
On Optimal Timed Strategies

Thomas Brihaye1, Véronique Bruyère1, and Jean-François Raskin2

1 Faculté des Sciences, Université de Mons-Hainaut,
Avenue du Champ de Mars 6, B-7000 Mons, Belgium

2 Département d’Informatique, Université Libre de Bruxelles,
Boulevard du Triomphe CP 212, B-1050-Bruxelles, Belgium

Abstract. In this paper, we study timed games played on weighted
timed automata. In this context, the reachability problem asks if, given
a set T of locations and a cost C, Player 1 has a strategy to force the
game into T with a cost less than C no matter how Player 2 behaves.
Recently, this problem has been studied independently by Alur et al and
by Bouyer et al. In those two works, a semi-algorithm is proposed to solve
the reachability problem, which is proved to terminate under a condition
imposing the non-zenoness of cost. In this paper, we show that in the
general case the existence of a strategy for Player 1 to win the game
with a bounded cost is undecidable. Our undecidability result holds for
weighted timed game automata with five clocks. On the positive side,
we show that if we restrict the number of clocks to one and we limit
the form of the cost on locations, then the semi-algorithm proposed by
Bouyer et al always terminates.

1 Introduction

Weighted timed automata are an extension of timed automata with costs : each
discrete transition has an associated non-negative integer cost to be paid when
the transition is taken, and each location has an associated cost rate that has
to be paid with respect to the time spent in the location. If the most important
problem for timed automata is reachability, the natural extension for weighted
timed automata is optimal cost reachability, that is, given an initial state, what
is the minimum cost to be paid to reach a given location. This problem has been
solved independently in [6] and [8]. The complexity of this problem is similar to
the complexity of classical reachability in timed automata [3]. The more general
problem of model-checking on weighted timed automata is investigated in [10].

Timed automata and weighted timed automata are models for closed sys-
tems, where every transition is controlled. If we want to distinguish between
actions of a controller and actions of an environment we have to consider timed
games on those formalisms. In one round of the timed game played on a timed
automaton, Player 1 (the controller) chooses an action a and a time t ≥ 0, Player
2 (the environment) updates the state of the automaton either by playing an
uncontrollable action at time t′ ≤ t or by playing the action a at time t as pro-
posed by Player 1. We say that Player 1 has a winning strategy to reach a set

T of target locations if it can force Player 2 to update the automaton in a way
that the control of the automaton eventually reaches a location of T . When the
timed game is played on a weighted timed automaton, we can ask if Player 1
can force Player 2 to update the control of the automaton in a way to reach T

with a cost bounded by a given value. We can also ask to compute the optimal
cost for Player 1 winning such a game.

While games on timed automata are already well studied, see for exam-
ple [11], [1] and [2], and are known to be decidable, only preliminary results
about games on weighted timed automata are known. First results on reacha-
bility with an optimal cost appear in [7], where the cost is equal the time spent
to reach a target location in a timed automaton. Optimal reachabitility is aslo
studied in [13] with any costs and weighted automata that are acyclic. In [4],
Alur et al study the k-bounded optimal game reachability problem, i.e. given
an initial state s of a weighted timed automaton A, a cost bound C and a set
T of locations, determine if Player 1 has a strategy to enforce the game started
in state s into a location of T within k rounds, while ensuring that the cost is
bounded by C. Their algorithmic solution has an exponential-time worst case
complexity. In [9], the authors study winning strategies to reach a set of target
locations with an optimal cost in a weighted timed automaton A. To compute
the optimal cost and to synthetize an optimal winning strategy, they provide a
semi-algorithm for which they can guarantee the termination under a condition
called strict non-zenoness of cost. This condition imposes that every cycle in the
region automaton of A has a cost bounded away from zero. The general case
where this condition is not imposed, is left open in both papers [4] and [9].

In this paper, we consider timed games played on a weighted timed automa-
ton as they are introduced in [4], and following the lines of [9] we study the two
problems of the existence of a winning strategy with a bounded cost, and of the
existence of a winning strategy with an optimal cost (Section 2). We prove the
unexpected negative result that for weighted timed automata, the existence of a
winning strategy with a cost bounded by a given value is undecidable (Section 3,
Theorem 1). The proof is based on a reduction of the halting problem for two-
counter machines. The weighted timed automaton simulating the two-counter
machine has five clocks and a cost rate equal to 0 or 1 on the locations. On the
positive side, we show that if we restrict the number of clocks to one and we
limit the cost rate to 0 or d where d is a fixed integer, then the two problems
mentioned above are decidable (Section 4, Corollary 3). The proof follows the
approach of [9] but we can prove the termination of their semi-algorithm without
the non-zenoness of cost hypothesis.

2 Timed games

In this section, we recall the notion of timed game on a weighted timed automa-
ton as it is defined in [4]. In this context we introduce the concept of winning
strategy and the related cost problems as mentioned in [9]. We begin with the
definition of weighted timed automaton.

