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ABSTRACT
PN refer to the set of ties a specific individual has with
other people. There is significant variation in the size of an
individual’s PN and this paper explores the effect of vari-
ation in PN size on information flow through complete so-
cial networks. We analyse degree distributions from two
personal network datasets and seek to characterise PN size
variations. Random matrix analysis is used to demonstrate
that the specific mixture of PN sizes plays an important role
in shaping the pattern of information dissemination in com-
plete social networks. To explore this further, we conducted
a series of studies on normal random graphs that represent
social networks in which PN size follows a normal distribu-
tion. We demonstrate that there are three critical parame-
ters which influence how information flows through a social
network: the mean PN size, the variance in PN size and
the rate at which information passes between nodes in the
network. The results suggests that if the rate of information
flow is increased, for example by using electronic commu-
nication rather than face-to-face communication, this could
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have a dramatic influence on the probability of an individ-
ual acquiring a piece of information from a person in their
network.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Correlation and Re-
gression analysis; J.4 [Computer Applications]: Social
and Behavioral Sciences

General Terms
algorithms, performance, theory

Keywords
random matrix theory, spectral graph theory, social net-
works

1. INTRODUCTION
In the last decade, there has been a massive increase in

network research across both the social and physical sci-
ences [1]. This has been partly due to the increased avail-
ability of electronic data on social interactions from mo-
bile phone records and internet communication (e.g. instant
messaging, email, social networking sites) that have allowed
researchers to investigate social interaction on a scale not
possible if relying on self-reported data from participants.
In particular, research in the physical sciences has found
that many different types of networks — from social net-
works to physical networks such as power transmission grids
and the World Wide Web — have common properties such
as power-law distributed degree distributions. Simulations
and models of networks have produced novel findings on,
for example, how information or disease spreads through
networks [11].

On the other hand, there are important differences be-
tween social networks and other types of networks. In theo-
retical models and network simulations, the nodes are often
treated as if they all have the same properties, as if a net-
work where the nodes are people can be modelled in the
same way as a network where the nodes are routers. It is
clear that the “nodes” in social networks are, in reality, a
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heterogeneous, differentiated mass, often representing indi-
vidual people with various personalities.

Thus, we start our study of social networks from the per-
sonal network point of view, in which the social behaviour
of individuals are taken into account. There is convergent
evidence to suggest that individuals have different “strate-
gies” to build and maintain their PNs with an eye towards
better location in social networks. First, all studies of per-
sonal networks have shown that there is a large variation in
network size, e.g., [3]. Roberts et al. [12] demonstrated that
there is a negative relationship between network size and
mean emotional closeness of the network. Thus individuals
tend to have either a small network of emotionally close ties
or a larger network of weaker ties. This suggests both the
impact of cognitive and time constraints on network size.

Second, the characteristics of personal networks have been
shown to correlate with personality measures. High self-
monitors — people who adjust their behaviours according
to their social situation — tend to have larger networks and
occupy a more strategically advantageous position in the
network. Low self-monitors — people who behave consis-
tently regardless of the social situation — have a smaller,
more homogenous network of close ties.

Finally, a general “propensity to connect with others” has
also been shown to be associated with having a larger net-
work and maintaining more strategically imporant bridging
ties in the workplace. Thus there is good evidence that large
and small networks vary in their nature, and that at least
part of the variation in network size may be due to person-
ality factors.

1.1 Contributions
In this paper, we endeavour to start bridging the gap be-

tween the social scientists’ view and that of theoreticians’
by considering social networks from a personal network per-
spective. We present experiments and analyses regarding
the influence of variation in personal network size on the
way in which information flows through complete networks.

We analyse the impact of cognitive constraints on overall
network structure in Section 3 by looking at personal net-
works. First, we present theoretical analysis to establish the
basic spectrum distributions of general social networks. It
is shown that variance of personal network size determines
the entire spectrum. Through this result and spectral graph
theory, to be presented in Section 2.2, this gives probabilistic
bounds on the structural properties of the resulting social
networks. We find that the observed distribution is such
that the PN size distribution shall give rise to (global) so-
cial networks that are optimised against relative convergence
rate of information dissemination.

2. BACKGROUND

2.1 Related Work
There has been a substantial body of work concerned with

analysis of very large social networks. Here we only point to
major works most directly relevant to this paper; we encour-
age the readers to refer to [1] for a comprehensive literature
review.

