
On Optimizing a Sequence of Robotic Tasks

Sergey Alatartsev, Vera Mersheeva, Marcus Augustine and Frank Ortmeier

Abstract— Production speed and energy efficiency are crucial
factors for any application scenario in industrial robotics. The
most important factor for this is planning of an optimized
sequence of atomic subtasks. In a welding scenario, an atomic
subtask could be understood as a single welding seam/spot
while the sequence could be the ordering of these atomic tasks.
Optimization of a task sequence is normally modeled as the
Traveling Salesman Problem (TSP). This works well for simple
scenarios with atomic tasks without execution freedom like
spot welding. However, many types of tasks allow a certain
freedom of execution. A simple example is seam welding of
a closed-contour, where typically the starting-ending point is
not specified by the application. This extra degree of freedom
allows for much more efficient task sequencing. In this paper,
we describe an extension of TSP to model a problem of finding
an optimal sequence of tasks with such extra degree of freedom.
We propose a new, efficient heuristic to solve such problems and
show its applicability. Obtained computational results are close
to the optimum on small instances and outperforms the state
of the art approaches on benchmarks available in literature.

I. INTRODUCTION

Production efficiency and quality are key success factors
for highly developed industrial countries. One major cor-
nerstone to achieve this is to rely on production automation
technology. Industrial robots are among the most flexible and
powerful of these machines. Equipped with the right tool,
they can be applied to almost every production task. The
faster industrial robots do their work, the more income they
provide.

The time required for a given application activity heavily
depends on sequencing of the effective tasks/movements. By
effective tasks we refer to such movements, which are de-
fined by the application itself. For example, welding seams or
contours which have to be cut. Supporting movements/tasks
are in between such effective tasks. They are necessary to
move the tool from one effective task to another. Supporting
movements are typically not defined by the application.

The total cost/time a robot needs for completing an activity
is the sum of costs of all effective movements and all
supporting movements. While the first is typically defined
by the application, physical process and/or tool specifics, the
later is mostly depending upon smart path-planning and the
sequencing of effective tasks. In this paper, we will focus on
the sequencing aspect.

S. Alatartsev, M. Augustine and F. Ortmeier are affiliated with the
working group Computer Systems in Engineering, Otto-von-Guericke
University of Magdeburg, Germany. {sergey.alatartsev,
marcus.augustine, frank.ortmeier}@ovgu.de

V. Mersheeva is affiliated with the Institute for Applied
Informatics, Alpen-Adria-Universität of Klagenfurt, Austria.
vera.mersheeva@aau.at

Fig. 1. A plastic detail: before being processed by a robot (on the left)
and after (on the right). The optimal tour is designated with a blue line.

In contrast to existing approaches, we want to make use
of the fact that most robotic tasks allow a certain degree of
flexibility. Though they are not treated in such a way, i.e.,
specified in a mono-semantic way that describes only one
variant of task execution. See extensive surveys [1], [2].

There are several industrial use cases, where extra degree
of freedom exists. One such example is shown in Fig. 1.
This example is an abstraction of a real-world automotive
application. Here, a plastic panel is produced by a molding
press out of one piece of plastic. Later, the excess of the
melted plastic on the borders of the form as well as different
shapes have to be cut out by the industrial robot. Cutting
contours are shown as red lines. Each of the six single
contours can be understood as an individual, atomic, effective
task. Obviously, the description of these contours alone
is not sufficient to process the detail, as a robot path is
required. In practice, the path is derived from CAD data in
an off-line programming environment. Starting points of the
tasks are allocated manually, based on intuition (See Section
II). However, from an application point of view there is
often no requirement that defines where every cut has to
be started/ended. Therefore, it could be any arbitrary point
along the closed contour. In Fig. 1 such points have been
chosen. The blue lines represent the necessary supporting
movements1. As it is shown in the illustration, even with six
contours the optimal tour could be non-trivial to construct.
This paper focuses on a heuristic for computing a near
optimal tour automatically.

The remainder of the paper is organized as follows.
Section II briefly outlines state of the art approaches. In the
Section III, problem definition and involved algorithms are
introduced. Section IV provides description of the proposed
approach. An evaluation is given in Section V. We conclude
and provide an outlook to future work in Section VI.

1The movements are projected into 2D space and assumed as linear
movements for simplicity. In a real application one might use Point-to-Point
(PTP) movements, which are linear in axis space but not linear in Cartesian
space.

