) . r (e) 5 B. If r is a
(feasible) reduction, in G we can consider the graph G with edge weights given by the “reduced lengths”,
namely (e - r) (e) := l (e) - .(e) (e E E). We denote the total weight of a minimum total length spanning
tree with respect to the weight function .t by MSTG (e). Similarly, if r is a reduction in G then MSTG(L - r)

denotes the weight of a MST with respect to the reduced lengths t (e) - r (e) (e f E).

3 Problem Formulations and Notion of Approximation

We are now ready to define the problems studied in this paper. Our formulation of these problems is
based on the work of [29]. A generic noddedge based network upgrade problem (f1, f2, S) , is defined by
identifying two minimization objectives , - fi and f2, - from a set of possible objectives, and specifying
a membership requirement in a class of subgraphs, - S. The problem specifies a budget value on the first
objective, f1, under one cost function, and seeks to find a network having minimum possible value for the
second objective, fi, under another cost function, such that this network is within the budget on the first
objective. The solution network must belong to the subgraph-class S.

For example, the node based upgrading problems studied here can be formulated as follows. Given a
node and edge weighted graph G as above, a speedup factor 0 < e < 1 and a bound B, (Node-cost,
Bottleneck, Spanning Tree) is to upgrade a set V‘ V of nodes of cost cost(V’) at most B such that the
bottleneck delay of a bottleneck spanning tree in the resulting graph is minimized. The problems (Node-
cost, Total-weight, Spanning Tree) and (Node-cost, Diameter, Spanning Tree) are defined similarly.
Similarly, the edge based upgrading problem can be stated as: The (Edge-cost, Total-weight, Spanning
Tree)is to find an (edge-) reduction r of cost at most B such that MSTG (l - r) has the least possiblevalue.

We argue in Section 5 that this approach for modeling network upgrade problems is both general as
well as robust. Next, we now discuss what we mean by finding appmximation algorithms for such upgrade
problems.

Definition 3.1 We say that a polynomial-time algorithm is an (a, p) -approxh?afion algorifhm for one
of the problems (fi, f2, S) defined above, if for each instance of the problem, it produces asolution
in which the first objective (fi) value, is at most Q times the budget, and the second objective (fi)
value, is at most p times the minimum for any solution that is within the budget on fl. The solution

produced must belong to the subgraph-class S.

For example, an (a, p)-approximation algorithm for (Edge-cost, Total-weight, Spanning Tree) finds

a reduction r of cost at most p times the budget B such that f ~ ! ~ ~ ~ ~) l 5 a, where r* denotes an optimal

edge-reduction on G of cost at most B.

4 Summary of Results

For the first time, we study the complexity and approximability of a number of node weighted and edge
weighted upgrade network improvement problems. We consider three objectives to evaluate the cost of
the spanning tree in the modified network: the bottleneck delay, the diameter and the total cost. We show
that the problems are hard even for very restricted classes of graphs. The hardness results contrast with
the results in C25l about the complexity of edge based upgrading probZem. For instance, while (Edge-
cost, Total-weight, Spanning Tree) is polynomial time solvable on trees [25], we show that (Node-cost,
Total-weight, Spanning Tree) and (Node-cost, Diameter, Spanning Tree) are NP-hard even on achain.
Given the hardness of finding optimal solutions, we focus on devising approximation algorithms with good
performance guarantees.

1. We believe that the discussion in the previous section provides a sound formulation for studying
network improvement problems. Following [29], we can show that the formalism is both robust
and general. It is more general because it subsumes the case where one wishes to minimize some

2

Cost Measures Bottleneck Diameter Total Cost

(1 9 1 + 4
Node-Cost polynomial-time (weakly NP-hard) (weakly NP-hard)

(1 9 1 + 4

Table 1: Results for node based spanning tree upgrade problems restricted to treewidth-bounded graphs.
The row is indexed by the budgeted objective. As mentioned all the results directly extend to finding Steiner
trees instead of spanning trees. Similar results also hold for edge based problems.

functional combination of the two criteria. It is more robust because the quality of approximation is
independent of which of the two criteria we impose the budget on. Section 5 provides justification for
these claims.

2. For the edge based improvement problems we present improved (in tenns of performance and time)
approximation algorithms. The algorithms are based on an elegant technique introduced by Megiddo
[30] and can be extended to obtain approximation algorithms for more general network design prob-
lems such as those considered in 115,161. This includes problems such as generalized Steiner trees,
k-connected subgraphs, etc.

3. We show that the bottleneck upgrading problem (Bottleneck, Node-cmt, Spanning Tree) is NP-
hard for any fixed 0 < Q < 1 even when there are unit costs on the nodes, Le. cost(o) = 1 for a l l

v E V and even for bipartite graphs.

We provide a polynomial time approximation algorithm for (Bottleneck, Node-cost, Spanning
Tree) with a performance guarantee of (2 In n, 1). We counterbalance this approximation result with
the following lower bound result: Unless NP 5 DTIME(nloglogn), there can be no polynomial
time approximation algorithm for (Node-cost, Bottleneck, Spanning Tree) with a performance
guarantee of (a, p) for any Q < In n and j3 < l/e, where 0 < e < 1 is the speedup factor given in
the instance.

Our results constitute the first approximation algorithms for node weighted network improvement
problems in the literature. The technique for establishing the logarithmic performance is of indepen-
dent interest and might be useful in obtaining bounds for other node based improvement problems.

4. For the class of treewidth-bounded graphs we give algorithms with improved time bounds and per-
formance guarantees for each of the three performance measures of a tree mentioned above. This is

done in two steps. First we develop pseudopolynomial-time algorithms based on dynamic program-
ming. We then present a general method for deriving fully polynomial-time approximation schemes
(BAS) from the pseudopolynomial-time algorithms. The results for treewidth-bounded graphs are
summarized in Table 1.

The FPAS for a number of node/edge based network improvement problems restricted treewidth-
bounded graphs are based on fairly general techniques. Our research in this direction is motivated
by the fact that communication networks encountered in practice usually have a small treewidth (e.g.
rings, trees, near-trees, series parallel graphs, outerplanar graphs, etc).

4.1 Related Work

To the best of our knowledge, the problems considered in this paper have not been previously studied.
The node upgrading model used in this paper was introduced in a recent paper by Paik and Sahni 1311,
although they considered different problems than the ones considered here. Frederickson and Solis-Oba
[12] considered the problem of increasing the weight of the minimum spannix@ tree in a graph subject to

a budget constraint where the cost functions are assumed to be linear in the weight increase. In contrast to
the work presented here, they showed that the problem is solvable in strongly polynomial time. Berman 131

3

considers the problem of upgrading edges in a given tree to minimize its shortest path tree weight and shows
that the problem can be solved in polynomial time by a greedy algorithm. Phillips C321 studies the problem
of finding an optimal strate& for reducing the capacity of the network so that the residual capacity in the

modified network is minimized. Reference [25] considers network improvement problems under a different
model where there are cost functions associated with improving edge weights.

Finally, some important questions remain unsolved. these include approximation algorithms for the
node based minimum total cost spanning trees, minimum diameter spanning trees, etc.

5 Formulation: General and Robust

In Section 3, we claimed that our formulation for bicriteria problems is robust and general. In this
section, we justify these claims.