Newmann [8] discussed critical conditions for random graphs
of arbitrary degree distribution under which the giant-component
covers the majority of the graph. Later, he investigated
community structures through eigenvectors of complex net-

works [10], demonstrating modularity can be a real opti-
misation goal in any complex networks. Recently, Lewis
et al. [5] have developed a dataset based on facebook.com,
which is publicly available and which provides details of the
social networks of an entire cohort of University students.
The data reveal that the average size number of facebook
“friends” the students have is 109, but of these only 7 are
’picture friends’ — that is they have been tagged in the
same picture together. This demonstrates the importance
on focusing not just on the number of ties, but also on their
quality. Social relationships cannot be simply reduced to a
binary tie/no tie, as is the case in many network models, but
are multi-faceted and vary along many different dimensions.

For the rest of this section, we present brief introductions
of the theoretical and statistical tools used in our analyses.
The readers can skip to the next section where appropriate.

2.2 Spectral Graph Theory
Spectral graph theory (SGT) or alternatively named al-

gebraic graph theory characterise the relation between the
eigenvalues/vectors and graphs. The main results often in-
volve inequalities providing upper or lower bounds relating
eigenvalues to graph properties. For example, the second
smallest eigenvalue in the spectrum provides bounds on the
connectedness of the graph and the number of zeroes give
number of disconnected components in the network. Below,
we give the basic formalisms from spectral graph theory so
as to present our proof and simulations later.

Fact 1 (Chung [2]). Let G = (V, E) be a graph with
vertices V and E : V × V the edges and A be its adjacency
matrix as well as D be the diagonal matrix containing the
degree sequences. The Laplacian matrix of G is defined as
L = D−1/2AD−1/2 and its eigenvalues Λ.

The degree of connectivity is defined as

φ(G) = min
S⊂V

E(S, S̄)

min{|S|, |S̄|}
Namely, this is the isoperimetric number of graph G. Spec-
tral graph theory indicates that it is bounded by the

2φ ≥ Λ2 ≥ φ2

2

For distance between k-subgroups {X1, X2, ..., Xk : X ⊂
V } in the system, their pairwise distance is upper-bounded
by:

min dis(Xi, Xj) ≤ max⌈
log vol(G)√

vol(Xi)vol(Xj)

log
Λn−1+Λk

Λn−1−Λk

⌉

Consider a random walk matrix P = [pij ] over G such
that

pij =



pij = 1
di

if (i, j) ∈ E

0

There exist an equilibrium state π in which P tP = π, pro-
vided that P is aperiodic 1. The rate at which a random walk
to converge to π is measured in terms of relative pointwise

distance, ∆(t) = max
|P t

ij−πi|
πi

, is

∆(t) ≤ exp(t(max |1− Λi| − 1))
vol(G)

minx dx

1For full details, see [4]
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3. DEGREE MIXTURE AND SOCIAL NET-
WORKS

We investigate the interaction between personal network
characteristics and the larger social network. We hypothe-
size that PN size distribution should be such that it max-
imises gains in certain metrics in the larger social network.
Our experimental design is to synthesize social networks via
random graphs that give the same PN size distribution. We
note that this gives better generalisability beyond any gen-
erative model by assuming only link distribution (see dis-
cussion). By inspecting the spectra distribution of these
random social networks, we find that PN distribution opti-
mises relative convergence rate for random walks over social
networks, as suggested by SGT results.

3.1 The Dataset
This survey followed 30 students over an 18-month period

as they made the transition from school to University. Go-
ing away to University provides opportunities to form new
friendships, but also places strain on existing relationships.
This survey aimed to track changes in the students’ social
network over the course of the study, and relate this to pat-
terns of communication.

The students completed a Social Network Questionnaire
at Months 1, 9 and 18 of the study, which asked them to list
the entire social network - all their living relatives, as well
as all the unrelated people with whom they feel that they
have a genuine personal relationship. This produced a mean
network size of 51.7 (range 19-132) at Month 1. In the cur-
rent analysis only the data collected at Month 1 is used, as
the rest of the data is still being processed. Finally, to find
additional supporting evidence to the observed distribution,
we also use the published data in [12] (251 subjects) to con-
firm that this is a common distribution of personal network
sizes.