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 217



��� ���� ����� ��� ����

� 	


�

Fig. 2. The differences between sequencing problems

II. RELATED WORK

We start with a short summary of related optimization
problems. The differences between them are illustrated in
Fig. 2. Further we give an overview of existing algorithms
for solving such problems.

A. Modeling problems

The problem of choosing an optimal sequence of effective
tasks is normally represented as the Traveling Salesman
Problem (TSP) [3]. The goal of the TSP is to find a minimal-
cost circle tour through a set of points such that every point
is visited once. Every task in TSP is represented as one
point. It works well for the tasks with limited freedom,
e.g., spot-welding applications. But it is inefficient for tasks
with flexibility in execution, e.g., cutting a closed-contour
segments.

There are several well-known TSP-like problems that
allow a certain flexibility in task description. It is possible
to represent any task with a set of points. This leads to a
Generalized TSP (GTSP) [4], where the minimal-cost circle
tour should be found that contains a point from every set.
The representation of complex areas requires a large number
of points that will cause higher computational efforts. In
addition, a certain level of discretization brings an error to
the final result.

Another way of modeling the sequencing problem is
Close-Enough TSP (CETSP) [5], where the minimal-cost
circle tour should be found such that every point is visited
within a certain radius. This problem does not have the
discretization error in contrast to GTSP. Nevertheless, many
robotic tasks can not be efficiently approximated with circles.

One more related problem is Touring-a-sequence-of-
Polygons Problem (TPP) [6]. The goal of the TPP is to find
the minimal-cost circle tour that visit a predefined sequence
of regions. Although this problem can find the optimal point
positions inside the given areas, it is not able to calculate the
optimal sequence.

The most general problem is TSP with Neighborhoods
(TSPN) [7]. The goal of the TSPN is to find the minimal-
cost circle tour through a set of regions such that every
region is visited once. TSPN is the most flexible problem
in comparison to those discussed above. The regions could
be arbitrarily shaped. It has no discretization error and it
is capable of optimizing both points allocation and their
sequence.

B. Existing algorithmic solutions

Previously, TSPN was mostly covered by researchers from
the approximation domain. The reader can find compre-
hensive surveys in [8] and [9]. Over the time, TSP got
much larger attention from the researchers and multiple, very
efficient heuristics were developed. The natural idea is to
adapt existing well performing methods from the TSP to
its more flexible variants. For example, Karaperyan et al.
[10] proposed an adaptation of the Lin-Kernighan heuristic to
GTSP. Mennell [5] proposed an approach for CETSP, when
the problem is divided into the TSP and the TPP [6], which
already have efficient solvers. At first, areas are represented
as points and TSP tour is calculated. Further allocation
of the points inside the areas is optimized with TPP. A
similar concept but with a different optimization order was
proposed for TSPN by Elbassioni et al. [11]. At first the
point allocation is optimized with a greedy algorithm, when
the nearest point from the next largest area is added to the
set. After that a TSP tour is calculated.

Further development of the idea of splitting TSPN into
smaller problems was made by Alatartsev et al. [12]. They
proposed a method, the so-called Constricting Insertion
Heuristic (CIH), where TSPN is represented as a combina-
tion of TSP and TPP, like in previous work done by Mennell
[5]. CIH solves TSPN by applying the Insertion Heuristic
(IH) to TSP and the Rubber-band algorithm [13] to TPP. The
main difference from the previous approaches (e.g., [11] and
[5]) is that constricting and sequencing are not solved one
after another, but rather simultaneously. We will compare it
with the algorithm proposed in this paper in Section V.

C. Sequence optimization in robotics

Nowadays, industrial robot off-line programming envi-
ronments either ignore sequence optimization (e.g., Robot-
Works2) or solve it by simple TSP approaches (e.g., a
customization for DELMIA adapted for drilling applications3

allows automatic sequencing of drilling tasks by a simple
greedy algorithm to solve TSP).

There are several approaches that apply TSP for modeling
a sequence optimization problem of robot’s tasks [14], [15].
All such approaches solely rely on freedom in the sequence
of the supporting tasks and none of them involves freedom
of the effective tasks execution into sequence optimization.