We claimed that our formulation is robust because the quality of approximation is independent of which
of the two criteria we impose the budget on. To see this note that there are two naaual ways to formulate
a bicriteria problem: (i) (f1, f2, S)- find a subgraph in S whose fl-objective value is at most B and which
has minimum f2-objective value, (ii) (f2, f1, S)- find a subgraph in S whose f2-objective value is at most
B and which has minimum fl-objective value. Using ideas similar to the ones in [29], we can show that

Theorem 5.1 Any (a, p)-approximation algorithm for (fl, f2, S) can be transformed in polynomial
time into a (p, a)-approximation algorithm for (f2, f1, S).

Thus our approximation results for (f~ , f2, S) problems in the following sections will also yield approx-
imation algorithms for the symmetric problem (f2, f1, S) .

For justifying our claims of generality, let f1 and f2 be two objective functions and let us say that we
wish to minimize the sum of the two objectives f1 and f2. Call this an (f1 +f2, S) problem. Let BiAlg (G, B)
be any (a, p) -approximation algorithm for (f1, fi , S) on graph G with budget B specified for the objective
f1. Using a binary search on the range of values of f1 with an application of the given approximation
algorithm, BiAlg, at each step of this search we obtain the following theorem.

Theorem 5.2 Let BiAlg(G, B) be any (a, p)-approximation algorithm for (fl, f2, S) on graph G with
budget B under A. Then, there is a polynomial time max{a, p}-approximation algorithm for the

(f1 + f 2 , S) problem.

A similar argument shows that an (a, @)-approximation algorithm BiAlg(G, B) , for a (fi, fi, S) prob-
lem can be used to find devise a polynomial time a @ approximation algorithm for the (f1- f., S) problem.
A similar argument can also be given for other basic functional combinations.

The above discussion points out that a good solution to the (f ~ , f2, S)-network upgrade problem yields
a "good" solution to any unicriterion version (the converse is not necessarily true). It is in this sense that we
say our formulation of network upgrade network design problems is general and subsumes other functional
combinations.

6 Approximation Algorithm for (Bottleneck, Node-cost, Spanning Tree)

In this section, we present our approximation algorithm for (Bottleneck, Node-cost, Spanning Tree).
Recall that in the (Bottleneck, Node-cost, Spanning Tree) problem we are given a bound 6 on the
bottleneck-delay of a tree and the goal is to upgrade a set V' of the vertices of minimum cost such that
the upgraded graph contains a bottleneck spanning tree of delay at most 6.

6.1 Overview

We can assume without loss of generality that all the delays on the edges of the given network are taken
from the three element set {6/e2, 6/e, 6) . If the delay of an edge is greater than6/e2, then vertex upgradiing
cannot reduce its delay value to 6. Thus, in the sequel we will assume that the delay of each edge is one of
the three above values.

4

10

Heuristic-(Bottleneck, Node-cost, Spanning Tree)

Let G' := bottleneck(G, l?, 6) and let Cl , . . . , Cr be the connected components of G'.

Initialize S to empty and F to the set of edges in G'.

Repeat while we have more than one component

Let C = {Cl . . . , C,} be the set of clusters, where q = IC I is number of remaining components
F i d a node w E V in the graph G minimizing the ratio

cost(v) + c;=1 c(o, Cj)
min min

2 9 5 9 {GI ,... ,C,t}CC r'

Here, the cost c(w, Cj) is defined in the following way: If w E Cj or w is adjacent to a node k
Cj via an edge of delay s/e, then c(w, Cj) := 0. If all the edges from v to Cj are of delay S/e2
then c(o, Cj) is defined to be the minimum cost of a vertex in Cj adjacent to w. If there is nc
edge between w and any node in Cj, then c(w, Cj) := +m.

Let be the node and Cl , . . . , C,. be the components in C chosen in Step 6 above, where w.1.o.g

Lete:!, . . . , e , beasetofedgesinGconn~~gwtoC2, ... ,C,respeCtively.
Add the edges e 2 , . . . , e,. to F so as to merge C1, C 2 , . . . , Cr into one component.. Add TI anc
the other endpoint of each edge from { e2, . . . , e,.} whose delay is S/e2 to S.

Note that the total cost of the nodes added to the solution S is exactly f(w).

2) E c,. Let f (w) = cost(v) + c(w, Cj).

Output S as the solution.

figure 1: The approximation algorithm for (Bottleneck, Node-cost, Spanning Tree).

We first give a brief overview of our algorithm. The algorithm maintains a set S of nodes, a set F of
edges and a set C of clusters which partition the vertex set V of the given graph G. The set C of clusters
is initialized to be the set of connected components of the bottleneck graph bottlene&(G, l?, S), which is
defined to be the edge-subgraph of G containing only those edges e which have a delay 4(e) of at most S.
The set S of upgrading nodes is initially empty.

The algorithm iteratively merges clusters until only one cluster remains. To this end, in each iteration it
determines a node o of minimum quotient cost.

The algorithm Heuristic-(bttleneck, Node-cost, Spanning Tree) is shown in Figure 1. Step 6 can

be implemented in polynomial time by using ideas similar to those in [211. We omit the details due to lack

It is easy to see that the set S output by algorithm Heuristic-(Bottleneck, Node-cost, Spanning Tree)
is indeed a valid upgrading set, since all the edges added to F in Step 9 will be of delay at most 6 after
upgrading the nodes in S. In the sequel, we use V* to denote an optimal upgrading set; i.e. an upgrading set
of minimal cost OPT := cost(V*). We now proceed to prove the performance guarantee provided by the
algorithm. Our proof (of Theorem 6.4) relies on several lemmas, which are presented below. We estimate
the cost of the nodes added by the heuristic in each iteration by first establishing an averaging lemma and
then using a potential function argument.. The notion of a cZaw decomposition which is introduced below
will be a crucial tool in the analysis.

of space.

Definition 6.1 A claw is either a single node or a K1,, graph for some r 2 1. If there are at most
two nodes in the claw then we can choose any of the nodes as its center. Otherwise, the node
with degree greater than 1 is the unique center. The vertices in the claw different from the center
are said to be the fingers of the claw. A claw with at least two nodes is cdled a non-trivhl claw.

Let G be a graph with node set V . A claw decomposition of V in G is a collection of node-
disjoint nontrivial claws, which are all subgraphs of G and whose vertices form a partition of V.

5

The following theorem can be proven by induction on the number IVl of nodes.

Theorem 6.2 Let G be a connected graph with node set V , where IVl 2 2. Then there is a claw
decomposition of V in G.

6.2 An Averaging Lemma

Lemma 6.3 Let w be a node chosen in Step 6 and let C denote the total cost of the nodes added
to the solution set S in this iteration. Let there be Q clusters before w is chosen and assume that in
this iteration r clusters are merged. Then: C / r 5 OFT/q.

Proof: Let T* be an optimal tree with the nodes V* be the upgraded nodes. Let C = CI, . . . , C, be the
clusters when the node e, was chosen and let T*(w) be the graph obtained from T* by contracting each Cj
to a supernode. T* (v) is connected and contains all supernodes. We then remove edges (if necessary) from
T* (w) so as to make it a spanning tree. Note that all the edges in this tree have original delay at least &/e.