2.1 Weighted timed automata

Let X be a finite set of clocks. Let R+ be the set of all non-negative reals and let
N be the set of all non-negative integers. A clock valuation is a map ν : X → R+.
The set of constraints over X , denoted G(X), is the set of boolean combinations
of constraints of the form x ∼ α or x − y ∼ α where x, y ∈ X , α ∈ N, and
∼∈ {<,≤, =,≥, >}. The way a clock valuation ν over X satisfies a constraint g

over X is defined naturally; it is denoted by ν |= g.

Definition 1. A weighted timed automata, WTA for short, is a tuple A =
(L, LF , X, Σ, δ, Inv, WL, Wδ) where L is a finite set of locations, LF ⊆ L is a
set of target locations, Σ is a finite set of actions that contains the special symbol
u, δ ⊆ L × Σ × G(X) × 2X × L is a transition relation, Inv : L → G(X) is an
invariant function, WL : L → N gives the cost for each location, and Wδ : δ → N

gives the cost for each transition.

For a transition e = (l, a, g, Y, l′) ∈ δ, the label of e is a, and it is denoted by
Action(e). Transitions labeled with u model uncontrolled transitions. The other
ones are the controlled transitions.

A state of A is a pair q = (l, ν) where l ∈ L is a location and ν is a valuation
over X . Let Q denote the set of all states. For a clock valuation ν and a value
t ∈ R+, ν + t denotes the clock valuation ν′ where ν′(x) = ν(x) + t, for each
x ∈ X . For any clock valuation ν, and any subset of clocks Y ⊆ X , ν[Y := 0]
denotes the clock valuation ν′ such that ν′(x) = ν(x) for any x ∈ X \ Y and
ν′(x) = 0 for any x ∈ Y .

A timed transition in A is of the form (l, ν) →t (l, ν+t), where (l, ν), (l, ν+t) ∈
Q, t ∈ R+, and ν + t′ |= Inv(l) for every t′, 0 ≤ t′ ≤ t. A discrete transition in A
is of the form (l, ν) →e (l′, ν′) where e is a transition (l, a, g, Y, l′) ∈ δ such that
ν |= Inv(l), ν |= g, ν′ = ν[Y := 0] and ν′ |= Inv(l′).

In this paper, without loss of generality, we make the assumption that a
WTA A is c-deterministic, i.e. if q →e q′ and q →e′

q′′ with e, e′ two controlled
transitions such that Action(e) = Action(e′), then q′ = q′′.

Hypothesis 1. A WTA A is supposed to be c-deterministic.

A run ρ of a WTA A is a finite or infinite sequence of alternating timed and
discrete transitions

ρ = q1 →t1 q′1 →e1 q2 →t2 q′2 →e2 · · · →tk q′k →ek qk+1 · · · .

The run ρ is also denoted as q1 →t1·e1 q2 →t2·e2 · · · →tk·ek qk+1 · · · . When ρ is
the finite run q1 →t1·e1 · · · →tk·ek qk+1, with qi = (li, νi) for each i, we define
the cost W (ρ) of ρ as

W (ρ) =

k
∑

i=1

WL(li) · ti +

k
∑

i=1

Wδ(ei).

2.2 Timed games and related cost problems

We now present the notion of timed game on a WTA and some related problems.
The timed game on a WTA A = (L, LF , X, Σ, δ, Inv, WL, Wδ) is played

by two players, Player 1 (the controller) and Player 2 (the environment). Let
Σu = Σ \ {u}. At any state q, Player 1 picks a time t and an action a ∈ Σu such
that there is a transition q →t·e q′ with Action(e) = a. Player 2 has two choices:

– either it can wait for time t′, 0 ≤ t′ ≤ t, and execute a transition q →t′·e′

q′′

with Action(e′) = u,
– or it can decide to wait for time t and execute the1 transition q →t·e q′

proposed by Player 1.

The game then evolves to a new state (according to the choice of Player 2) and
the two players proceed to play as before.

Comments 1. In the definition of a timed game, it is implicitly supposed that
Player 1 can always formulate a choice (t, a) in any reachable state q of the game.

We present the concept of strategy. A (Player 1) strategy is a function λ :
Q 7→ R+×Σu. A finite or infinite run ρ = q1 →t1·e1 q2 →t2·e2 · · · →tk·ek qk+1 · · ·
is said to be played2 according to λ if for every i, if λ(qi) = (t′i, ai), then either
ti ≤ t′i and Action(ei) = u, or ti = t′i and Action(ei) = ai. The run ρ is winning
if for some i, qi = (li, νi) with li ∈ LF being a target location. Suppose that qi

is the first state of ρ such that li ∈ LF , and let ρ′ be the prefix run of ρ equal to
q1 →t1·e1 · · · →ti−1·ei−1 qi. Then we say that W (ρ′) is the cost of ρ to reach LF

and we abusively denote it by W (ρ). Given a state q and a strategy λ, we define
Outcome(q, λ) as the set of runs starting from q and played according to λ. The
strategy λ is winning from state q if all runs of Outcome(q, λ) are winning.

Finally, we define two notions of cost as proposed in [9], and we state the
problems studied in this paper. The cost Cost(q, λ) associated with a winning
strategy λ and a state q is defined by

Cost(q, λ) = sup{W (ρ) | ρ ∈ Outcome(q, λ)}.