2Compucraft Ltd, RobotWorks: www.compucraftltd.com
3DELMIA V5 Robotic Drilling Application:

http://www.delfoi.com/web/products/delfoi products/en GB/drilling-app/

218



Recently, the idea of modeling the sequencing problem
in robotics with TSPN was covered by Gentilini et al.
[16]. The TSPN application was illustrated by a robot with
a camera mounted on its end-effector. The task did not
require a precise position but rather an area from which the
pictures have to be taken. It was shown that searching for an
exact solution required unreasonable time. Thus, a heuristic
was introduced to a Mixed-Integer Non-Linear Programming
solver to speed up the calculation time (we will refer to
it simply as HIS, i.e., Heuristic in Solver). The method
was evaluated on the test instances with up to 16 areas.
Comparison of the results of our method and HIS will be
presented in Section V.

In this paper we suggest to use TSPN for sequence
optimization of robot’s tasks. We make use of two previously
applied principals: 1) split TSPN to TSP and TPP and 2)
solve TSP and TPP simultaneously. We go a step further
and – in contrast to related approaches – apply a tour-
improvement heuristic from TSP domain to solve TSPN. We
refer to this approach as Constricting 3-Opt (C3-Opt).

III. PRELIMINARIES

This section presents a formal definition of the TSPN and
basic ideas of the applied algorithms.

A. Problem definition

We suggest to model robot sequence optimization with
the TSPN that is formalized as follows:

Input: a set of n areas A = {A1, ..., An}
Goal: find an optimal sequence and locations of the points
p1, ..., pn in the corresponding areas A1, ..., An

Output: a minimal-cost cyclic tour T = (p1, ..., pn+1) such
that it visits Ai in the point pi and p1 = pn+1.

TSPN could be understood as a fusion of TSP and TPP. Its
objective combines the goals of TSP and TPP. TSPN input
is the most general among both – a set of areas. The output
is inherited from TPP.

B. Involved algorithms

1) 3-Opt algorithm: The K-exchange algorithm was de-
veloped by Lin [17]. The basic idea is to sequentially select
K edges from the tour and reconnect them in all possible
ways. If the reconnection causes a decrease of the tour cost,
the algorithm starts from the beginning; otherwise, the next
K edges are selected. The algorithm stops when there are
no more exchanges that could improve the tour.

Evaluation [18] shows that if K is greater than three, the
effectiveness of the approach decreases. Therefore, normally
the case K=3 is used. This method is referred to as 3-Opt
[19]. Later 3-Opt received a lot of attention and was suc-
cessfully applied in different areas, e.g., the UAV routing
problem [20] or the Sequentially Ordered Problem [21].

There are seven possible ways of reconnecting three edges
in 3-Opt. It was shown in [22] that only two ways of
reconnecting are required to cover all possible combinations,

��

��

������

��

���� ��

����

��

��

������

��

���� ��

����

��

��

������

��

���� ��

����
��	 �
	

Fig. 3. Two possible replacements of edges (pi, pi+1), (pj , pj+1) and
(pk , pk+1) in 3-Opt

see Fig. 3. The decrease of the cost in 3-Opt is calculated as
the difference between the costs of newly added and deleted
edges.

2) Rubber-band algorithm: The Rubber-band algorithm
(RBA) was proposed by Pan et al. [13] to solve TPP. It
takes a sequence of areas A = (A1, ..., An) and returns a
tour T = (p1, ..., pn) such that every point pi from the tour
belongs to the area Ai and the tour length is minimal. RBA’s
basic idea is to walk through the sequence A and for every
Ai find a point pi ∈ Ai so that d(pi−1, pi) + d(pi, pi+1) is
minimized. RBA optimizes positions of the points one by
one in every area. One iteration is finished when position
of every point pi is optimized. RBA stops when difference
of the tour lengths between current and previous iteration is
less than accuracy ε.

Let PointConstrict(pi−1, Ai, pi+1, µ) denote a function
that returns a position of the point pi ∈ Ai optimized towards
points pi−1, pi+1 with accuracy µ. Points pi−1, pi+1 belong
to the neighboring areas Ai−1 and Ai+1 respectively.

Any geometric or optimization approach could be applied
for searching the new pi, e.g., the Golden search method was
applied in CIH [12]. In this paper, a simple one-dimensional
Bisection method is applied. The optimal location of pi with
respect to its neighboring points is illustrated in Fig. 4.

�� ����

����

����

�� ����������

Fig. 4. Constricting point pi to its neighboring points pi−1 and pi+1.
Edges before constriction are marked by dash lines. Edges after the
constriction are marked by solid lines.