Let H C V* be the set of nodes in the optimal solution that are adjaant to another cluster in T* (w).
Clearly, the cost of these nodes is no more than OFT. Take a claw decomposition of T* (e ,) . We now obtain
a set of claws in the graph G itself in the following way: Initialize E' to be the empty set. For each claw in
the decomposition with center Ci and fingers C;, . . . , Ci we do the following: For each edge (Ci , Cj) the
optimal tree T* must have contained an edge (u, w) with u E Ci and w E Ci. Notice that since this edge
was of original delay at least &/e, at least one of the vertices u and w must belong to H & V*. We add

It is easy to see that the subgraph of G induced by the edges in E' consists of disjoint nontrivial claws.
Also, all edges in the claws were of original delay at least &/e and the total number of nodes in the claws js
at least q. We need one more useful observation: If a claw center is not contained in H, then all the fingers
of the claw must be contained in H, since the edges in the claw were of original delay at least &/e.

Let H, be the set of nodes from H acting as centers in the just generated claws. Let H;le denote
the fingers of the claws contained in H which are connected to their claw center via an edge of delay

&/e, whereas stands for the set of fingers adjacent to the center via an edge of delay &/e2 and also
contained in H. For each claw with exactly two nodes we designate an arbitrary one of the nodes to be the

center. Then by construction, H,, Hf61e and Hf6lQ2 are disjoint. Therefore,

(u, w) to E'.

For a node u E H,, let Nu denote the number of vertices in the claw centered at u. We have seen that if a
center is not in H , then all the fingers belong to the optimal solution. Thus, we can estimate the total number
of nodes in the claws from above by summing up the cardinalities of the claws with centers in H and for all
other claws adding twice the number of fingers. Hence

Nu + 21 H;le1 2 I { w : w belongs to some claw}/ 2 q,
u€Hc

since the total number of nodes in the claws is at least q.

We now estimate the first sum in (1). If u E H,, then the quotient cost of u is ut most the cost of u plus

the cost of the Sngers in the claw that are in Hf6lQ2 divided by the total number of nodk in the claw. This
in turn is ut least C / r by the choice of the algorithm in Step 6. By summing up over all those centers, this
leads to

NOW, for a node zL in H;/Q, its quotient cost is at most cost(zL)/2, which again is at least c / r . n u s

C

r
- cost(u) 2 2- =

Using (3) and (4) in (1) yields

This proves the claim. 0

Theorem 6.4 Algorithm Heuristic-(Bottleneck, Node-cost, Spanning Tree) is a polynomial time
(2 Inn, 1)-approximation algorithm for (Bottleneck, Node-cost, Spanning Tree).

Proof: Let OPT denote the cost of an optimal upgrading set. Assume that the algorithm uses f iterations of
the loop and denote by w1, . . . wf the vertices chosen in Step 6 of the algorithm.

Let q5j denote the number of clusters @fer choosing vertex wj in this iteration. Thus, for instance,
#O = q, the number of components at the beginning of this iteration in (S, F) . Let the number of clusters
merged using vertex vi be rj and the total cost of the vertices added in that iteration be c j . Then we have

0 5 j 5 f. Thus, we obtain the recurrence
#j = $j-1 - (r j - 1). Since Tj 2 2, we have $j 5 4 j - 1 - irj. By Lemma 6.3: r j 2 'g&' for all

2 om 2 - OPT

Observe that #j 2 2 for j = 0, . . . , f - 1, since the algorithm does not stop before the f-th iteration. Notice
also that q5f >_ 1. We now use an analysis technique due to Wighton and Rao [27] to complete the proof as
in [21]. Using the recurrence (6), we obtain

f

j=1

Taking natural logarithms on both sides and simplifying using the estimate In (1 + z) 5 z, we get

(7)

Notice that by Lemma 6.3 we have C j 5 OPT -& 5 OPT < 2 - OFT, and so the logarithms of all the

terms in the product of (7) are well defined. Note also that #O 5 n and q5f = 1 and hence from (8) we get

xi=l cj 5 2 - OPT In(n). Notice that the total cost of the nodes chosen by the algorithm is exactly the

0 sum xizl cj. This completes the proof.

7 Treewidth-Bounded Graphs

In this section we will provide improved algorithms for the node upgrading problems under study if re-
stricted to the class of treewidth-bounded graphs. Treewidth-bounded graphs were introduced by Robertson
and Seymour (see [34,2] and &e references therein). Independently, Bern, Lawkr and Wong 141 introduced
the notion of decomposable graphs. Later, it was shown [23 that the class of decomposable graphs and the
class of treewidth-bounded graphs coincide. A class of treewidth-bounded graphs can be specified using a

7

finite number of primitiye graphs and a finite collection of binary composition rules. We use this character-
ization for proving our results. A class of treewidth-bounded graphs r is defined in [4]. For completeness
the definition is also given & the appendix. Let I? be any class of decomposable graphs. Let the maximum
number of terminals associated with any graph G in I? be k. Following [4], it is assumed that a given graph
G is accompanied by a parse tree specifying how G is constructed using the rules and that the size of the
parse tree is linear in the number of nodes. Moreover, we may assume without loss of generality that the
parse tree is a binary tree. The first main result of this section is the following theorem which states the ex-
istence of pseudopolynomial-time algorithms for the node weighted network improvement problems given
in the Table 1, when restricted to the class of treewidth-bounded graphs. Note that the theorem is symmetric
in that we could interchange the budget and objective values,

Theorem 7.1 Every problem in Table 1 can be solved exactly in O((n + B)"(l))-tirne for any class
of treewidth bounded graphs with no more than k terminals, for fixed k and a budget B on the first
objective.

Proof: Bottleneck Problem: Suppose that the maximum cost of nodes that can be upgraded is B. Let a be
a partition of the terminals of G. We keep the following information along with each partition a of terminals

ofGandeach0 5 i 5 B:
Cost7 := Minimum bottleneck cost of a tree for each block of a) such that the terminal nodes oc-

curring in each tree are exactly the members of the corresponding block of a, no pair of

trees is connected, every vertex in G appears in exuctly one tree, and the cost of nodes

updated in the tree is exactly i .
For the above defined cost, if there is no forest satisfying the required conditions the value of Cost is

defined to be +oo.
Note that the number of cost values associated with any graph in I' is O(kkB). We now show how the

cost values can be computed in a bottom-up manner given the parse tree for G. To begin with, since r is
fixed, the number of primitive graphs is finite. For a primitive graph, each cost value can be computed in
constant time, since the number of forests to be examined is fixed. Now consider computing the cost values
for a graph G constructed from subgraphs GI and G2, where the cost values for G1 and G2 have already
been computed. Notice that any forest realizing a particular cost value for G decomposes into two forests,
one for G1 and one for G2 with some cost values. Since we have maintained the best cost values for all
possibilities for GI and G2, we can reconstruct for each partition of the terminals of G the forest that has
minimum cost value among all the forests for this partition obeying the diameter constraints. We can do this

in time independent of the sizes of G1 and G2 because they interact only at the terminals to form G, and we
have maintained all relevant information.

Hence we can generate all possible cost values for G by considering combinations of all relevant pairs
ofcostvaluesforG1 andG2. Thistakes timeO(k4) percombinationforatotaltimeofO(bkB2). Asin [4],

we assume that the size of the given parse tree for G is O(n). Thus the dynamic programming algorithm
takes time 6(kknnB2). This completes the proof of the bottleneck problem.

