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Abstract:

The efficient set of a linear multicriteria programming problem can be represented by a

’reverse convex constraint’ of the form g(z) ≤ 0, where g is a concave function. Consequently,

the problem of optimizing some real function over the efficient set belongs to an important

problem class of global optimization called reverse convex programming. Since the concave

function used in the literature is only defined on some set containing the feasible set of

the underlying multicriteria programming problem, most global optimization techniques for

handling this kind of reverse convex constraints can not be applied. The main purpose of

our article is to present a method for overcoming this disadvantage. We construct a concave

function which is finitely defined on the whole space and can be considered as an extension

of the existing function. Different forms of the linear multicriteria programming problem are

discussed, including the minimum maximal flow problem as an example.

Key words: Multicriteria optimization, optimization over the efficient set, global optimiza-

tion, reverse convex constraint, minimum maximal flow problem.
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1 Introduction

Beginning with the work of Philip (Ref. 1), the problem of optimizing some real function over

the efficient set of a linear multicriteria programming problem, abbreviated by (OEP), has

received the attention of many authors and became one of the most important and interesting

areas in multicriteria programming and global optimization, cf., e.g., Refs. 1-15. One of the

most interesting approaches to handle Problem (OEP) is based on the representation of

the efficient set using a ‘reverse convex set’, which is the complement of an open convex

subset of the Euclidian space IRn. Each reverse convex set is in principle described by a

‘reverse convex constraint’ of the form g(z) ≤ 0, where g is a concave function defined on

IRn. Up to the present, for such a representation of the efficient set of a linear multicriteria

programming problem, one uses reverse convex constraints, in which the concave function

g can only be defined on some polyhedral set containing the feasible set of the underlying

linear multicriteria programming problem. This fact has caused hindrances when applying

existing methods for handling problems with reverse convex constraints. The reason is that

the most promising algorithms for problems with reverse convex constraints are developed

based on an assumption that the concave function g must take finite values on a suitably

large open set containing the feasible set, cf., e.g., Refs. 16-21.
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The main purpose of this article is to propose a way to represent the efficient set of a linear

multicriteria programming problem by a reverse convex constraint, in which the concave

function is finitely defined on the whole space. This concave function can be considered as

an extension of the concave function used in the literature.

The reverse convex representation of the efficient set is discussed in the next section for

the case that the feasible set of the underlying linear multicriteria programming problem is

given by a system of inequalities. The case where the mentioned feasible set is described

by equations is considered in Section 3. Section 4 deals with the minimum maximal flow

problem, which is actually an example of the case discussed in Section 3. The article is

completed with some conclusions in Section 5.

2 Reverse Convex Representation of the Efficient Set

2.1 Reverse Convex Representation

Let Z be a polyhedral subset of IRn defined by

Z = { z ∈ IRn : Dz ≤ d, z ≥ 0 }, (1)
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where D is an m × n matrix and d ∈ IRm. For a given p × n matrix C we consider the

following multicriteria optimization problem

max {Cz : z ∈ Z}. (2)

A point z ∈ Z is said to be an efficient point of Problem (2) if there is no point z of Z such

that Cz ≥ Cz and Cz 6= Cz. Let us denote the set of efficient points of Problem (2) by ZE

and assume throughout this paper that

Z 6= ZE 6= ∅. (3)

The optimization problem over the efficient set is then formulated as

min{f(z) : z ∈ ZE}, (4)

with a given function f defined on some suitable set containing ZE.

We recall below some known useful characterizations of the efficient set ZE (cf., e.g., Refs.

1, 15, 22).

Proposition 1 Under Assumption (3) we obtain following characterizations of the efficient

set:
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(a) z is an efficient point if and only if there is a positive vector λ ∈ IRp such that z solves

the problem max{λT Cz : z ∈ Z}.

(b) z is an efficient point if and only if it solves the problem max{λT Cz : z ∈ Z, Cz ≥ Cz}

for each positive vector λ ∈ IRp.