3.2 Personal Network Size Distribution
Here, we first derive the size distribution for personal net-

works through maximum likelyhood estimation, as shown in
Figure 1. In Figure 1(a) and 1(b) we show the PN size dis-
tributions from the mobile phone dataset and another pub-
lished work in [12]. Notice that the dataset in [12] consists
of 251 subjects from both UK and Belgium.

However, note that both the distributions suggests a sig-
nificant skew towards lower end of network size while the
classic models of complex networks suggest a power-law link
distribution. The existence of the skew suggests that a non-
negligible number of the population have substantially fewer
links than those in the right tail.

Since the degree distribution suggests a small fraction of
the population having significantly larger network size, we
first present a method to synthesise social networks match-
ing the exact distributions here and then discuss our results
concerning the social networks under a mixture of different
personal network sizes. We will investigate whether the ex-
istence of a skewed network size distribution serve certain
purposes in social networks, in the next section.

Synthesising Social Networks from Personal Networks
To synthesise social networks with personal networks as pa-
rameterised above, the standard Erdos-Renyi random graphs
no longer suit due to the fact that its degree distribution is
Binomial which is not the case in our 251 subjects and 30

(a) Measured distribution of personal network size.

(b) Measured distribution of personal network size from
another dataset [12] consisting of 251 subjects. Notice the
common distribution fall in the central region of the dis-
tribution. Regrettably, personality scores are not avail-
able for this dataset.

(c) Distribution fitting of the link distribution via
maximum-likelyhood parameter estimation. Within 95%
confidence interval the extremal value distribution fits
better than Gaussian. Note that subjects falling into the
left tail consist of about 15% of the samples. This cor-
roborate with the results to be presented later in Figure
2(c).

Figure 1: Personal network size distribution.
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subjects study. The problem is then how we can check the
general properties of a social network that matches our ob-
served PN size distribution.

In this paper, we propose to check random instances of
graphs that gives the observed PN distribution. We shall
focus first on how we do this and discuss why this can gen-
eralise to real snapshots of social networks later. We use the
algorithm in [7] to synthesise social networks matching the
personal network distribution discovered above. This algo-
rithm finds a random sequence sampled from the designated
distribution such that the sum of the sequence is even. Each
number in this sequence denotes the degree distribution of
a graph which is made complete by picking random edges
between vertices that still have empty slots. This algorithm
clearly terminates as the even sum sequence can be found
in polynomial time with high probability and picking edges
takes steps totaling the sum of the sequence. The details of
the algorithm can be found in Algorithm 1.

Algorithm 1 Algorithm due to Molloy and Reed [7]

repeat

pick {d1, d2, · · · , dn} from distribution Pk

until
P

di is even
for each random pair of stubs (xi, xj) such that deg(xi) <
di ∧ deg(xj) < dj do

add (x, y) into E
deg(xi)← deg(xi) + 1; deg(xj)← deg(xj) + 1

end for

3.3 Spectrums of Mixture Social Networks
As shown in Figure 1, there exists a significant skew in the

PN size distribution. In this section, we characterise the po-
tential impact of the variance in PN size to how information
flows through the social network as a whole. The obvious
metrics to measure are global metrics such as the diameter
or isoperimetric number (measuring group connectivity) of
a graph. The diameter, after all, is the metric capturing the
famous 6-degree of separation result by Stanley Milgram.

In theory the larger the personal networks are the more
“connected” the resulting social network as a whole is. How-
ever, as we shall see below, from the personal network per-
spective, this claim is not straight-forward. In Theorem 1,
we show that what decides the spectra for Laplacian matri-
ces of graphs is the variance of link distribution, rather than
sheer mean number of links. This theorem thus suggests
that to maximise or minimise certain metrics, the variance
matters more than mean number of links.

Theorem 1. Let L = D−1/2LD−1/2 be the Laplacian
matrix of graph G = (V, E) where D = diag(d1, d2, ..., dn),
di be the edge degree of vertex i, and L = [lij ] be such that

lij =

8

<

:

deg(i) if i = j
−1 (i, j) ∈ E
0

Let Λ be the eigenvalues of L and σ be the standard devi-
ation of l1≤i<j≤n. We have

Λ ∼ 1−D−1√nσ Semi-Circle(2)

where Semi-Circle(x; r) = 1
2πr2

R √
r2 − x2dx.

Proof. We show this by first deriving the eigenvalue de-
composition of L into M , the 01 adjacency matrix, and D,

the diagonal matrix containing the degree sequence, from
which we can gauge the distribution for each matrix. For
convinience of presentation, we use S = D−1/2.