The case of total cost spanning tree is similar to the bottleneck spanning tree and is omitted. The only
difference is that we need to keep track of the total cost of the spanning tree instead of bottleneck cost. In
case of the diameter problem, we need to keep more information about each subtrees. Specifically, we need
to keep information about the distance of each node from every other node in the tree in a particular partition
as well certain other distances. We omit the discussion due to lack of space.

The pseudopolynomial-time algorithms described in the previous section can be used to design fully
polynomial-time approximation schemes (FPAS) for these problems for the class of treewidth-bounded
graphs. We describe this in the Appendix.

8 Fast Approximation Algorithms for Edge-Improvemept Problems

In this section we are going to present a fast approximation algorithm for the (Edge-cost, Total-weight,
Spanning Tree) problem. This algorithms improves on the results in [25] in terms of performance and

8

running time. Recall that in the (Edge-cost, Total-weight, Spanning Tree) problem, the task is to find
an edge-improvement strategy r of cost at most B such that MSTG(~ - r) is as small as possible. In E251
(Edge-cost, Total-weight, Spanning Tree) has been shown NP-hard.

8.1 The Basic Ideas for an Improved Improvement Algorithm

Let 7 > 0 be an accuracy parameter. Define an interval by Z := [v mintmii,(e), maxt(e)].

Note that if MSTG(t - r*) denotes the total weight of a minimum spanning tree after an optimal reduction
r* then $ MSTG (C - r*) E Z. For each K E Z we define compoupul weights h~ for the edges of G in the
following way:

e E E e E E

Thus, for each edge e, the compound weight hK(e) viewed as a function of K is a linear function with
exactly one breakpoint at B/c(e) . For K 5 B/c(e) , the function has the constant value l?(e), while for

K 2 B/c(e) it has slope (t(e)-emin(e))c(e) B . If we plot the compound weight hK(e) for each edge e E E,
for increasing K we get a linear function with exactly one breakpoint at B/c(e) . It is easy to see that, given
two edges e and e', their ordering with respect to the compound weights hK changes at most twice when K
varies. Also, these at most two values of K, can be computed in constant time.
The proofs of the following two lemmas can be found in the appendix.

Lemma 8.1 if MSTG(~K,) 5 (l+y)K' for some K' > 0, then M S T G (~ K) 5 (l+y)K for all K 2 K'.
Let K* be the minimum value K E Z such that MSTG(hK) 5 (1 + y)K. Then K* 5 OPT/y.

Lemma 8.2 If the ordering of the edges with respect to their hK*-weights is known, we can con-
struct a tree T and a reduction 9- in time O(n + m log p(m, n)) with the following properties:

(i) The cost CeEE c(e)r(e) of the reduction r is at most (1 + y)B.

(ii) The weight (e - r)(T) in the modified graph is no more than (1 + l/y)OPT.
Lemma 8.2 suggests finding an ordering of the edges in the graph zlccording to their compound weight

at I<*. Basically we wish to sort the set (hK* (e l) , . . . , hK* (e,)} where K* is not known. However, for
any K we can decide whether K* 5 K or K* > K by one MST computation: We compute an MST with
respect to edge weights given by hK and compare its weight to (1 + y)K. If the weight is bounded fi-om
above by (1 + y) K , then we know that K 5 K*. Otherwise, we can conclude that K* > K.

Using the idea from above in Conjunction with a standard sequential sorting algorithm, we could find
the ordering of the edges at K* by O(m log m) minimum spanning tree computations. However, using the
elegant technique of Megiddo 1303, we can speed up the algorithm substantially,

8.2 Speeding Up the Algorithm

The crucial trick is to use an adaption of a sequentialized parallel sorting algorithm such as Cole's
scheme [71. Recall that a comparison essentially consists of a MST computation, so comparisons are ex-
pensive. Using the parallel sorting scheme, we basically accept a greater total number of comparisons, but
we can use the parallelism to group the independent comparisons made in one stage of the parallel machine
and then answer all of them together efficiently.

Cole's algorithm uses m processors to sort an array of m elements in parallel time O(1og m). The

algorithm is simulated serially, employing one "processor" at a time, according to some fixed permutation,
letting each perform one step in each cycle. When two values hK* (e) and h@ (e') have to be compared,
we compute the critical values where the ordering changes. The crucial observation is that the intersection

9

points can be computed independently, meaning that each of the “ p r ~ s o r s ” does not need any knowledge
about the critical points computed by the other ones.

After the first of the O(Iog m) stages, we are given at most 2m critical values of K, say K1 5 K2 5
- - 5 Kr with r 5 2P. For convenience set KO := --oo and Kr+l := +m. Using binary search, we find
an interval [K;, K;+1], where K* must be contained.

This is done in the following way: Start with low := --oo and high := +m. Then compute the median
M := KL(.+~)/~J of the Kj in O(r) time. We then decide whether K* 5 M by computing a MST T with
edge weights given by hM. If hM(T) 5 (1 + y)M, then we know that K* 5 M. Otherwise, K* > M.
In the first case, we set high := M and remove all values Kj with Kj > M from our set of critical values.
Similarly, in the second case we set low := M and remove the values smaller than the median M. Clearly,
this can be done in O(r) time. Since M was the median of the Kj the number of critical values decreases
by a factor of one half.

Then, the total time effort Zme(r) for the binary search satisfies the recurrence:

nme(r) = Zme(r/2) + TMT + O(r) ,

where TWT is the time needed for one MST computation. The solution of the recurrence is Zme(r) =
O(r + TMsTlog r) . Since r E O(m), this shows that we obtain the interval [K;, K;+1] containing K* by
O(1og m) MST computations plus an overhead of O(m) elementary operations.

Notice that by construction the interval [K;, Kj+1] does not contain any critical points in the interior. If
K; = K;+l, then we know that K* = K; = Ki+l. This way we have determined K*. In this case we
can compute the order of all edges with respect to h p in O(m log m) time and stop the modified sorting
algorithm. Lemma 8.2 then enables us to compute a reduction with the properties (i) and (ii) stated there.

Otherwise, the interior of [K; , K;+l] is nonempty. We compute a minimum spanning tree T with respect
to hKi and test whether hKi (T) 5 (l+y)K;. If this is the case, then K* 5 K;, which implies that K* = K;

since we know that K* E [Ki, K;+1]. Again, the adopted sorting procedure can stop after having computed
the ordering of all edges with respect to hK*.

It remains the case that K; < K* 5 &+I. In this case it is easy to see that the ordering of the edges
from the first round with respect to their h p -weights coincides with the ordering with respect the weights
given by hT, where T E (K; , &+I) is any interior point of the interval [Kj, K;+1].

Thus, at the end of the the first round, our algorithm has either found K* and thus the ordering of aZZ
edges in the graph with respect to their h p -weights, or we can answer the comparisons from the first round
using the ordering of the edges with respect to h,.

The above process is repeated O(1og m) times, once for each parallel step of the parallel sorting ma-
chine. Since in each of the O(1og m) rounds we answer all comparisons of the parallel sorting scheme,
upon termination we have found the ordering of the edges with respect to the hp-weights. We then use
Lemma 8.2 to compute a reduction strategy r .