(c) Let di, i = 1, · · · , m be the rows of the matrix D. Then z ∈ Z is an efficient point

if and only if the following system (in variables λ ∈ IRp, µ ∈ IRm, ν ∈ IRn) has a

solution:

(S) CT λ = DT µ− ν

µ ≥ 0 and µi = 0 for i 6∈ I(z)

ν ≥ 0 and νj = 0 for j 6∈ J(z)

λ ≥ e,

where I(z) = {i : (di)T z = di}, J(z) = {j : zj = 0}, and e = (1, · · · , 1)T ∈ IRp.

2

From Proposition 1(a), if we have a positive λ ∈ IRp such that Problem max{λT Cz : z ∈ Z}

has an optimal solution, then each optimal solution is an efficient point.

Conversely, from Proposition 1(c), if we have an efficient point z, then, by computing a
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solution (λ, µ, ν) ∈ IRp+m+n of System (S), we obtain a positive λ ∈ IRp such that z is an

optimal solution of Problem max{λT
Cz : z ∈ Z}.

Based on Proposition 1(b), letting λ ∈ IRp be a positive vector and

Ω = {z ∈ IRn : ∃y ∈ Z such that Cy ≥ Cz} (5)

one constructs a function gλ : Ω → IR by

gλ(z) := −λT Cz + max{λT Cy : y ∈ Z; Cy ≥ Cz }. (6)

The following result is also well-known (cf. e.g., Refs. 2, 15).

Proposition 2 For each positive vector λ ∈ IRp it holds that

(a) gλ(z) is finitely defined on the set Ω.

(b) gλ(z) is a nonnegative piecewise linear concave function on Ω.

(c) z ∈ ZE if and only if z ∈ Z and gλ(z) = 0.

2
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Remark 1 By definition, the function gλ assumes finite values only on the set Ω defined in

(5). For z 6∈ Ω, the feasible set of the problem max{λT Cy : y ∈ Z; Cy ≥ Cz } in (8) is

empty, and therefore, gλ(z) is not finitely defined.

From Proposition 2, one can take any positive vector λ ∈ IRp , e.g., λ = e, and formulate

Problem (4) as

min{f(z) : z ∈ Z, gλ(z) ≤ 0}. (7)

Since the function gλ(z) is concave, the constraint gλ(z) ≤ 0 is usually called a reverse

convex constraint, and Problem (7) belongs to the class of so called reverse convex programs.

This problem class is well studied in the area of global optimization, cf., e.g., Refs. 16-21.

However, the most promising algorithms for the reverse convex programs are based on an

assumption that the concave function in the reverse convex constraint must take finite values

on a suitable open set containing the set Z. As seen above, the function gλ does not fulfill

this important assumption, so that a direct application of existing algorithms is not possible.

In what follows we present a way to construct a concave function, which is defined on the

whole space IRn, so that by using it, algorithms for solving reverse convex programs can be

applied. Moreover, since this function is finitely defined everywhere, it can provide some
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information about how far away a given point x ∈ IRn is from the efficient set.

To this purpose, letting z ∈ ZE and λ be a positive vector such that z solves the problem

max{λT
Cz : z ∈ Z} (cf. Proposition 1), we define the function

gλ(z) = −λ
T
Cz + max{λT

Cy : y ∈ Z, Cy ≥ Cz }. (8)

As discussed above, in principle, the function gλ is only finitely defined on the set Ω given

in (5). However, by using the above chosen vector λ, we can construct an extension of gλ on

the whole space IRn as follows.

Since

max{λT
Cy : y ∈ Z; Cy ≥ Cz } ≤ max{λT

Cy : y ∈ Z } < +∞,

it follows that the linear program

(Q(z)) max λ
T
Cy

s.t. Dy ≤ d

Cy ≥ Cz

y ≥ 0

has an optimal solution whenever it is feasible. On the other hand, we see that its dual

problem,
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(R(z)) min dT α− (Cz)T β

s.t. DT α− CT β ≥ CT λ

0 ≤ α

0 ≤ β,

always has a nonempty feasible region, because from a solution (λ, µ, ν) of System (S) in

Proposition 1(c), we obtain a feasible solution (α, β) = (µ, 0) of Problem (R(z)). Therefore,

we see from the duality theorem in linear programming that Problem (Q(z)) is feasible if

and only if Problem (R(z)) has an optimal solution.