ΛV =S(D −M)SV

=(diag(1)− SMS) V

M {SV } =S−1(diag(1)− Λ)S−1 {SV }
=λMSV

Since M is symmetric and

that diagonal matricse are commutative

Cleaning RHS and LHS, we have

λM =D (diag(1)− Λ)

Provided that λM ∼ √nσ Semi-Circle(2) (invoke Lemma
1), we arrive at the claim.

Lemma 1. Let Xn = [xij ] be the adjacency graph of a
n-node graph G = (V, E) such that max deg(v) = c ≪ n
and λ = {λi} be its eigenvalues. If {xij} are i.i.d. random
variables such that

xij =



1 if (i, j) ∈ E
0 otherwise

Then we have:

λi ∼
√

nσ Semi-Circle(2) (1)

where σ is the standard deviation of xij, p = Pr[xij = 1]
and Semi-Circle(r) is a semi-circular distribution of radius
r.

Proof. To apply the Semi-Circular law2, we first define
the normalised adjacency matrix A = 1

σ
[X − [Exij ]]. Let

1√
n
AW = λAW be its eigenvalue decomposition.

Expanding the normailisation form, we have X = σA+[p].
Applying the universality principal for shift matrices [13], we
have

λX ∼
√

nσ Semi-Circule(2)

It remains to show that i) rank([p]) = o(n) and ii) ‖[p]‖22/2 <
∞. Condition i) is straight-forward, note that the rank of
[1] is 1. For ii), it suffices to show that

P

1≤i,j≤n p2
ij < ∞

as n → ∞, i.e., p ≤ O(n−1), which comes from the given
conditions.

3.4 Simulating Information Flow through
Social Networks

Having characterised the expected behaviour of the spec-
tra, we present simulation results for matrices with a mix-
ture between high and low degree nodes. We first show that
in the development stage during which the individuals start
increasing personal network size, the social network may not
benefit from the increase of links (Figure 2(a)). This is exem-
plified by the significant increase in variance when mixture
ratio reaches 50%.

As discussed earlier in Theorem 1, the spectra is domi-
nated by degree distribution variance. This postulates that
even when subjects intend to optimise their personal net-
work against diameter, they may find contradictory results
during certain mixtures.

2See Section 7.1 for a introduction.
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Secondly, one can also argue that subjects can only op-
timise using cues local to their personal network. In Fig-
ure 2(c) and 2(d), we demonstrate a “local” communication
metric to that effect. This metric, ∆(t) as presented in Fact
1, aims to optimise the speed at which the social network
disseminates information within the limits set by the un-
derlying topology. One can think of this as the individual
trying to make sure his/her personal network size is such
that gossip spreads fastest around his/her local community.

Curiously, this simple metric reaches maximum at a cer-
tain mixture ratio and in a shape close to the observe ex-
tremal value distribution found in the network size distribu-
tion. This result indicates that, as far as disseminating in-
formation is concerned, simply increasing personal network
size may not be the most direct route. This is due to the fact
that increasing links means more nodes to be sent messages
which in effect ”widens” the necessary scope to broadcast.

To achieve maximum relative speed of convergence, the
optimal strategy is in fact a certain mixture of lower degree
nodes with higher degree ones, as suggested in Figure 2(c)
and 2(d). Notice that these two Figures come from results
based on different parameters and social network size.

Last, but not least, we note that this metric is one of a
large family of optimisation goals since its peak is deter-
mined by λM

2 . This eigenvalue plays an important role in
many similar metrics based on products of adjacency matrix
and thus those can have similar behaviour to the relative
convergence speed as we have seen above. In Figure 2(b),
we present its simulation results over the different mixture
configurations so as to ascertain its insensitivity.

3.5 Discussion
In interpreting the results of the synthesised social net-

works, the question arises whether the model, though it gives
exact matching distribution of PN size, captures the nature
of social networks. Granted that the mixture model does not
take generative models such as preferential attachment [9]
into account. While we admit that it may be the genera-
tive model for social networks, we would like to note that
these experimental results are applicable to networks with
or without a generative model. Therefore, while it is possi-
ble to construct even more realistic networks (and risk the
generative model in question being wrong or involving more
complications with other generative models), we resort to a
very generic model that assumes nothing but a binary mix-
ture of degree distributions. The low variance as indicated
in Figure 2(c) suggests that, given the same mixture ratio,
the number of graphs that offer significantly lower conver-
gence time is very low compared to all other possibilities.
Therefore, we believe that even when the effects of various
generative models are taken into consideration, the general
trend shown here by considering personal network size alone
will remain the same.