The time needed for the algorithm above can be estimated as follows: There are O(1og m) cycles alto-
gether. In each round we evaluate O(m) intersection points. Also, we need O(1og m) minimum spanning
tree computations plus the overhead of O (m) . his results in an overall time of O (m log m + TMST log2 m) ,
where TMST = S(n + m log p(m, n)) is the time needed for computing a minimum spanning tree. This
gives us the following theorem:

Theorem 8.3 For any fixed y > 0 the algorithm presented above is a (1 + l/y, 1 + 7)-approximation
algorithm for (Edge-cost, Total-weight, Spanning Tree). The running time of the algorithm is

0

Acknowledgements: We thank Cindy Phillips and Emanuel Knill for several useful conversations regarding
network improvement problems.

O(n log2 n + m log2 n log p(n, m)) .

References

[I] S. Amborg, J. Lagergen and D. Seese, “Easy Problems for Tree-Decomposable Graphs”, J. Ago-

[2] S. Arnborg, B. Courcelle, A. Proskurowski and D. Seese, “An Algebraic Theory of Graph Problems”,

[3] 0. Berman, “Improving The Location of Minisum Facilities Through Network Modification,” Annals

rithms, Vol. 12,1991, pp. 308-340.

J. ACM, Vol. 12,1993, pp. 308-340.

of Operations Research, 40(1992), pp. 1-1 6.

[4] M.W. Bern, E.L. Lawler and A.L. Wong, “Linear-Time Computation of Optimal Subgraphs of De-
composable Graphs”, Journal of Algorithms, 8,1987, pp. 216-235.

[5] H.L. Bodlaender, “Dynamic programming algorithms on graphs with bounded treewidth”, Proceedings
of the 15th International Colloquium on Automata, Languages and Programming, Springer-Verlag,
LNCS 317,1988, pp. 105-119

[6] J. P. Cohoon and L. J. Randall, “Critical Net Routing,” ZEEE Intern. Con$ on Computer Design, 1991,
pp. 174-177.

[7] R Cole, “Parallel Merge Sort”, SZAM J. Computing, 17(4), August 1988, pp. 770-785.

[8] J. Cong, A. B. Kahng, G. Robins, M. Sarafzadeh and C. K. Wong, ‘Trovably Good Performance Driven
Global Routing,” ZEEE Transactions on Computer Aided Design, 11(6), 1992, pp. 739-752.

[9] P. Crescenzi and V. Kann, “A compendium of NP optimization problems,” Manuscript, (1995).

[lo] W. cunningham, “Optimal Attack and Reinforcement of a Network,” J. ACM, 32(3), 1985, pp. 549-

[1 11 U. Feige, “A threshold of In n for approximating set cover,” To appear in the Proceedings of the 28th

[121 G.N. Rederickson and R Solis-Oba, “Increasing the Weight of Minimum Spanning Trees”, Proceed-

[131 H. N . Gabow, Z. Galil, T. H. Spencer and R E. Tarjan, “Efficient Algorithms for Finding Minimum

E141 M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-

El51 M. X. Goemans and D. P. Williamson, “A general approximation technique for constrained forest prob-
lems”, In Proceedings of the 3rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’92)

561.

Annual ACM Symposium on the Theory of Computation (1996).

ings of the Sixth Annual ACM-SIAM SODA’96, Mar& 1996.

Spanning Trees in Undirected and Directed Graphs,” Coinbinatorica, 6 (1986), pp. 109-122.

Completeness, W. H. Freeman and Co., San Francisco, CA, 1979.

(January 1992), pp. 307-316.

[161 M. X. Goemans, A. V. Goldberg, S. Plotkin, D. B. Shmoys, E. Tardos, and D .P. Williamson, “Improved
approximation algorithms for network design problems”, In Proceedings of the 5th Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA’94) (January 1994), pp. 223-232.

[17] R Hassin, “Approximation schemes for the restricted shortest path problem”, Mathematics of Opera-

[18] Dorit S . Hochbaum and David B. Shmoys, “A unified approach to approximation algorithms for

tions Research 17, 1 (19!92), 36-42.
4

bottleneck problems”, Journal of the ACM, 33(3):533-550, July 1986.

11

t

[19] D.S. Johnson, “Approximation algorithms for combinatorial problems”, J. Comput. System Sci. 9,

[20] B. Kadaba and J. Jaffe, “Routing to Multiple Destinations in Computer Networks,” IEEE Trans. on

[21] P. Klein, and R Ravi, “A nearly best-possible approximation for node-weighted Steker trees,” Pro-
ceedings of the third MPS conference on Integer Programming and Combinatorial Optimization

[22] V. P. Kompella, J. C. Pasquale and G. C. Polyzos, “Multicasting for Multimedia Applications,” Proc.
of IEEE RVFOCOM ’92, May 1992.

[23] V. P. Kompella, J. C. Pasquale and G. C. Polyzos, ‘“Ikro Distributed Algorithms for the Constrained
Steiner llee Problem,” Technical Report CAG1005-92, Computer Systems Laboratory, University of
California, San Diego, Oct. 1992.

[24] V. P. Kompella, J. C. Pasquale and G. C. Polyzos, “Multicast Routing for Multimedia Communication,”
IEEEIACM Transactions on Networking, 1993, pp. 286-292.

[25] S. 0. Krumke, H. Noltemeier, M. V. Marathe, S. S. Ravi and K. U. Drangmeister, “Modifying Net-
works to Obtain Low Cost Trees,” to appear Proc. Workshop on Graph Theoretic Concepts in Computer
Science (WG96) June 1996.

1974,256-278.

Comunication, Vol. COM-31, Mar. 1983, pp. 343-35 1.

(1993), pp. 323-332.

[26] D. Karger and S. Plotkin, “Adding Multiple Cost Constraints to Combinatorial OptimizationProblems,
with Applications to Multicommodity Flows,” Proc. 27th Annual ACM Symp. on Theory of Computing
(STOC’95), May 1995, pp. 18-25.

ET. Leighton and S. Rao, “An Approximate Max-Flow Min-Cut Theorem for Uniform Multicommod-
ity Flow Problems with Application to Approximation Algorithms”, Proceedings of the 29th Annual
IEEE Conference on Foundations of Computer Science, 1998, pp. 422-431

C. Lund and M. Yannakakis, “On the Hardness of Approximating Minimization Problems,” Proc.,
25th Annual ACM Symp. on Theory of Computing (STOC’93), May 1993, pp. 288-293.

[29] M. V. Marathe, R Ravi, R Sundaram, S. S. Ravi, D. J. Rosenkrantz and H. B. Hunt III, “Bicrite-
ria network design problems”, In Proceedings of the 22nd International CoZloquium on Automata,
Languages and Programming (ICALP’95) (1995), vol. 944 of Lecture Notes in Computer Science,

pp. 487-498.

[30] N. Megiddo “Applying parallel computation algorithms in the design of serial algorithms”, Journal of

the ACM 30,4 (October 1983), 852-865.

[31] D. Pa& and S. Sahni, “Network Upgradiig Problems,” Networks, Vol. 26,1995, pp. 45-58.

[32] C. Phillips, “The Network Inhibition Problem,” Proc. 25th Annual ACM STOC‘93, May 1993, pp.
288-293.