Intuitively, the presence of the supremum is explained by the fact that Player 2
tries to make choices that lead to cost W (ρ) as large as possible. The optimal
cost OptCost(q) is then equal to

OptCost(q) = inf{Cost(q, λ) | λ is a winning strategy}.

A winning strategy λ from q is called optimal whenever Cost(q, λ) = OptCost(q).

Problem 1. Given a WTA A, a state q of A and a constant c ∈ N, decide if there
exists a winning strategy λ from q such that Cost(q, λ) ≤ c.

1 Recall that A is assumed to be c-deterministic.
2 This definition is from [4]. A third condition appears in the definition given in [9],[11].

Problem 2. Given a WTA A and a state q of A, determine the optimal cost
OptCost(q) and decide whether there exists an optimal winning strategy.

Comments 2. Concerning Problem 2, there is an optimal winning strategy from
state q iff the infimum can be replaced by a minimum in the definition of
OptCost(q). Notice that Problem 1 is decidable if Problem 2 can be solved. In-
deed, there exists a winning strategy λ from q such that Cost(q, λ) ≤ c iff either
OptCost(q) < c, or OptCost(q) = c and there is an optimal strategy from q.

3 Undecidability results

This section is devoted to the main result of this article, that is, Problems 1 is
undecidable. By Comments 2, it follows Problem 2 cannot be solved.

Theorem 1. Problem 1 is undecidable.

Proof. The idea of the proof is the following one. Given a two-counter machine
M , we will construct a WTA A and propose a timed game on A. In this game,
Player 1 will simulate the execution of M , and Player 2 will observe the possible
simulation errors done by Player 1. We will prove that for a well-chosen state q,
there exists a winning strategy λ from q with Cost(q, λ) ≤ 1 iff the machine M

halts. It will follow that Problem 1 is undecidable.
We here consider the classical model of two-counter machine [12]. The two

counters are denoted by c1 and c2, and the different types of labeled instructions
are given in Table 1.3 A configuration of the machine M is given by a triple

zero test k : if ci = 0 then goto k′ else goto k′′

increment k : ci := ci + 1
decrement k : ci := ci − 1
stop k : STOP

Table 1. The possible instructions of a two-counter machine.

(k, c1, c2) which represents the (label of the) current instruction of M and two
counter values. The first instruction of M is supposed to be labeled by k0 and
the stop instruction for which M halts, is supposed to be labeled by ks. The
initial configuration of M is thus (k0, 0, 0).

We first define how the counter values are encoded in the states of A. We
encode the value of counter c1 using three clocks x1, y1, z1 and the value of
counter c2 using three clocks x2, y2, z2

4. The clock values are always between 0
and 1. To keep the notation simple, we use the same notation to denote the clock
or its value. When clear from the context, we often drop the subscript, that is,
counter c is described by clocks x, y and z. Counter ci, i = 1, 2, has value n ∈ N,

ci = n (1)

3 We assume that there is a zero test before each decrementation instruction such that
the counter value is not modified each time it is equal to zero.

4 An encoding using five clocks is possible, but the exposition would be more technical.

iff one of the following three conditions is satisfied :

– 0 ≤ xi ≤ yi ≤ zi ≤ 1, yi − xi = 1
2n+1 , and xi + (1 − zi) = 1

2n+1 ,
– 0 ≤ zi ≤ xi ≤ yi ≤ 1, yi − xi = 1

2n+1 , and xi − zi = 1
2n+1 ,

– 0 ≤ yi ≤ zi ≤ xi ≤ 1, (1 − xi) + yi = 1
2n+1 , and xi − zi = 1

2n+1 .

The first condition is given in Figure 1.5 We say that the encoding is in
normal form if xi = 0 (see Figure 2).

x y z

1

2n+1
α β

Fig. 1. One among the three encodings
of c1 = n, with α + β = 1

2n+1 .

x y z

1

2n+1

1

2n+1

Fig. 2. The encoding of c1 = n in nor-
mal form.

The automaton A = (L, LF , X, Σ, δ, Inv, WL, Wδ) has thus a set X of six
clocks (xi, yi and zi, i = 1, 2). The costs given by function WL to the locations
are either 0 or 1. The function Wδ assigns a null cost to each transition.6 The
set L contains a location for each label k of the machine M , which is labeled by
σk in a way to remember the label k. For each such k, the related location l is as
depicted in Figure 3 where i is equal to 1 or 2. We notice that the control spends
no time in location l, and that one of the two counters, ci, is encoded in normal
form. This is the way configurations (k, c1, c2) of the machine M are encoded by
states (l, ν) of the automaton A with locations l like in Figure 3. In particular,
the stop instruction of M which is labeled by ks is encoded by a location l like
in Figure 3, such that σks

replaces σk and l ∈ LF is a target location.

xi := 0 l

σk

xi = 0

Fig. 3. Location labeled by σk

x = 1 ; x := 0
y = 1 ; y := 0
z = 1 ; z := 0

l

x ≤ 1 ∧ y ≤ 1 ∧ z ≤ 1

Fig. 4. Widget to let the value of a
counter unchanged.