4. PN SIZE AND INFORMATION
DISTRIBUTION

The simulation analysis demonstrated that variation in
PN size influences the rate at which information flows through
a global network. Nevertheless, it does not answer a more
intriguing question concerning the way in which the infor-
mation flow may be controlled by the PN size. Below, we
present a preliminary study using very simplified parame-

(a) The denominator of diameter upper bound, z =
“

log
λn−1+λ2

λn−1−λ2

”−1

, steadily decreases as the proportion of

nodes with high-degree exceeds that of low-degree. No-
tice that the variance is maximised when mixture reaches
50 : 50.

(b) λM
2 fluctuations during distribution mixture.

(c) The exponent of random walk convergence time,
max |1−Λi|−1. Notice that this follows the phase transi-
tion similar to that of λM . Note that this reaches maxima
when the mixture ratio is between 13% to 18%.

(d) The exponent of random walk convergence time,
max |1−Λi|−1 under mixture of N(50, 15) and N(10, 5).
Observe that maximum is reached in similar region as
above.

Figure 2: Global network spectra due to personality

mixture.
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Figure 3: PN size and its influence on information

flow. The x-axis indicates PN sizes as number of

links; the y-axis indicates the probability of random

walker to reach that node. The NRG model was

generated with average PN size = 5 and standard

deviation = 1.

Figure 4: PN size and its influence on information

flow. The x-axis indicates PN sizes as number of

links; the y-axis indicates the probability of random

walker to reach that node. The NRG model was

generated with average PN size = 10 and standard

deviation = 1.

Figure 5: PN size and its influence on information

flow. The x-axis indicates PN sizes as number of

links; the y-axis indicates the probability of random

walker to reach that node. The NRG model was

generated with average PN size = 5 and standard

deviation = 5.

Figure 6: PN size and its influence on information

flow. The x-axis indicates PN sizes as number of

links; the y-axis indicates the probability of random

walker to reach that node. The NRG model was

generated with average PN size = 10 and standard

deviation = 5.
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ters to probe the basic dynamics of parameter space of PN
size and each node’s influence as gauged by the equilibrium
probability due to the observed interaction frequency.

To further investigate the relationship between PN size
and information flow, we conducted a series of studies on
normal random graphs (NRG) that represent social networks
in which PN size follows a normal distribution. We formu-
lated PN size as degree of links on each node. Furthermore,
we evaluated the behaviour of information transmission by
estimating the influence of each individual, which was de-
fined as the equilibrium probability that a certain piece of
information randomly passes by (or reaches) each node. We
also assigned the contact probability on each edge according
to exponential distributions with lamba = 0.5.

As shown in Figure 4, when a social network has a greater
PN size in general, nodes with more links tend to have a
greater influence on information transmission. However, this
relationship disappears when a social network contains fewer
links on average – nodes that have a medium, rather than
large, number of the links tend to play a more important role
in distributing the information (Figure 3). Therefore, con-
trary to our intuition, PN size is not necessarily a good ref-
erence for identifying individuals that have a greater chance
to know and pass on information. If we interpret PN size as
a rough indicator for personality, i.e. nodes with larger and
smaller PN sizes represent out-going and shy people respec-
tively, the result suggests that, if a community is formed
mainly by out-going people, then those have more friends
have higher chance to control information flow. However,
if a community does not have many out-going people, then
those with neutral personality would have a higher chance
of obtaining and passing on information than others. This
intriguing result suggests that personality does shape the
topology of the social network and thus changes the way
that information flows in the network. Interestingly, such a
phenomenon is independent of the total number of the peo-
ple in a social network. Thus it is the personality (PN size)
of the major sub-community rather than overall community
size that determines how information transmits within a net-
work.

To test if the diversity of PN size affects information trans-
mission, we also conducted simulations on NRG models gen-
erated by different variations of PN size. As shown in Figure
5, when we increased the standard deviation of PN size (=5)
in two NRG models that have average PN size = 5, the most
influential nodes tend to have a small or medium number of
links. In other words, when a community is less out-going
and has less diversity in personality, then individuals with
medium or smaller PN sizes tend to play important roles in
terms of information transmission. This finding does not dif-
fer much from what we observed in the previous NRG model
that has average PN size = 5 with standard deviation = 1
(Figure 3). As a comparison, we did similar simulations on
NRG models consisting of more edges (Figure 6). Again,
a linear relationship between the size of personal links and
the influence was observed as was found in Figure 4. These
results as a whole suggests that diversity of personality in a
community is not as essential as which personality type was
most common in terms of controlling information flow.