Note that the feasible set of Problem (R(z)) does not depend on z. Let V denote the set of

all extreme points of the feasible set of this problem. Then there exist vectors α and β such

that

V ⊂ {(α, β) : (0, 0) ≤ (α, β) ≤ (α, β) }, and µ ≤ α. (9)

An estimation of the vectors α, β will be discussed in the next subsection.

Using these vectors α, β, we consider the following problem, denoted by (R(z)), which arises

from Problem (R(z)) by adding to it some upper bounding constraints.
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(R(z)) min dT α− (Cz)T β

s.t. DT α− CT β ≥ CT λ

0 ≤ α ≤ α

0 ≤ β ≤ β.

Based on Problem (R(z)), we define a function g : IRn → IR by

g(z) = −λ
T
Cz + t(z), (10)

where t(z) is the optimal value of Problem (R(z)) for each z.

The function g defined in (10) is an extension of the function gλ defined in (8) in the following

sense.

Proposition 3 The function g defined in (10) has following properties:

(a) g(z) is well defined and finite at all points z ∈ IRn.

(b) g(z) is a piecewise linear concave function on IRn.

(c) g(z) = gλ(z) whenever gλ(z) is finitely defined.

(d) z ∈ ZE if and only if z ∈ Z and g(z) ≤ 0.
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Proof. For each z ∈ IRn, Problem (R(z)) has an optimal solution, since its feasible set is

nonempty and bounded. Furthermore, whenever Problem (R(z)) has a finite optimal value,

it has an optimal solution contained in the set V . Thus, Problem (R(z)) has the same

optimal value as Problem (R(z)). From this, Assertions (a), (b) and (c) follow. The last

assertion (d) follows from Assertion (c) of Proposition 2 and Assertion (c) of this proposition.

2

Remark 2 (a) The function g can be zero outside Z, and hence g(z) = 0 does not imply

that z ∈ ZE.

(b) The dual problem of (R(z)) reads

(Q(z)) max (λ
T
C)y − αT u− β

T
v

s. t. Dy − u ≤ d

Cy + v ≥ Cz

y, u, v ≥ 0.

Comparing Problems (Q(z)) and (Q(z)), we see that α and β can be considered as

some kinds of control parameters for the construction of the extension function.
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2.2 Bounding the Set of Vertices

We present here a way to estimate the vectors α and β for bounding the vertex set V of the

feasible set of Problem (R(z)).

Proposition 4 Assume that the elements

dij, (i = 1, · · · , m; j = 1, · · · , n) and

cij, (i = 1, · · · , p; j = 1, · · · , n)

of the matrices D and C, respectively, are all integral. Define

M = max{max{|dij| : i = 1, · · · , m; j = 1, · · · , n}, max{|cij| : i = 1, · · · , p; j = 1, · · · , n}}

Λ = max{|λi| : i = 1, · · · , p}.

Then a common upper bound, σ, for all components αi (i = 1, · · · , m), and βi (i = 1, · · · , p)

can be given by

σ = n(n− 1)
1
2
(n−1)pMnΛ.

Proof. Let γ = (α, β) ∈ V . Then each positive component γji
is computed by

γji
= (B−1(CT λ))i,

where B is a nonsingular n×n submatrix of the n× (m+p+n) matrix (DT ,−CT ,−I) with

I being the n × n identity matrix. Let Bji be the matrix obtained from B by deleting the
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j-th row and the i-th column. Then B−1 = 1
det B

B∗, where each element b∗ij of the matrix

B∗ is determined by b∗ij = (−1)i+j det Bji. From the well-known Hadarmard’s inequality, it

follows that

| det Bji| ≤
n−1∏
k=1

((n− 1)M2)
1
2 = (n− 1)

1
2
(n−1)Mn−1.