In the sequel, we present widgets used by Player 1 to simulate the instruc-
tions of the machine M . These widgets are fragments of the automaton A; they
are depicted in Figures 4–11. In these figures, target locations l ∈ LF are sur-
rounded by a double circle, uncontrolled transitions are labeled by the action
u, and controlled transitions are those that are not labeled. It is supposed that
controlled transitions leaving a given location are labeled by distinct actions of
Σu, in a way to have a c-deterministic WTA A (see Hypothesis 1). Notice that
the constructed automaton A will satisfy the assumptions of Comments 1.

5 The two other conditions are cyclic– or mod 1, representations of the first condition.
6 In the following figures, the cost if not indicated is supposed to be equal to zero.

With the construction of these widgets and a particular state q of A, we will
see that the machine M halts iff Player 1 has a winning strategy λ from q with
Cost(q, λ) ≤ 1. Let us describe this idea, the complete proof will be given later:

– If M halts, then the strategy of Player 1 is to faithfully simulate the instruc-
tions of M . If Player 2 lets Player 1 playing, then the cost of simulating M

equals 0, otherwise the cost equals 1. In both cases the game always reaches a
target location. This shows that λ is a winning strategy with Cost(q, λ) ≤ 1.

– Suppose that M does not halt. Either the timed game simulates the instruc-
tions of M and thus never finishes. Or it does not simulate the instructions
of M and Player 2 is able to force the game to reach a target location with a
cost strictly greater than 1. Therefore in both cases, Player 1 has no winning
strategy λ with Cost(q, λ) ≤ 1.

Widget W1 to let a counter value unchanged - The first widget allows, when time
elapses in a location l, to keep the value of counter c unchanged. Such a widget
is useful when, for instance, the value of one counter is incremented while the
value of the other counter is not modified. See Figure 4. If the control enters
location l at time t with clock values x, y, z encoding the value n of counter c,
and leave location l at time t′′ ≥ t, then for all t′, t ≤ t′ ≤ t′′, the current clock
values x′, y′, z′ still encode the value n. Indeed the clock values cyclically rotate
among the three possible conditions for encoding n (see (1)).

The widget W1 is often useful in combination with other widgets. To keep
the figures of those widgets readable, we often omit widget W1 inside them.

Widget W2 for normal form - Figure 5 presents a widget to put a counter encod-
ing in normal form. When the control enters location l with clocks values x, y, z

encoding the value n of counter c, the control reaches location l′ with x, y, z

encoding n and x = 0. The control instantaneoulsy leaves location l′ due to the
invariant x = 0.

y = 1 ; y := 0
z = 1 ; z := 0

x = 1 ; x := 0
l l′

x ≤ 1 ∧ y ≤ 1 ∧ z ≤ 1 x = 0

Fig. 5. Widget to put a counter encoding
in normal form.

instr. k′

instr. k′′

l

σk

x = 0

y = z

y < z

Fig. 6. Widget for zero test.

Widget W3 for zero test - We here indicate how to simulate a zero test instruction,
i.e. an instruction k : if c = 0 then goto k′ else goto k′′. The widget for zero test
is given in Figure 6. We assume that the control reaches location l with the value
n of counter c encoded by x, y, z in normal form7, that is, x = 0, y = 1

2n+1 and

7 This is always possible by using widget W2.

z = 1− 1
2n+1 . We notice that location l is like locations described in Figure 3. No

time can elapse in l. Clearly to test that n = 0 is equivalent to test that y = z

as done in this widget.

Widget W4 for increment - In this paragraph, we indicate how to simulate an
increment instruction k : c := c + 1. While the previous widgets have controlled
transitions only, and null costs on every location, the widget for incrementing
counter c uses two uncontrolled transitions, and have cost equal to 1 for certain
locations. This widget is composed of several parts.

(1) First part of widget W4.
Consider Figure 7. We can suppose that the control reaches location l0 with the

l0

σk

l1 l2

x = 0 z < 1 x = 0

y := 0 x := 0

Fig. 7. First part of the widget for increment.

value n of counter c encoded by x, y, z in normal form, such that x = 0, y = 1
2n+1

and z = 1 − 1
2n+1 . The transition from l0 to l1 has to be taken immediately. As

the transition from l1 to l2 is controlled, Player 1 has to choose the amount
of time t that it waits in l1 before taking the transition to l2. Because of the
invariant labeling l1, we know that t < 1

2n+1 . When entering location l2, the
clock values are as follows: x = 0, y = t and z = 1 − 1

2n+1 + t. Note that to
faithfully simulate the increment of counter c, Player 1 should choose t = 1

2n+2 .
It is easy to verify that in location l2,

t =
1

2n+2
⇔ y + z = 1. (2)

So, we are in the following situation: to verify that Player 1 has faithfully chosen
t to simulate the increment of counter c, we simply have to check that in l2,
y + z = 1. Hereafter, we show how Player 2 observes in location l2 the possible
simulation errors of Player 1. Notice that in l2, the clock values x, y, z satisfy
0 = x < y < z ≤ 1.