IV. ALGORITHM

In this section we will describe the proposed tour-
improvement heuristic Constricting 3-Opt (C3-Opt) that can
solve TSPN efficiently. It is an extension of the classic 3-Opt
that is successfully applied in the TSP domain. The main

219



difference of C3-Opt to 3-Opt is that it also involves a TPP
solver (in our case RBA), i.e., it is able to answer where
the points should be located inside the areas. In the original
3-Opt these points are fixed.

In general tour-improvement heuristics are slower than
tour-construction methods. The adaptation to TSPN also
brings extra expenses of computational time. Therefore,
we provide a description of several techniques that allow
speeding up calculation time and minimizing risks of getting
into local optima fast.

A. Constricting 3-Opt general idea

General structure of the C3-Opt is presented in Algorithm
1. The input of the C3-Opt is a set of areas A, an initial tour
T ′ and desired accuracies ε, µ. Three main loops are started
in lines 4–6. Indices i, j, k are used to select the edges that
have to be exchanged. C3-Opt uses the same two ways to
reconnect the edges as in 3-Opt. Therefore, the overall logic
could be split into two segments denoting each reconnection
variant: the first is in lines 7–13 and the second is in lines 14–
20. A candidate tour candT is constructed with the function
NewTour1 by applying the first variant of reconnections
to the original tour. If the candidate tour was successfully
constructed, i.e., candT is not empty (line 8), and it is shorter
than the current tour T (line 9), then the tour is optimized
by the RBA algorithm. RBA does not change the sequence
but only optimizes locations of the points in the areas. The
optimized tour becomes a current tour T (line 10). The length
of the reduced tour is saved in LgthT . After that C3-Opt
continues the optimization process with the first set of edges
as the original 3-Opt. Otherwise, it can miss some possible
improvements occurred after reconnection. Therefore, main
loops are restarted in lines 11 and 18. The second variant of
reconnection (lines 14–20) has a similar logic. In contrast to
the first variant, it applies another tour construction function,
NewTour2 , due to the alternative way of reconnection of the
tour (see Fig. 3). In the next subsection we will show how
the candidate tour is constructed. The algorithm stops when
there are no more possible reconnections. The output is the
optimized tour T .

B. Construction of the candidate tour

3-Opt compares sums of the costs of the new and deleted
edges to check whether the exchange improved the solution
or not. It is straightforward, as the cost of all other edges is
constant. However, in TSPN, points could change their loca-
tions within the areas. Therefore, a new exchange could bring
the improvement not only by changing the sequence, but also
by optimizing locations of the points inside the areas. A triv-
ial solution could be to apply RBA algorithm on the newly
constructed tour. However, in practice it leads fast to the local
minimum (see Section V). We propose another method: after
adding a new point Tlast to the tour, the location for the
previously added point Tlast−1 should be recalculated, i.e.,
function PointConstrict(Tlast−2, Alast−1, Tlast, µ) should
be applied. This method of the tour constricting does not
return the optimum point positions within the areas, but

Algorithm 1: Constricting 3-Opt
Input: Set of areas A = {A1, ..., An}, initial tour

T ′ = (p′1, ..., p
′
n) (so that p′i ∈ Ai), accuracies ε, µ

Output: Tour T = (p1, ..., pn)

1 T ← T ′;
2 LgthT ← Length(T );
3 candT ← null;
4 for i = 1; i ≤ n− 2; i++ do
5 for j = i+ 1; j ≤ n− 1; j++ do
6 for k = j + 1; k ≤ n; k++ do
7 candT←NewTour1 (T , LgthT , µ, i, j, k, n);
8 if candT 6= null then
9 if Length(candT ) < LgthT then

10 T ← RBA(candT , ε, µ);
11 GoTo(line 2);
12 end
13 end
14 candT←NewTour2 (T , LgthT , µ, i, j, k, n);
15 if candT 6= null then
16 if Length(candT ) < LgthT then
17 T ← RBA(candT , ε, µ);
18 GoTo(line 2);
19 end
20 end
21 end
22 end
23 end
24 return T;

only slightly improves the tour. In practice, this improvement
prevents the method to get to a local optimum fast.

The candidate tour for the first reconnection case (see Fig.
3) is constructed by the Algorithm 2. It copies the points from
the current tour T one by one to the new tour candT .