Therefore, we have

γji
= |γji

| = |(B−1(CT λ))i| = 1
| det B| |

n∑
k=1

b∗ji,k
(CT λ)k|

≤ 1
| det B|

n∑
k=1

|bk,ji
||(CT λ)k|

≤ 1
| det B|n(n− 1)

1
2
(n−1)Mn−1pMΛ

≤ n(n− 1)
1
2
(n−1)pMnΛ.

2

3 Multicriteria Optimization with Equality Constraints

In this section, we consider multicriteria optimization problems of the form

max{Cx : Ax = b, x ≥ 0}, (11)
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where C and A are matrices of dimension p× q and m× q, respectively, and b ∈ IRm. We

denote the feasible set of this problem by X, i.e.,

X = {x : Ax = b; x ≥ 0 },

and the set of efficient points by XE. The optimization problem to be considered is

min{h(x) : x ∈ XE} (12)

with h being a given real function on IRq.

We assume without loss of generality that rank A = m and A = (B N), where B is a regular

m×m submatrix. Usually, B and N are called basic and nonbasic matrices, respectively, of

the system Ax = b. Thus, the dimension of X is then n = q −m, and Problem (12) in IRq

can be transformed into a problem in IRn as follows.

According to the structure of the matrix A, we consider the vector x and the matrix C as

x> = (x>B, x>N) and C = (CB, CN), and define on IRn the polyhedral set

XN = {xN ∈ IRn : B−1NxN ≤ B−1b; xN ≥ 0 } = {xN ∈ IRn : TxN ≤ t }, (13)

where T and t are a q × n matrix and q-dimensional vector, respectively, defined by

T =


B−1N

−I

 , t =


B−1b

0

 (14)
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with I being the identity matrix.

Below we give the elementary relationship between XN and X with a simple proof. For a

polyhedral set P let V (P ) denote the set of extreme points of P .

Proposition 5 It holds that

(a) x = (x>B, x>N)> ∈ X ⇔ xN ∈ XN , xB = B−1b−B−1NxN ;

(b) x = (x>B, x>N)> ∈ V (X) ⇔ xN ∈ V (XN), xB = B−1b−B−1NxN .

Proof.

(a) We have

(x>B, x>N)> ∈ X ⇔ BxB + NxN = b, xB ≥ 0, xN ≥ 0

⇔ xB = B−1b−B−1NxN , xB ≥ 0, xN ≥ 0

⇔ xB = B−1b−B−1NxN , TxN ≤ t

⇔ xB = B−1b−B−1NxN , xN ∈ XN .
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(b) follows from the following equivalences:

(x>B, x>N)> ∈ X \ V (X) ⇔ ∃ distinct ((x1
B)>, (x1

N)>)>, ((x2
B)>, (x2

N)>)> ∈ X such that

(x>B, x>N) = 1
2

(
(x1

B)>, (x1
N)>) + ((x2

B)>, (x2
N)>)

)

⇔ ∃ distinct x1
N , x2

N ∈ XN such that

xN = 1
2
(x1

N + x2
N) , xB = 1

2
(x1

B + x2
B) = B−1b−B−1NxN

⇔ xN ∈ XN \ V (XN), xB = B−1b−B−1NxN .

The first and third equivalences are obtained by the definition of extreme points. The second

equivalence follows from part (a) of this proposition.

2

Based on the above observation, using the representation of the matrix C as C = (CB, CN),

we can rewrite the objective functions of the multicriteria problem (11) in the form

Cx = (CB, CN)(xT
B, xT

N)T = CBB−1b + (−CT )xN , (15)

so that Problem (11) in IRq reduces to a problem of the form (1)-(2) in IRn:

max{(−CT )xN : (B−1N)xN ≤ B−1b, xN ≥ 0}, (16)

Moreover, we have the following relationship between the efficient sets of the two problems.
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Proposition 6 Denote by XE
N the set of all efficient solutions of Problem (16). Then it

holds that

x = (x>B, x>N)> ∈ XE ⇔ xN ∈ XE
N and xB = B−1b−B−1NxN .