(2) Part of widget W4 to check if y + z 6= 1.
For clarity, we distinguish the case where (i) y + z > 1 from the case where
(ii) y + z < 1. We begin with Case (i). The widget W> is given in Figure 8.
Notice that the first location of this widget is equal to the last one of the widget
of Figure 7, and that the first transition is uncontrolled. Location l7 is a target
location, i.e. l7 ∈ LF . The idea is as follows: we use the cost W (ρ) of the run ρ

from l2 to l7 to compute the value y + z. The cost of each location is null except
for locations l4 and l6 where WL(l4) = 1 and WL(l6) = 1. Let ρ be a run from
l2 to l7 such that y and z are clock values in l2. Recall that in location l2, the
clock values x, y, z satisfy 0 = x < y < z ≤ 1. We can verify that the cost of ρ is

l2 l3 l4

l5l6l7

0 0 1

010

x = 0 y ≤ 1 ∧ z ≤ 1 x ≤ 1

z ≤ 1x ≤ 1 ∧ y ≤ 1

u

z = 1 ; z := 0

y = 1
y := 0

x = 1
x := 0

z = 1
z := 0

y = 1 ; y := 0

x = 1
x := 0

Fig. 8. Widget W
>.

equal to y + z (a cost y in location l4 and a cost z in location l6). Hence we have

y + z > 1 ⇔ W (ρ) > 1. (3)

We now consider Case (ii). The widget W< is given in Figure 9. As for widget
W> the first location of this widget is equal to location l2 of Figure 7, and
the first transition is uncontrolled. Location l′6 is a target location. The idea is
similar to Case (i) : along the run ρ′ from l2 to l′6, the value n of counter c is
left unchanged, and the cost of ρ′ is equal to (1− y) + (1− z) (a cost 1− y in l′3
and a cost 1 − z in l′5). As y + z < 1 is equivalent to (1 − y) + (1 − z) > 1, then

y + z < 1 ⇔ W (ρ′) > 1. (4)

l2 l′3 l′4

l′5l′6

0 1 0

10

x = 0 y ≤ 1 ∧ z ≤ 1 x ≤ 1

z ≤ 1

z = 1 ; z := 0

u
y = 1
y := 0

x = 1 ; x := 0
z = 1
z := 0

Fig. 9. Widget W
<.

(3) Complete widget for increment.
The complete widget for increment is composed of the widgets given in Figures 7,
8 and Figure 9, as it is schematically given in Figure 10. The counter that we
want to increment has value n. First the control enters the first part of the widget
for incrementation with x = 0, y = 1

2n+1 , z = 1 − 1
2n+1 . As we have seen before,

Player 1 has to choose the amount of time t that it waits in l1 before taking the
transition to l2. The only way to reach l2 with y + z = 1 is to simulate faithfully
the increment of the counter (see (2)). Then in location l2, Player 1 proposes to

Player 2 to move the control to the widget that encodes the next instruction of
the machine M . Player has three choices: either accept the move of Player 1, or
move the control to the widget W>, or move the control to the widget W<.

l0 l1 l2
next

instruction

widget W
> widget W

<

x = 0 z ≤ 1 x = 0

y := 0 x := 0

u u

Fig. 10. Widget W4 for increment.

So, looking at Figure 10, the situation is as follows. Suppose that Player 1
faithfully simulates the increment instruction, i.e. y + z = 1 (see (2)). Either
Player 2 lets the game evolving to the next instruction of M , and the cost
remains null. Or it decides to use one of the two widgets W>, W<, and the game
reaches a target location with a cost equal to 1 (see (3) and (4)). So whatever
the Player 2’s decision, the cost is bounded by 1. Suppose now that Player 1
does not simulate the increment instruction, i.e. y + z 6= 1, then Player 2 can
take a decision such that the game reaches a target location with a cost strictly
greater than 1. Indeed, if y + z > 1, it decides to use the widget W> (see (3)),
otherwise it uses the widget W< (see (4)).

Widget W5 for decrement - As for the increment, the widget for decrement is
in several parts. We only present the first part in details, where Player 1 has to
faithfully simulate the decrement. The other parts where Player 2 observes the
possible errors of Player 1 are identical to Cases (i), (ii) of the increment widget.

Let us assume that we enter location l0 of the widget of Figure 11 with x = 0,
y = 1

2n+1 and z = 1 − 1
2n+1 . We also assume that n > 1 (see footnote 3).

l0 l1 l2 l3 l4

x = 0 z ≤ 1 y ≤ 1 x ≤ 1 ∧ y ≤ 1 x = 0

z = 1
x := 0 z := 0

y = 1 ; y := 0

x = 1
x := 0

Fig. 11. First part of the widget for decrement.