5. CONCLUSION AND FUTURE WORK
In this paper, we explored how variation in personal net-

work size influenced information flow through complete so-

cial networks. Random matrix analysis demonstrated that
the specific mixture of personal network sizes played an im-
portant role in shaping the speed at which information dis-
seminated through the network. Moreover, through spectral
analysis, we demonstrated that this mixture generalises to
other metrics involving recursive operations of the adjacency
matrix of a social network. A series of studies on normal
random graphs that represent social networks, in which PN
size followed a normal distribution, identified three critical
parameters that influenced how information flows through a
social network: the mean personal network size, the variance
in personal network size and the rate at which information
is passed between nodes in the network.

Electronic communication, as compared to face-to-face
communication, increases the rate of information flow be-
tween individuals: it is easier to make contact with indi-
viduals electronically and thus the frequency of electronic
communication tends to be higher than face-to-face contact.
The results of this study suggest that this increased fre-
quency of electronic communication may have a dramatic
influence on the probablity of an individual acquiring a pe-
ice of information from a person in their network. Thus the
results here have broad implications for assessing the impact
of electronic communication on social relationships, as well
as revealing design principles for wireless mobile networks.
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7. APPENDIX

7.1 Random Matrix Theory
While spectral graph theory establishes the relation be-

tween spectrum and the graph, little conclusion can be made
about its probabilistic behaviour. An equivalent to central
limit theorem for graphs is required to estimate the general
probabilistic distributions of graph spectrums. Historically,
this is mostly studied in random matrix theory.

In the 1950s, it was first observed in many nuclei energy
level experiments that the energy level distribution follows
a distribution irrespective of the particular system state or
individual particle charateristics. It was later demonstrated
that the energy level (spectra) distribution depends only on
the structure of the nuclei system (represented as a matrix)
in question. Exact distributions for eigenvalues of matri-
ces classes such as Gaussian and circular ensembles were
derived. The conjecture was that the spectrum of matrices
with i.i.d entries irrespective of distributions converge to the
same empirical distribution.

It is later that Wigner derived the exact distribution —
the semi-circular distribution — for random hermitian ma-
trices with Gaussian distributed entries. Inspired by various
numerical experiments later, this result was then generalised
to require only finite mean and 6th moment to only finite
mean and variance 3. We state the exact form of the semi-
circular law below:

Fact 2 (The Semi-Circular Law). Let W = [wij ] be
a random real matrix of order n such that

• Random variables {wij : 1 ≤ i ≤ j ≤ n} are i.i.d.

• wij = wji (Symmetric)

• Ewij = 0 and var(wij) = 1

That is, if W is hermitian with upper-diagonal entries i.i.d
with 0 mean and unit variance, then the eigenvalue distribu-
tion of 1√

n
W converges to the empirical spectrum distribu-

tion (ESD):

Pr[x] =
1

2π

p

4− x2 as n→∞

A natural question to ask is then whether this applies to
systems with a prefined state. The applicability of Semi-
Circular Law would be greatly reduced if it cannot give
results concerning random matrices with a given starting
point. The theorem below provides the necessary foundation
on which we may safely ignore initial conditions of the sys-
tem and analyse the convergence distribution directly. Also,
it indicates that given minor purturbation, the spectrum is
not easily changed. We note that this theorem generalises to
non-symmetric, complex random matrices as shown in [13].

Fact 3 (Universality Principal, Theorem 1.20 [13]).
Let Xn and Yn be n× n matrices with entries from i.i.d se-
quences {xi,j} and {yi,j} such that EX = 0 and var(X) =
1. For each n, let Mn be a random n×n matrix independent
of Xn, Yn such that Pr[lim 1

n2 ‖Mn‖22 = F ] = 1 where F is a
constant. Consider the random base matrices An = Mn+Xn

and Bn = Mn + Yn. Their emperical spectrum distribution
Pr[ESD(An)− ESD(Bn)→ 0] = 1.

3We encourage the readers to refer to [6,13] for a review and
state-of-the-art results.
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