1333 F. Preparata, “New parallel-sorting schemes”, IEEE Transactions on Computing C-27 (1978), 669-.
673.

1341 N. Robertson and P. Seymour, “Graph Minors IV, Treewidth and Well-Quasi-Ordering”, J. Combin.

1351 J. Valdes, RE. Tarjan and E.L. Lawler, “The Recognition of Series-Parallel Digraphs”, SIAM Journal

Theory Ser. B, 48,1990, pp. 227-254.
4

on Computing, 11,1982, pp. 1-12

12

r

[36] A. Warburton, “Approximation of pareto optima in multiple-objective shortest path problems”. Oper-
ations Research 35 (1992), 70-79.

[37] Q. Zhu, M. Parsa and W. Dai, “An Iterative Approach for Delay Bounded Minimum Steiner Tree
Construction,” Technical Report UCSC-CRL-94-39, University of California, Santa Crw, Oct 1994.

13

Appendix

A Proofs for the Edge Improvement

A.l Proof of Lemma 8.1:

The proof uses the following two results:

Lemma A.1([25]) Define F on by F (K) := v. Then F is monotonically nonincreasing

on Rp>o.

CorollaryA.2 ([W]) If MSTG(~KI) 5 (1 + y)K' for some K' > 0, then MSTG(~K) 5 (1 + 7)K for
all K 2 K'.

In view of Lemma A.l and Corollary A.2 it suffices to show that MSTG(~E) 5 (1 + K), where

k = OPT/y. Let r* be an optimal feasible reduction and let T* be a minimum spanning tree in G with
respect to the weight Eunction t - r*. Let OFT := (e - r*) (T*) be its total weight in the graph with the
edge lengths resulting from the optimal reduction r*.

For each edge e E T* we can estimate the weight hR (e) in the following way

Summing up the inequalities iq (10) over all e E T*, we obtain:

K
~ E (T *) < OPT+ --B = OPT+I?T.

B
-

We have seen that the weight of T* under hR is no more than OPT + I?. Consequently, the minimum

spanning tree with respect to h~ has +weight at most OPT+ k = y k + k = (1 ++y) .K. This completes
the proof.

A.2 Proof of Lemma 8.2:

Given the ordering of the edges according to their weights, we can use the minimum spanning tree
algorithm of Gabow et. al. [13] to compute a minimum spanning tree with respect to the hp-weights.
without actually knowing these weights. The ordering suffices for this purpose. The algorithm given in [131
runs in time O(n + m log /3(m, n))

Let T be a minimum spanning tree with respect to h p . We define a reduction r on T in the following
way:

I

if K* 2 B/c(e) ,

{ O l (e) - !,,(e) if K* < B/c (e) .
.(e) :=

By constmction of the reduction P it then follows that

K*

B
hK* (T) = t (e) - r (e) + --c(e)r(e) 2 (.e - r) (T) .

eET

J

Since hK* 5 (1 + y) K * and K* 5 OFT/y this yields:

(t - r)(T) 5 (1 + Y)K* 5 (1 + y)OJ?"/7 = (1 + l/Y)OPT.

14

The cost CeET r (e)c(e) of the reduction r can be estimated as follows. We have that

Dividing the last chain of inequalities by
We have just shown that there is a reduction r on the particular tree T which involves a budget of at

most (1 + y) B and which reduces the weight of T to at most (1 + l/y)OpT. In fact, if we knew K* we
could construct the reduction 9- from above in time O(n) once we know the tree T.

But by the assumption of the lemma, we only have knowledge only about the ordering of the edges and
not about K* or h p . Nevertheless, this is not grave. It is easy to see [251 that, given a tree and a budget,
we can construct an optimal reduction on this tree for that budget in O(n) time by a Greedy-type algorithm
that repeatedly reduces the length of the cheapest edge until the budget is exhausted. Thus, if we compute
such a reduction r1 on our tree T with the budget set to (1 + y) B, the length of T under I! - Y' will be at
most (e - r) (2') , which we have shown to be bounded from above by (1 + l/+y)OPT.

B Fully Polynomial-Time Approximation Schemes

The basic technique underlying our algorithm for the diameter case is approximate binary search using
rounding and scaling, a method similar to that used by Hassin [171 and Warbmn 1361.

As in the previous subsection, let G be a treewidth-bounded graph. Let B be a bound on the cost of
the nodes to be upgraded. Let E be an accuracy parameter. Without loss of generality we assume that
is an integer. Let Alg(G, 4, cost, C) be a pseudopolynomial time algorithm for (Total-weight, Node-cost,
Spanning Tree) on treewidth-bounded graphs, i.e. Alg(G, e, cost, C) outputs a tree of upgraded length no
more than C and minimizes the cost of the upgrading set6. Let the running time of Alg be p (n, C) for some
polynomial p. For carrying out our approximate binary search we need a testing procedure Test which is
shown in Figure 2.

yields that CeET r(e)c(e) 5 (1 + y) B.

Procedure Test(M):
Input: G - treewidth bounded graph, C - bound on length of the upgraded tree, M - testing parameter,
Alg - a pseudopolynomialtime algorithm for (Total-weight, Node-cost, Spanning Tree) on treewidth-
bounded graphs, E - an accuracy parameter.

1

2 IfthereexistsaCin[O, 91 suchthatAlg(G, l~-J,COsfC)prOduceSaspanningtreewifh

Output: HIGH/LOW.

Let [&I denote the cost function obtained by setting the cost of edge e to L&l.

total upgraded length at most C then output LOW otherwise output HIGH.

Figure 2: Test Procedure.

Claim B.1 summarizes the property of Procedure Test(A.4). Fially, Azgorithm FPAS-Upgrade shown
in Figure 3, which uses Test, describes the overall strategy to compute near optimal solution. In the sequel
we denote by OPT the optimal upgraded length of a mininum spanning tree T* after upgrading a vertex set
of cost at most B.

Claim B.l If OPT 5 M then Procedure Test(M) outputs LOW. If OPT > M (1 + E) then the result
of Test(M) is HIGH.

!Note that (Totabweight Nodecost, Spanning Tree) is symmetric to the problem (Nodecost, Total-weight, Spanning
Tree).

15

.

Algorithm FPAS-Upgrade

Input: G - treewidth-bounded graph, B - bound on the node upgrading cost, Alg- a pseudopolynomial
time algorithm for (Total-weight, Node-cost, Spanning Tree) on treewidth-bounded graphs, E - an
accuracy parameter.
1

2

3
4

5 Run Alg(G, I&], cost, C) for all C in [0 , 2 (9)] and among all the trees with total up-

grading cost at most B the tree with the lowest total weight (in the upgraded network).
Output: A spanning tree with total upgrading cost at most B and with total weight at most (1 + E) times
that of the optimally upgraded minimum spanning tree.

Let Chi be an upper bound on the total weight of an MST after upgrading a node set of cost no
more than B. Let LB = 0 and UB = Chi.

while UB 2 2LB do

Let M = (LB + UB) /2 .
if Test(M) returns HIGH then set LB = M else set UB = M(l + E) .

Hgure 3: Approximation scheme on treewidth-bounded graphs.

Lemma B.2 Algorithm FPAS-Upgrade outputs a spanning tree with total node weight at most B

and with total length in the upgraded network of at (1 + &)OFT.