When the control leaves location l1, the clock values are respectively equal
to x = 0, z = 1, and y = 1

2n+1 + 1
2n+1 . Then Player 1 has to choose the amount of

time t that it waits in location l2 before taking the transition to l3. To faithfully
simulate the decrement, Player 1 should choose t = 1

2n . In location l4, we are now
in the same situation as in location l2 of the increment widget (see Figure 10):
t = 1

2n ⇔ y + z = 1. So, we just have to plug in l4 the two widgets W>, W<

and a transition to the next instruction of the machine M . The situation is the
same as for the increment. Indeed if Player 1 faithfully simulates the decrement

instruction, then the cost is bounded by 1 whatever the Player 2’s decision. If
Player 1 does not simulate it, then Player 2 can take a decision such that the
game reaches a target location with a cost strictly greater than 1.

It should now be clear why we can reduce the halting of a two-counter ma-
chine to the existence of a winning strategy for Player 1 to reach a target location
with a cost bounded by 1. Let M be a two-counter machine and A the WTA
constructed from the widgets as above. The target locations of A are either the
location associated with the stop instruction of M , or the target locations of the
widgets of Figures 8 and 9. Let q = (l, ν) be the state of A encoding the initial
configuration (k0, 0, 0) of M , that is, l is the location labeled by σk0

, and ν is the
clock valuation such that x1 = x2 = 0 and y1 = z1 = y2 = z2 = 1

2 . Let us prove
that M halts iff there exists a winning strategy λ from q with Cost(q, λ) ≤ 1.

Suppose that M halts, then the strategy λ of Player 1 is to faithfully simulate
the instructions of M . Let ρ be a run of Outcome(q, λ). If along ρ, Player 2 lets
Player 1 simulating M , then ρ reaches the target location of A associated with
the stop instruction of M with a cost W (ρ) = 0. If Player 2 decides to use one of
the two widgets W>, W<, then ρ reaches the target location of this widget with
W (ρ) = 1. Therefore, λ has a winning strategy from q satisfying Cost(q, λ) ≤ 1.

Suppose that there is a winning strategy λ from q with Cost(q, λ) ≤ 1. Assume
that M does not halt, the contradiction is obtained as follows. If λ consists in
simulating the instructions of M , then Player 2 decides to let Player 1 simulating
M . The corresponding run ρ ∈ Outcome(q, λ) will never reach a target location
since M does not halt. This is impossible since λ is winning. Thus suppose that
λ does not simulate the instructions of M , and let ρ ∈ Outcome(q, λ). As soon as
Player 2 observes a simulation error along ρ, it decides to use one of the widgets
W>, W< such that ρ reaches the target location of this widget with W (ρ) > 1.
This is impossible since λ is winning with a cost Cost(q, λ) ≤ 1. ut

4 Symbolic analysis of timed games

4.1 The Pre operator

In order to symbolically analyse timed games, we present a controllable prede-
cessor operator. The main result is Proposition 1 relating the iteration of this
operator with the existence of a winning strategy with a bounded cost. The con-
tent of this section is close to [9], but with a different and simpler presentation.8

Let A = (L, LF , X, Σ, δ, Inv, WL, Wδ) be a WTA. An extended state of A is
a tuple (l, ν, w) where l ∈ L is a location, ν is a clock valuation over X , and
w ∈ R+ is called the credit. Intuitively, the credit models a sufficient amount of
resource that allows Player 1, when in state (l, ν), to reach a target location of
LF whatever Player 2 decides to do, with a cost less than or equal to w. The set
of extended states is denoted by QE .

We now define the following Pre operator.

8 In [9], timed games on WTA’s are reduced to games on linear hybrid automata where
the cost is one of the variables.

Definition 2. Let A be a WTA and R ⊆ QE. Then (l, ν, w) ∈ Pre(R) iff there
exist t ∈ R+ and a controlled transition e ∈ δ such that

– there exists an extended state (l′, ν′, w′) ∈ R, with (l, ν) →t·e (l′, ν′), and
w ≥ w′ + WL(l) · t + Wδ(e),

– and for every t′, 0 ≤ t′ ≤ t, every uncontrolled transition e′ ∈ δ, and ev-
ery state (l′, ν′) such that (l, ν) →t′·e′

(l′, ν′), there exists an extended state
(l′, ν′, w′) ∈ R with w ≥ w′ + WL(l) · t′ + Wδ(e

′).

The Pre operator satisfies the following nice properties. Given a WTA A, we
define the set Goal = {(l, ν, w) | l ∈ LF and w ≥ 0}, and the set

Pre∗(Goal) =
⋃

k≥0

Prek(Goal).9

A set R ⊆ QE of extended states is said upward closed if whenever (l, ν, w) ∈ R,
then (l, ν, w′) ∈ R for all w′ ≥ w.

Lemma 1. 1. For all R ⊆ QE, the set Pre(R) is upward closed.
2. The set Goal and Pre∗(Goal) are upward closed.

Proposition 1. Let A be a WTA. Then (l, ν, w) ∈ Pre∗(Goal) iff there exists a
winning strategy λ from state q = (l, ν) such that Cost(q, λ) ≤ w.

Proposition 1 leads to several comments in the case a symbolic representa-
tion10 for Pre∗(Goal) can be computed. In such a case, we say that Pre∗(Goal)
has an effective representation.