Points are added with the method
AddAndPointConstrict , that basically adds point Th
to the end of the tour candT and then constricts
the previously added point candT last−1 by using
PointConstrict(candT last−2, Alast−1, candT last, µ).
When all the points are copied, the algorithm returns the
tour.

Note that at some point in time the length of the candidate
tour could exceed the length of the current tour. In that case
it makes no sense to perform further copying-constricting
actions and, therefore, the algorithm returns a null tour. This
check could be performed multiple times at any stage of
creating a candidate tour. However, in case of earlier or
multiple appliances, the expenses of the check could exceed
the benefit from it. We propose to locate it after the third
loop in the lines 11–14 of the Algorithm 2.

The algorithm NewTour2 for the second variant of re-
connection is constructed in the same way as NewTour1 ;
the only difference is that points from pi+1 to pj should be
copied in reverse order.

C. Constricting algorithm

The goal of the constricting algorithm was already covered
in Section III-B.2. Further, we will give hints on our specific
realization. The objective is to find a point on the border

220



Algorithm 2: NewTour1
Input: T , LgthT , µ, i, j, k, n
Output: Tour candT

1 candT ← null;
2 for h = 1;h ≤ i;h++ do
3 candT ← AddAndPointConstrict(candT , Th, µ);
4 end
5 for h = j + 1;h ≤ k;h++ do
6 candT ← AddAndPointConstrict(candT , Th, µ);
7 end
8 for h = i+ 1;h ≤ j;h++ do
9 candT ← AddAndPointConstrict(candT , Th, µ);

10 end
11 if Length(candT ) > LgthT then
12 candT ← null;
13 return candT ;
14 end
15 for h = k + 1;h ≤ n;h++ do
16 candT ← AddAndPointConstrict(candT , Th, µ);
17 end
18 PointConstrict(candTlast−1, Alast, candT1, µ);
19 return candT ;

of the area that is the nearest to its neighboring points. In
the used 2D instances, the border is one-dimensional. The
previous work [12] applied the Golden Cut method [23] to
search for the local minimum on the interval from 0 to 360
degrees. For every selected degree a point on the area border
is calculated. However, we are using the Bisection method
because in our evaluation it turned out to be more efficient.

V. EVALUATION

In this section we compare C3-Opt with state of the art
approaches on two test instance sets derived from literature.
The first evaluation is conducted on the small instances with
known optimum. Further, we show the efficiency of C3-Opt
on large tests with differently “stretched” ellipses. Due to the
limited space, only the most important results are presented
here. The full evaluation is available on-line [24].

We compare C3-Opt with state of the art approaches: HIS,
Constricting Insertion Heuristic (CIH)4 [12] and CIH (3-
Impr.). CIH (3-Impr.) is a variant of CIH where 3-Opt
and RBA are used afterwards to improve the solution.

C3-Opt is a tour-improvement heuristic, and its efficiency
depends on the input tour. We evaluate C3-Opt with three
different input tours generated by the Nearest-Neighbor al-
gorithm (NN) (i.e., choose the nearest point next), randomly
(i.e., as the ellipses are listed in the test file) and CIH.
Starting points for the listed tour-construction heuristics were
set to the centers of the ellipses.

All the methods (except HIS and solver for optimal
values) were ran on the following hardware: Intel Core 2
Quad CPU, 2.83GHz with 8GB of RAM, running Microsoft
Windows Vista. HIS and solver for optimal values were
ran by Gentilini et al.[16] using Intel Xeon, 3.33GHz CPU

4Note that the obtained results of CIH are slightly better than presented
previously in [12] due to the application of Bisection search instead of
Golden search in the PointConstrict function.

with 12GB of RAM, running Fedora. Since the provided
computational time was obtained in different conditions, it
cannot be compared directly.

A. Comparison with optimum

In this subsection, we compare C3-Opt with the existing
algorithms on the test instances with known optimum. The
test instances and optimal values were provided by Gentilini
et al. [16]. The test data is available on-line5. Instance
name “tspn2DE7 N” denotes that the 2D test consists of 7
ellipses. “N” could be either “1” or “2” and denotes the size
of the ellipses. Ellipses are larger in tests with “1” than in
tests with “2”. The C3-Opt was executed with the following
parameters: ε=20 and µ=20.