Proof. From Proposition 5(a) and the definition of efficient solutions, it follows that

x = (x>B, x>N)> ∈ XE ⇔ (x>B, x>N)> ∈ X, 6 ∃ (y>B , y>N)> ∈ X such that

(CB, CN)(y>B , y>N)> ≥ (CB, CN)(x>B, x>N)>,

(CB, CN)(y>B , y>N)> 6= (CB, CN)(x>B, x>N)>

⇔ xN ∈ XN , xB = B−1b−B−1NxN ,

6 ∃ (y>B , y>N)> ∈ X : yN ∈ XN , yB = B−1b−B−1NyN such that

(−CT )yN ≥ (−CT )xN , (−CT )yN 6= (−CT )xN

⇔ xN ∈ XE
N and xB = B−1b−B−1NxN .

2

Remark 3 Setting z = xN , C = −CT , D = B−1N and d = B−1b we obtain a problem of

the form (2) from Problem (16). Moreover, under the assumption that all elements of the

matrices C and A in Problem (11) are integral, we obtain the assumption that all elements

of matrices C and D in Problem (2) are integral, so that Proposition 4 can be applied for

the estimation of vectors α and β as discussed in Section 2.
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By the above transformation, the objective function h on IRq in Problem (12) is then trans-

formed to a function f on IRn:

f(xN) = h(B−1b−B−1NxN , xN). (17)

Note that if h is a convex/concave function on IRq, then f is convex/concave as well on IRn.

In particular, if the function h(x) is linear given by h(x) = hT x with h ∈ IRq, then by using

the partition hT = (hT
B, hT

N), Problem (12) reduces to

min{(hT
N − hT

BB−1N)xN : xN ∈ XE
N}. (18)

4 Minimum Maximal Flow Problem

As an example for the problem class discussed in Section 3, we consider a directed network

with a single source node and a single sink node. The node-arc incidence matrix and the

vector of arc capacities are denoted by E and c, respectively. A flow f is called a maximal

flow if it is an efficient point of the following multicriteria network flow problem:

max{If : Ef = 0, 0 ≤ f ≤ c}, (19)

where the identity matrix I, the matrix E and vectors f , c are of appropriate sizes.



18

Let F and FE denote the feasible set and the efficient set, respectively, of Problem (19), and

according to f , let h be a vector defined by

hj =



+1 if arc j leaves the source node

−1 if arc j enters the source node

0 otherwise.

Then the minimum maximal flow problem considered in Refs. 23-26 is formulated as

min{hT f : f ∈ FE}. (20)

Using the notations

x =


f

s

 , A =


E 0

I I

 , b =


0

c

 , C =


I 0

 ,

where s is the vector of slack variables for the Constraint f ≤ c, we can rewrite Problem

(19) in the form

max{Cx : Ax = b, x ≥ 0}. (21)

Finally, removing all linear dependent equations of System Ax = b, we obtain from Problem

(21) a multicriteria network flow problem, which has the form of the problem considered in

Section 3.



19

5 Conclusions

We have presented a method for the construction of a concave function finitely defined on

the whole space, which can be used to represent the efficient set of a linear multicriteria

programming problem by a reverse convex constraint. This allows to handle some opti-

mization problems over the efficient set by applying standard techniques in reverse convex

programming.



20

References

1. Philip, J., Algorithms for the Vector Maximization Problem, Mathematical Program-

ming, Vol.2, p. 207–229, 1972.

2. Benson, H.P., Optimization over the Efficient Set, Journal of Mathematical Analysis

and Applications, Vol. 98, p. 562–580, 1984.

3. Benson, H.P., An All–Linear Programming Relaxation Algorithm for Optimizing over

the Efficient Set, Journal of Global Optimization, Vol. 1, p. 83–104, 1991.

4. Benson, H.B. and Lee, D., Outcome-based Algorithm for Optimizing over the Effi-

cient Set of a Bicriteria Linear Programming Problem, Journal of Optimization Theory

and Applications, Vol. 88, p. 77-105, 1996.

5. Bolintineanu, S., Minimization of a Quasiconcave Function over an Efficient Set,

Mathematical Programming, Vol. 61, p. 89-110, 1993.