Proof: It follows easily from Claim B.l that the loop in Step 2 of Algorithm FPAS-Upgrade executes
O(1ogChi) times beforeexiting with LB 5 OPT 5 UB < 2LB.

Sin=

we get that Step 5 of Algorithm FPAS-Upgrade dehitely outputs a spanning tree. Let T be the tree output.
Then we have that the length C (e) of T in the upgraded network is given by

Here T ~ , E {l,l/e, l/e2}, and reflects the way each edge has been upgraded in the heuristic and an
optimal solution respectively. But since Step 5 of Algorithm FPAS-Upgrade outputs the spanning tree
with minimum length we have that

Therefore i

This proves the claim,

I3

As mentioned before, similar theorems hold for the other problems in Table 1 and all these results extend
-I directly to Steiner trees.

16

,

R

Qi

Figure 4 Reduction from Set Cover for the hardness of (Bottleneck, Node-cost, Spanning Tree).

C Hardness Results

C.l Hardness of Bottleneck %ee Upgrading Problems

Theorem C.l (Bottleneck, Node-cost, Spanning Tree) is NP-hard for any fixed speedup factor 0 <
e < 1 and bound S > 0 on the bottleneck delay of the tree even for bipartite graphs and even if
cost(v) = 1 for all v E V .

Proof: We show that Set Cover ([SPS] in [14]) reduces to (Bottleneck, Node-cost, Spanning Tree)
in polynomial time. An instance of Set Cover consists of a set Q of ground elements {q l , . . . , qn}, a
collection Q1, . . . , Qm of subsets of Q and an integer K. The question is whether one can pick at most K
sets such that their union equals Q.

Given an instance of Set Cover, we first construct the natural bipartite graph, one side of the partition
for set nodes Qj, j = 1,. . . , m, and the other for element nodes qi, i = 1,. . . , n. We insert an edge
{Qj, q;} iff q; E Qj. We now add one more node R (the “root”) and connect R to all the set nodes.

In the remainder of this proof, we do not distinguish between a node and the set or element that it
represents. Note that the resulting graph is a bipartite (with R and the element nodes on one side and the set
nodes on the other side). An example of the graph constructed is shown in Figure 4.

For each edge of the form (R, Q i) , the delay is 6, while each edge the form (ai, qj) has delay b / e (in
Figure 4 each of the dotted lines has delay 6 and the solid lines have each delay &/e). We set the bound on
the bottleneck delay parameter to S.

We now claim that there is an upgrading set of size K resulting in a bottleneck spanning tree of bottle-
neck delay at most 6 for the instance of (Bottleneck, Node-cost, Spanning Tree) just constructed if and
only if the Set Cover instance has a cover of size at most K.

Frrst assume that we can cover the elements in Q by at most K sets. Without loss of generality assume
that the set cover consists of exactly K sets, which are Q1. . . , QK. We then upgrade the corresponding set
nodes. Consider the resulting graph. For each element node qj there is now an edge of delay S connecting qj

to some set node S(qj) from Q1, . . . , QK (If qj appears in two or more sets whose corresponding nodes are
upgraded, then choose one such set node arbitrarily). Then the set { (r, Qi) : i = 1, . . . , m} u { (q j , S(qj)) :

j = 1, , . . , n} is the edge set of a spanning tree of G, where none of the edges has weight more than 6.

Now assume conversely that there is an upgrading set of size at most K for $e instance of (Bottleneck,
Node-cost, Spanning Tree) constructed above. Let V‘ C V, lV’l 5 IC be a set of nodes that are upgraded
and let T = (V, ET) be a spanning tree in the resulting graph of bottleneck cost at most 6.

17

*

We now transform the tree T into a tree 2'' of at most the same bottleneck cost such that each set node
Q j is adjacent to R in T'. To this end, do the following for each set node Q j , j = 1, . . . , m: If (R, Qj) E T,
then continue with the next set node. Otherwise, since T is connected, there must be a path P from Q j to

R in T. By the bipartiteness of G, the first two edges in this path are of the from (Q j , qi) and (qj, Qy) for
some element node q; and some other set node Qjt. Adding the edge (R, Qj) to T will induce a simple
cycle in T containing the edges in P and (R, Qj) . Thus if we remove (Qj, q;) from T the resulting graph
will again be a spanning tree of G.

Observe that the bottleneck cost of the tree does not increase during the procedure from above, since
each edge (R, Q j) inserted has already delay b in the original graph.

Now, consider the set V' of upgraded nodes. If R E V', we can safely remove from V' without affecting

the bottleneck cost of our spanning tree T'. For each element node 4i E V', we have at least one set node
S(Q;) adjacent to q; in T'. We replace q; by S(q;) in V' and, continuing this, obtain a set V'' of at most K
set nodes, which are upgraded.

We will now argue that the set nodes from VN form a set cover. To this end, consider an arbitrary element
node q; . If qi E V', Le. qi was one of the upgraded element nodes, then we have added some set node S (4;)
to V' that is adjacent to q; in G. Thus, S(q;) E VI' contains q; and, consequently, q; is covered by the set
in V". In the other case, q; # V'. The tree T' contains at least one edge (Qj , q;) of delay at most 6. But,
since qj was not upgraded, the only possibility of (Q j , qj) having delay 6 is that Q, had been upgraded, i.e.
Q j E V'. Since we have not removed any set node from V' in the transition to V'', it follows that Qj E V"

0

Note that the reduction in the proof of Theorem C. 1 preserves approximations. Any set cover of size K
becomes an upgrading set of size K and any upgradhg set of size K becomes a cover of size at most K.
Combining this approximation preserving transformation with the nonapproximability results of Feige [1 11
about the the optimization version of Set Cover we get the following theorem.

and thus, again, q; is covered by the sets in VI'.

Theorem C.2 Unless NP DTIME(nlog'og"), there can be no polynomial time approximation algo-
rithm for (Bottleneck, Node-cost, Spanning Tree) with a performance of (a, p) for any fwed a < In n

and p < l / ~ , where 0 < e < 1 is the speedup factor occuring in the instance.

C.2 Hardness of Diameter Upgrading Problems

Theorem C.3 (Node-cost, Diameter, Spanning Tree) is NP-hard even for bipartite graphs and even
if cost(v) = 1 for all Y E V.

Proof: Again, we use a reduction from Set Cover. Without loss of generality we will assume for the rest
of the proof K < n and that there is no single set Qj covering all the elements.

Given any instance of Set Cover, we first construct the natural bipartite graph. We also add the "roof'
R and make it adjacent to all the set nodes. Now we add "enforcer" nodes f; , one for each element node qi,

where fj is adjacent exactly to qi in the graph. An example of the graph constructed can be seen in Figure 5.
The edges incident with R have delay 1, all the other edges have delay equal to 8. We now set 6 := 13 and
the number of nodes to be upgraded to K + n, where n is the number of elements.

Assume that there is a set cover of size at most K. Then we upgrade the corresponding set nodes and,
moreover, upgrade also aZZ element nodes. The result is a feasible upgrading set. Since we have upgraded
all the element nodes and the nodes corresponding to a set cover, for each element node q; we have an edge
(qi , S (qi)) in the resulting graph of delay equal to 2. We let the tree T consist of all these edges (qi , S (q j))
plustheedgesfrom{(R,Qj) : j = 1 ,..., m } U { (q ; , f ;) : i = 1 ,..., n}. It iseasytoseethatThasa
diameter of at most 13.