Comments 3. By Proposition 1, Problem 1 is decidable if (i) Pre∗(Goal) has an
effective representation, and (ii) the belonging of an extended state (l, ν, w) to
Pre∗(Goal) can be effectively checked. We now know from Theorem 1 that one
of the conditions (i), (ii) cannot be fulfilled in general.

Comments 4. Let A be a WTA and q = (l, ν) be a state of A. Problem 2
asks to determine the optimal cost OptCost(q). This is possible under the fol-
lowing hypotheses: (i) Pre∗(Goal) has an effective representation, (ii) the value
inf{w | (l, ν, w) ∈ Pre∗(Goal)} can be effectively computed. This value is exactly
OptCost(q).

Moreover the existence of an optimal winning strategy from q is decidable
if one can determine the value c = OptCost(q), and the belonging of (l, ν, c) to
Pre

∗(Goal) can be effectively checked. Indeed, an optimal strategy exists iff c is
the minimum value of the set {w | (l, ν, w) ∈ Pre∗(Goal)} (see Comments 2).

In [9], Problem 2 has been solved for the class of WTA’s A such that the
cost function of is strictly non-zeno, i.e. every cycle in the region automaton
associated with A has a cost which is bounded away from zero. The authors of

9 For k = 0, Pre
k(Goal) = Goal, and for k > 0, Pre

k(Goal) = Pre
`

Pre
k−1(Goal)

´

.
10 For instance this representation could be given in a decidable logical formalism like

the first-order theory of the reals with order and addition.

this paper translate Problem 2 into some linear hybrid automata where the cost
is one of the variables. For this class of hybrid automata, the conditions men-
tioned above in these comments are fulfilled. Of course the automaton we have
contructed in the proof of Theorem 1 does not fall into this class of automata.

4.2 One clock

In Section 3, Problem 1 was shown undecidable by a reduction of the halting
problem of a two-counter machine. The WTA in the proof uses five clocks, has
no cost on the transitions and cost 0 or 1 on the locations. We here study WTA’s
with one clock and such that for any location l, WL(l) ∈ {0, d} with d ∈ N a given
constant. For this particular class of automata, we solve Problem 2 by following
the lines of Comments 4. By Comments 2, Problem 1 is thus also solved. The
proof is only detailed for d = 1.

To facilitate the computation of the Pre operator, we first introduce another
operator denoted by π, that is largely inspired from the one of [9]. We need to
generalize some notation to extended states: a timed transition (l, ν) →t (l′, ν′)
is extended to (l, ν, w) →t (l, ν′, w − WL(l) · t), similarly with (l, ν) →e (l′, ν′)
extended to (l, ν, w) →e (l′, ν′, w − Wδ(e)). Given R ⊆ QE and a ∈ Σ we define

Prea(R) = {r ∈ QE | ∃r′ ∈ R such that r →e r′ with Action(e) = a},

as well as cPre(R) = ∪a∈Σu
Prea(R), and uPre(R) = Preu(R). We also define

the following set tPre(R,S), with R, S ⊆ QE . Intuitively, an extended state r is
in tPre(R, S) if from r we can reach r′ by time elapsing and along the timed
transition from r to r′ we avoid S. This set is defined by

tPre(R, S) =
{

r ∈ QE | ∃t ∈ R+ with r →t r′, r′ ∈ R, and Post[0,t](s) ⊆ S
}

where Post[0,t](s) = {r′ ∈ QE | ∃t′, 0 ≤ t′ ≤ t, such that r →t′ r′}. The new
operator π is then defined by :

π(R) = tPre
(

cPre(R), uPre(R)
)

. (5)

The next lemmas indicate useful properties of the various operators.

Lemma 2. 1. cPre(R1 ∪ R2) = cPre(R1) ∪ cPre(R2),
2. uPre(R1 ∪ R2) = uPre(R1) ∪ uPre(R2),
3. tPre(R1 ∪ R2, S) = tPre(R1, S) ∪ Pret(R2, S),
4. tPre(R, S1 ∪ S2) = tPre(R, S1) ∩ Pret(R, S2).

Lemma 3. 1. If R ⊆ QE is upward closed, then π(R) = Pre(R).
2. Pre∗(Goal) = π∗(Goal).

We now study WTA’s A with one clock x, such that WL(l) ∈ {0, 1} for every
location l. Let C be the largest constant used in the guards of A. As done in [5]
for timed automata, we define an equivalence relation on QE in order to obtain
a partition of this set.

Definition 3. Let (ν, w), (ν′, w′) ∈ R
2
+. Then (ν, w) ∼ (ν′, w′) if the following

conditions hold.

1. Either bνc = bν′c, or ν, ν′ > C; bwc = bw′c;
2. For ν, ν′ ≤ C, fract(ν) = 0 iff fract(ν′) = 0; fract(w) = 0 iff fract(w′) = 0;
3. For ν, ν′ ≤ C, fract(ν) + fract(w) ∼ 1 iff fract(ν′) + fract(w′) ∼ 1, with

∼∈ {<, =, >}.