The results of the evaluation are presented in Table I.
Surprisingly, the use of the greedy NN heuristic to calculate
the input tour for C3-Opt led to worse results. The average
and the maximum errors are 0.19% and 2.39% respectively.
The average computational time is 38.21ms. It could be
explained by the fact that C3-Opt is a local search algorithm,
therefore, it has no efficient techniques to escape from the
local minimum established by NN.

Almost the same solution quality was shown by
Rand→C3-Opt and CIH→C3-Opt that have an average error
of 0.003% and 0.001% respectively (for 24 used bench-
marks). The time with CIH input tour is significantly shorter
than with Random tour (28.73ms versus 62.64ms). Both of
these variants outperformed related algorithms in the quality
of the solution.

The C3-Opt depends on the two precision parameters ε
and µ. We used instances from Table I to evaluate their in-
fluence on algorithm performance. We selected the following
values: 0.1, 1, 10, 20 and 30 and assign them to ε and µ in
all possible combinations. Final results were optimized by
RBA. Obviously, the smaller precision parameters are, the
more computation time is needed. The average time ranged
from 44.94ms to 167.25ms. Surprisingly, the quality of the
solution weakly depends on the precision parameters. The
average error differed from 0.003% (ε=20, µ=20) to 0.05%
(ε=10, 20 or 30, µ=0.1). The evaluation shows that C3-Opt
is very stable on small instances and even in the worst case
the average error is not more than 0.05%.

B. Evaluation of C3-Opt on tests with “stretched” ellipses

In this section we present an evaluation on the large
test instances with differently stretched ellipses. These test
instances were previously presented in [12] and they are
available on-line [24]. Instance name “20 1 5” denotes the
test with 20 ellipses, where every ellipse has a ratio between
its radii along the axis from 1 to 5. In other words, instance
“NN 1 1” consists only of circles (i.e., CETSP case). The
larger the ratio is, the more stretched the ellipses are. The
C3-Opt was executed with the following parameters: ε=20
and µ=10.

5TSPN Instances: http://wpweb2.tepper.cmu.edu/fmargot/ampl.html

221



TABLE I
EVALUATION ON SMALL TEST INSTANCES WITH KNOWN OPTIMAL VALUE

Optimal HIS CIH CIH (3-Impr.) NN→C3-Opt Rand→C3-Opt CIH→C3-Opt
Instance value error time error time error time error time error time error time

(%) (ms) (%) (ms) (%) (ms) (%) (ms) (%) (ms) (%) (ms)

tspn2DE5 1 191.255 0.00 140 0.00 0.87 0.00 1.23 1.46 0.69 0.00 1.19 0.00 1.38
tspn2DE5 2 219.307 0.00 130 0.00 0.57 0.00 0.67 0.00 0.56 0.00 1.29 0.00 0.84
tspn2DE6 1 202.995 0.00 240 0.00 0.93 0.00 1.08 0.00 1.09 0.00 1.83 0.00 1.47
tspn2DE6 2 248.860 0.00 180 0.00 0.82 0.00 0.98 0.00 0.69 0.00 1.62 0.00 1.32
tspn2DE7 1 201.492 0.00 300 0.02 3.46 0.02 3.94 0.00 2.95 0.00 2.58 0.02 4.50
tspn2DE7 2 239.788 0.00 250 0.00 1.78 0.00 2.04 0.00 2.27 0.00 5.86 0.00 2.87
tspn2DE8 1 190.243 0.00 370 0.00 0.42 0.00 0.74 0.00 2.92 0.00 7.90 0.00 2.67
tspn2DE8 2 229.150 0.01 400 0.00 3.49 0.00 4.11 0.00 3.43 0.00 4.69 0.00 5.36
tspn2DE9 1 259.290 0.00 400 0.00 5.78 0.00 6.81 0.00 8.00 0.00 11.47 0.00 8.79
tspn2DE9 2 262.815 0.00 410 0.00 4.58 0.00 5.30 0.00 6.12 0.01 13.62 0.00 7.78
tspn2DE10 1 225.126 0.00 410 0.00 5.84 0.00 6.83 0.00 9.01 0.00 10.89 0.00 11.31
tspn2DE10 2 273.192 0.21 350 0.00 5.08 0.00 6.18 0.00 16.66 0.00 17.48 0.00 10.97
tspn2DE11 1 247.886 0.75 630 0.00 8.02 0.00 9.82 0.69 18.79 0.00 24.94 0.00 16.12
tspn2DE11 2 258.003 0.00 390 0.00 7.37 0.00 9.04 0.00 25.65 0.00 24.08 0.00 15.46
tspn2DE12 1 265.858 0.00 550 0.00 9.54 0.00 11.52 0.00 25.40 0.00 63.28 0.00 21.14
tspn2DE12 2 312.493 0.50 860 0.00 11.89 0.00 13.75 0.00 66.01 0.00 72.10 0.00 23.96
tspn2DE13 1 278.876 0.00 1150 0.00 15.24 0.00 18.49 0.00 27.05 0.00 66.96 0.00 32.58
tspn2DE13 2 324.271 0.20 490 0.00 15.33 0.00 18.07 0.00 60.90 0.00 60.43 0.00 34.01
tspn2DE14 1 310.794 0.00 950 0.00 22.82 0.00 26.75 0.00 85.96 0.00 99.12 0.00 45.93
tspn2DE14 2 270.638 0.56 690 0.00 18.68 0.00 21.99 0.00 111.71 0.07 212.62 0.00 43.78
tspn2DE15 1 289.716 0.22 1080 0.00 28.28 0.00 34.44 0.00 38.49 0.00 196.19 0.00 60.44
tspn2DE15 2 293.357 0.01 1200 1.36 28.06 1.36 32.99 0.01 64.65 0.00 91.77 0.00 78.50
tspn2DE16 1 369.945 1.09 2840 6.26 26.92 5.44 36.35 2.39 192.27 0.00 172.19 0.00 152.94
tspn2DE16 2 295.130 0.00 1200 0.01 61.58 0.01 71.31 0.00 145.68 0.00 339.39 0.00 105.34
Average: 0.148 650.42 0.319 11.97 0.285 14.35 0.190 38.21 0.003 62.64 0.001 28.73
Maximum: 1.09 2840.00 6.26 61.58 5.44 71.31 2.39 192.27 0.07 339.39 0.02 152.94