Now, suppose conversely that there is a feasible upgrade set V' in G resulting in a diameter spanning
tree T of diameter at most 13.

First, we claim that in this m e for each element node q; either this node or the "enforcer node" f; must
have been updated. Assume the contrary. In this case, each edge of the form (q;, Q) E T has length at least

18

I
0

0

Q1 \

fl

R

[(e) = 8

[(e) = 8

fn

Figure 5: Reduction from Set Cover for the Hardness of (Node-cost, Diameter, Spanning Tree).

4. Any path from fi to another enforcer node fj must contain at least two edges (qi , Q), (q j , Q) and the
edges (qj, f;) and (43, fj). It is thus of length at least 4 + 2 + 8 + 2 = 16 > 13, which is a contradiction.

We have seen that V’ contains already at least n nodes from the set {qi, f; : 1 = 1, . . . , n}. Thus,
V‘ can have at most K set nodes that are upgraded. Consequently, if for each element node q;, the tree T
contains an edge (q;, S(4;)) of length 2, then the set nodes s(qj), i = 1, . . . , n are a set cover of size at most
K.

Now for i = 1, . . . , n we do the following. If T contains an edge (qi, Qj) of length 2, we continue with
the next element node. Otherwise a l l edges in T connecting q; to a set node have length at least 4.

If qj has not been upgraded, we know that f; E V’. We remove f; from V’ and replace it by q;. Clearly,
the diameter of T does not increase during this process. If q; has been upgraded, but fj has not been
upgraded, then we also step to the next element node. In the last case, both fi and Q; belong to the set V‘.
Then, none of the set nodes adjacent to qi in T has been upgraded. We pick an arbitrary set node Qj such
that (Qj, 4;) E T and upgrade Qj, removing fi from V‘. We claim that the diameter of the tree T does not
increase in this step. In fact, assume P were a path of length greater than 13 in the tree with the new edge
weights. Then it follows that Qj is adjacent to at least two set nodes in T (see Hgure 6).

Moreover, the last edge of P must be (q;, fj), since otherwise P would already have been a path of
length at least 13 in T before the operation. Now, if we consider the path P’, where we replace (qi, f;) by
(qi, Q’), we see that P‘ is a path of the same length as P but this time in the tree T before the operation.
This contradicts that the diameter of T is no more than 13.

Now consider the result of the process. After the iteration, all the element nodes belong to V’. Either
now each element is connected to a set node via an edge of length at most 2 in T, in which case we have
found a set cover. Otherwise, there is an element node q for which still each edge connecting it to a set node
is of delay 4 (The edges c8n not have delay 8, since q; E V‘). We now prove that this m e can not happen,
which then will complete the proof.

Assume that there is an element node Q such that any edge connecting it”to a set node in the tree T
(which is of diameter at most 13 as we recall), has length 4.

19

Rgure 6: The diameter of T does not increase.

f q~ 4

Q

4

Figure 7: Flrst case in the proof of Theorem C.3.

Choose an arbitrary element node q' # q. In the fist case (see Figure 7), there is a set node Q adjacent to

both q and q' in T. The length of the (unique) path in T from f to f' is then at least 4+4+4+2 = 14 > 13,

contradicting the assumption that T is of diameter at most 13.

In the second case, no set node is adjacent to both both q and q' in T. The path from f to f' in T then
consists of the edge (f, q) an edge (q, Q) (of length 4), a path P from Q to another set node Q', and the

edges (Q', 4') and (q', f') (see Figure 8). Since Q is not upgraded (otherwise the edge (Q, q) would have

..-. : .

Q C L "+ Q'

4 E C2,41

' 9'
Q
"

4 E C T 4 1

f e f '

d

Figure 8: Second case in the proof of Theorem C.3.

20

length 2), the length of the path P is at least 1 + $ = (a shortest path in the graph G after the update
always consists of the edges (Q, R) and (R, Q')). Summing up, we obtain that the distance between f and

0 f' in T is at least4 + 4 + $-+ 2 + 2 = > 13. TMS completes the proof.
@om the results from Theorem C.3 we can immediately conclude:

Theorem C.4 Unless P = NP, for any fixed E > 0 there can be no polynomial time approximation
algorithm for (Node-cost, Diameter, Spanning Tree) with a performance guarantee of (1,

C.3 Hardness Results for Treewidth Bounded Graphs

We h t recall the definition of the Partition problem [14]. As an instance of the Partition problem we
are given a multiset of (not necessarily distinct) positive integers { a1 , . . . , a,} and the question is whether
there exists a subset I ai denotes the sum of all
elements in A. Partition is well known to be NP-complete (cf. [14]).

- E) .

(1, . . . , n} such that CiEI ai = S/2, where S :=

Theorem C.5 (Node-cost, Diameter, Spanning Tree) and (Node-cost, Total-weight, Spanning Tree)
are NP-hard even when restricted to simple trees with maximum node degree no more than 2.

Proof: We use a reduction from the Partition problem. Given an instance of Partition, we construct a
tree with G with 3n vertices, x;, y; and z;, i = 1,. . . , n. and 3n - 1 edges. The edges in the tree are
(zj, y;), (y;, z;), (zj, %;+I) for 1 5 i 5 n (excluding the edge (z,, %,+I)). We now specify the necessary
parameters. The upgrade factor is any number 0 < e < 1. The weights on the nodes yj is ai, while the
nodes x; and z; have all weight S := Cy=l a;. The cost of the edges (q, yi) and (y;, 2;) is is a;/2. AU
edges (zi, xc;+1) have cost E. The simple tree constructed this way is shown in Figure 9.

Figure 9: Chain used in the hardness proof on trees.

Now we claim that G has a spanning tree with diamater (total cost) no more than $(1 + e) + (n - 1) ~
under the constraint that the total cost of the nodes in the improvement set is not more than S/2, if and only

if A can be partitioned into two sets of equal weight. Observe that the diameter and total cost of the original
tree equal cy=l a; + (n - l)& = s + (n - 1) E

In fact, if I is an index set such that CifI a; = S/2, we the vertices yi with i E I form an upgrading
set of cost S/2. Upgrading these vertices will decrease the length of the corresponding edges (zi, yi) and
(yi, z;) to ea& Thus, after upgrading the vertices yi with i E I, this will result in a diameter (total cost)

0 f ~ ; g I a; + e c i G I ai+ = s/2 + es/2 + (n - 1) ~ = $(I + e) + (n - 1)~.
Conversely, if we have an upgradiig set of cost at most S/2, this set can contain only vertices yi by the

choice of the weights on the nodes 2; and z;. Let I be the set of indices such that yj belongs to the upgrading
set. Again, upgrading avertex y; with i E I decreases the weight of the edges (xi, yj) and (yi, zi) to za;/2.

Thus, after upgrading the vertices yi the tree has diameter (total cost) CigI a; + e CifI a; + (n - 1) ~ =

S + (e - 1) CiEI a; + (n - 1)~. which is at most $ (1 + e) + (n - 1) ~ by assumption. Simple algebranow
shows that CiEl aj 2 S/2. Since the total cost of the vertices y; with i E I is exactly CiEI a; which is at
most S/2, this shows that ciEI a; = S/2. 0

J

21