An example of equivalence relation ∼ is given in Figure 12. We extend the
relation ∼ to QE by defining (l, ν, w) ∼ (l′, ν′, w′) iff l = l′ and (ν, w) ∼ (ν′, w′).
Let P be the partition of QE obtained with this relation.

x

w

Fig. 12. The relation ∼ with C = 4.

x

w

Fig. 13. The partition P2

The partition P is stable under π, that is, given R ∈ P , π(R) is a union of
equivalence classes of P . The reader could convince himself as follows. Let R ∈ P .
Clearly, the sets cPre(R) and uPre(R) are union of equivalences classes of P . Now
due to Lemma 2, it remains to check that given R, S ∈ P , the set tPre(R, S)
is a union of equivalence classes taking into account that WL(l) ∈ {0, 1}. We
summarize this result in the next lemma.

Lemma 4. P is stable under π.

By this lemma, the next corollary is straightforward since Goal is a union of
equivalence classes of P and by Lemmas 1 and 3.

Corollary 1. The set Pre∗(Goal) is a union of equivalence classes of P. Given
a state q of A, the optimum cost OptCost(q) is a non-negative integer11.

Even if the proposed partition P is infinite, we are able to prove that the
computation of Pre∗(Goal) terminates. We first define the set Up(P) of upward
closed sets w.r.t. P : Up(P) = {R | R = ∪Ri, Ri ∈ P and R is upward closed}.

Lemma 5. The partially ordered set 〈Up(P),⊇〉 is Artinian12.

Corollary 2. Pre∗(Goal) can be effectively computed.

Looking at Comments 4, we get the next corollary.

11 It is possible to find an example of WTA with two clocks and an optimum cost which
is rational.

12 Every decreasing chain is finite.

Corollary 3. Let A be a WTA with one clock and such that WL(l) ∈ {0, 1} for
all locations l. Then Problems 1 and 2 can be solved.

Comments 5. The arguments given in this section are easily extended to a cost
function WL(l) ∈ {0, d} for any location l, where d ≥ 1 is a fixed integer. The
same approach holds but with a partition Pd different from P . This partition is
similar to P , except that we only need horizontal lines of the form w = d·n (with
n ∈ N) and each anti-diagonal of the form x + w = c is removed and replaced
by the lines of equations d · x + w = d · n (with n ∈ N). See Figure 13.

References

1. L. de Alfaro and T.A. Henzinger and R. Majumdar. Symbolic algorithms for
infinite-state games. In Proceedings of CONCUR’01, Lect. Notes Comput. Sci.

2154, 536–550, Springer, 2001.
2. L. de Alfaro and M. Faella and T.A. Henzinger and R. Majumdar and M.

Stoelinga”. The element of surprise in timed games”. In Proceedings of CON-

CUR’03, Lect. Notes Comput. Sci. 2761, 144–158, Springer, 2003.
3. R. Alur and P. Madhusudan. Decision problems for timed automata: A survey. In

Proceedings of SFM’04, Lect. Notes Comput. Sci. 3185, 1–24, Springer, 2004.
4. R. Alur, M. Bernadsky, and P. Madhusudan. Optimal reachability for weighted

timed games. In Proceedings of ICALP’04, Lect. Notes Comput. Sci. 3142, 122–
133, Springer, 2004.

5. R. Alur and D.L. Dill. A theory of timed automata. Theoret. Comput. Sci. 126,
183–235, 1994.

6. R. Alur, S. La Torre, and G.J. Pappas. Optimal paths in weighted timed automata.
In Proceedings of HSCC’01, Lect. Notes Comput. Sci. 2034, 49–62, Springer, 2001.

7. E. Asarin and O. Maler. As soon as possible: Time optimal control for timed
automata. In Proceedings of HSCC’99, Lect. Notes Comput. Sci. 1569, 19–30,
Springer, 1999.

8. G. Behrmann, A. Fehnker, T. Hune, K. Larsen, P. Pettersson, J. Romijn, and F.
Vaandrager. Minimum-cost reachability for priced timed automata. In Proceedings

of HSCC’01, Lect. Notes Comput. Sci. 2034, 147–161. Springer-Verlag, 2001.
9. P. Bouyer, F. Cassez, E. Fleury, and K.G. Larsen. Optimal strategies in priced

timed game automata. In Proceedings of FSTTCS’04, 3328 Lect. Notes Comput.

Sci. 3328, 148–160, Springer, 2004.
10. T. Brihaye, V. Bruyère, and J.-F. Raskin. Model-Checking for Weighted Timed

Automata. In Proceedings of FORMATS-FTRTFT’04, Lect. Notes Comput. Sci.

3253 , 277–292, Springer, 2004.
11. O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for

timed systems. In Proceedings of STACS’95, Lect. Notes Comput. Sci. 900, 229–
242, Springer, 1995.

12. M. Minsky. Computation: Finite and Infinite Machines. Prentice Hall, 1967.
13. S. La Torre, S. Mukhopadhyay, and A. Murano. Optimal-reachability and con-

trol for acyclic weighted timed automata. In Proceedings of IFIP TCS’02, IFIP

Conference Proceedings 223, 485–497, Kluwer, 2002.