TABLE II
EVALUATION ON TEST INSTANCES WITH DIFFERENTLY “STRETCHED” ELLIPSES

Best Old best CIH CIH (3-Impr.) NN→C3-Opt Rand→C3-Opt CIH→C3-Opt
Instance known known error error time error time error time error time error time

value value (%) (%) (s) (%) (s) (%) (s) (%) (s) (%) (s)

20 1 1 318.904 320.720 0.56 2.39 0.09 1.82 0.13 0.62 0.22 0.00 0.74 0.00 0.37
20 1 5 312.915 313.497 0.18 3.30 0.08 3.30 0.09 0.00 0.43 0.00 1.44 0.00 0.39
20 1 10 252.350 276.793 9.68 0.00 0.14 0.00 0.14 1.40 1.29 1.10 0.70 0.00 0.22
30 1 1 383.578 383.578 0.00 1.44 0.22 1.37 0.27 0.77 1.96 0.00 3.94 0.00 2.13
30 1 5 316.854 316.922 0.02 0.00 0.31 0.00 0.36 1.08 6.90 0.11 12.15 0.00 0.96
30 1 10 306.338 321.188 4.84 0.00 0.44 0.00 0.49 0.12 3.57 1.50 6.08 0.00 1.05
40 1 1 416.556 421.339 1.14 3.58 0.42 2.29 0.80 0.00 28.93 0.00 51.89 0.46 8.33
40 1 5 366.637 368.802 0.59 0.53 0.75 0.53 0.91 3.77 12.42 0.00 45.46 0.53 2.94
40 1 10 311.714 312.353 0.20 0.00 0.91 0.00 1.08 4.55 38.34 0.31 52.75 0.00 3.11
50 1 1 438.215 438.182 0.00 3.10 0.82 1.51 2.39 0.01 54.17 0.00 158.94 0.03 64.49
50 1 5 435.158 457.114 5.04 6.97 1.34 6.32 2.02 0.23 103.14 0.65 247.36 0.00 51.63
50 1 10 391.303 397.472 1.57 2.44 1.66 1.70 2.82 0.00 135.43 0.85 208.36 0.26 45.37
60 1 1 559.042 563.603 0.81 8.87 1.23 6.48 7.00 0.41 154.66 0.00 265.01 1.00 143.74
60 1 5 550.121 563.438 2.42 2.93 1.69 2.71 4.23 2.27 151.88 0.00 473.45 0.41 101.05
60 1 10 482.289 499.973 3.66 7.85 1.86 6.73 3.39 2.20 179.61 0.00 467.24 0.21 126.04
70 1 1 599.819 622.098 3.71 5.74 2.19 4.95 9.07 4.82 419.90 0.20 544.83 0.00 270.63
70 1 5 564.303 587.004 4.02 7.60 2.59 3.92 13.27 0.52 717.22 0.00 959.91 0.78 200.96
70 1 10 447.452 509.905 13.95 9.28 3.30 9.03 11.79 5.17 634.06 0.00 906.24 2.08 217.23
Average 2.91 3.67 1.11 2.93 3.35 1.55 146.90 0.26 244.81 0.32 68.92
Max 13.95 9.28 3.30 9.03 13.27 5.17 717.22 1.50 959.91 2.08 270.63