6. Dauer, J.P., and Fosnaugh, T.A., Optimization over the Efficient Set, Journal of

Global Optimization, Vol. 7, p. 261-277, 1995.

7. Le-Thi H.A., Pham D.T., and Muu, L.D., Numerical Solution for Optimization

over the Efficient Set by D.C. Optimization Algorithms, Operations Research Letters,

Vol. 19, p. 117-128, 1996.

8. Muu, L.D., and Luc, L.T., On Equivalence between Convex Maximization and Opti-

mization over the Efficient Set, Vietnam Journal of Mathematics, Vol. 24, p. 439–444,

1996.



21

9. Horst R., and Thoai N.V., Utility Function Programs and Optimization over the

Efiicient Set in Multiple Objective Decision Making, Journal of Optimization Theory

and Applications, Vol. 92, p. 469-486, 1997.

10. Horst R., and Thoai N.V., Maximizing a Concave Function over the Efficient or

Weakly–Eficient Set, European Journal of Operations Reseach, Vol. 117, p. 239–252,

1999.

11. Thoai, N.V., A class of optimization problems over the efficient set of a multiple

criteria nonlinear programming problem, European Journal of Operational Research,

Vol. 122, p. 58-68, 2000.

12. Thoai, N.V., Conical Algorithm in Global Optimization for Optimizing over Efficient

Sets, Journal of Global Optimization, Vol. 18, p. 321-336, 2000.

13. Thoai, N.V., Convergence and Application of a Decomposition Method Using Dual-

ity Bounds for Nonconvex Global Optimization, Journal of Optimization Theory and

Applications, Vol. 113, p.165-193, 2002.

14. Le-Thi H.A., Pham D.T. and Thoai, N.V., Combination between Global and Local

Methods for Solving an Optimization Problem over the Efficient Set, European Journal

of Operational Research, Vol. 142, p. 258-270, 2002.

15. Yamamoto, Y., Optimization over the Efficient Set: Overview, Journal of Global

Optimization, Vol. 22 , p. 285-317, 2002.



22

16. Hillestad, R.J., and Jacobsen, S.E., Reverse Convex Programming, Applied Math-

ematics and Optimization, Vol. 6, p. 63-78, 1980.

17. Thoai, N.V., Canonical D.C. Programming Techniques for Solving a Convex Program

with an Additional Constraits of Multiplicative Type, Computing, Vol. 50, p. 241-253,

1993.

18. Horst, R., and Thoai, N.V., Constraint Decomposition Algorithms in Global Opti-

mization, Journal of Global Optimization, Vol. 5, p. 333-348, 1994.

19. Horst, R., and Tuy, H., Global Optimization: Deterministic Approaches, 3rd edi-

tion, Springer, Berlin, 1996.

20. Horst, R., Pardalos, P.M., and Thoai, N.V., Introduction to Global Optimiza-

tion, 2nd Edition, , Kluwer, Dordrecht, The Netherlands, 2000.

21. Horst R., and Thoai N.V., D.C. Programming: Overview, Journal of Optimization

Theory and Applications, Vol. 103, p. 1-43, 1999.

22. Yu, P.L., Multiple Criteria Decision Making: Concepts, Techniques, and Extensions,

Plenum, New York, 1985.

23. Shi, J., and Yamamoto, Y., A Global oOptimization Method for Minimum Maximal

Flow Problem, Acta Mathematica Vietnamica, Vol. 22, p. 271-287, 1997.

24. Gotoh, J., Thoai, N.V., and Yamamoto, Y., Global Optimization Method for

Solving the Minimum Maximal Flow Problem, Optimization Methods and Software,



23

Vol. 18, p. 395–415, 2003.

25. Shigeno, M., Takahashi, I., and Yamamoto, Y., Minimum Maximal Flow Prob-

lem - an Optimization over the Efficient Set, Journal of Global Optimization, Vol. 25,

p. 425-443, 2003.

26. Yamamoto, Y., and Zenke, D., Cut and Split Method for the Minimum Maximal

Flow Problem, Pacific Journal of Optimization, Vol. 1, p. 387-404, 2005.