The evaluation results are presented in Table II. The best
known values previously were calculated by four different
simple heuristics [24]. We denote them as old best values.

NN→C3-Opt produced the worst results among all C3-
Opt variants. Nevertheless, these results are better than the
ones obtained by CIH or CIH (3-Impr.). The best results
were obtained by Rand→C3-Opt, however, it required much
more time than other approaches. The compromise variant is
CIH→C3-Opt. It produces results only slightly worse than

the approach with random input (0.32% versus 0.26%), but
significantly outperforms it in the computational time (68.92s
versus 244.81s).

Three variants of C3-Opt (and modified CIH) improved
16 out of 18 best known values for these instances. Some
improvements reached 9.68% or 13.95%, e.g., in “20 1 10”
or “70 1 10”. C3-Opt required more time for computation
than CIH but produces better solutions. CIH→C3-Opt was
able to produce solutions for instances with 30 ellipses

222



within 3s, for 40 ellipses within 9s and for 50 ellipses
within 65s. Note, that four new best known values were
obtained by involving Bisection method into the CIH. The
main advantage of C3-Opt upon CIH is that it has no high
“jumps” of error and evenly produces good results.

C. Evaluation of the constricting methods

The naive constricting method could be an application
of RBA algorithm after the candidate tour is constructed
by either NewTour1 or NewTour2 functions, instead of
the proposed constriction strategy. However, in practice, it
leads fast to a local optimum. For example, for the test
instances from Table I, Rand→C3-Opt obtained solutions in
38.5ms on the average, with an average error of 0.34% and
with a maximum error of 7.29% for “tspn2DE12 2”. The
maximum error is so high, as the method got stuck in a local
optimum, caused by very “strict” constricting of a candidate
tour.

VI. CONCLUSION

Typically, an application scenario for industrial robots
consists of processing work pieces with a given number
of atomic tasks. Each task is typically derived from an
engineering requirement. Finding optimal task sequences is
critical for many important issues like processing speed or
energy consumption. Today, this problem is mainly solved by
programmers explicitly. Currently there exist only very few
approaches, which allow automatic task sequencing. Most of
them rely on simple TSP optimization. As a result, computed
tours are far away from optimal solutions.

In this paper, we presented a new algorithm for very
efficient computation of task sequences. The core idea is
to make use of implicitly defined flexibilities and to use
them for optimization. Efficiency here means both: scalable
performance and near optimal results without large devia-
tions of error. We demonstrated both effects on benchmarks
taken from the optimization community. For making results
comparable, we had to choose relatively simple forms (i.e.,
ellipses) for atomic tasks. Note, that our algorithm can be
applied to other types of curves. Only the local search
strategy might need to be adapted. For the same reason, we
focused on optimizing Euclidean distance only. It is possible
to use axis space without any method adaptation and, thus,
consider PTP movements in between tasks. This would only
require changes of the distance function d. Similarly, if a
mapping from movements to energy is available, energy
consumption could be minimized instead of distance.

The next step in our research will be to integrate collision-
free planners in the optimization process. Although this is
not a conceptual problem, it will be challenging to reach
sufficient performance, as a large number of calls of a
planning method will be required. Another current research
direction is to allow user to enter predefined sub-sequences,
which must not be changed. This extension is of great
importance for many real-world applications.

REFERENCES

[1] Z. Pan, J. Polden, N. Larkin, S. V. Duin, and J. Norrish, “Recent
progress on programming methods for industrial robots,” in Proceed-
ings for the joint conference of 41st Internationel Symposium on
Robotics and 6th German Conference on Robotics, 2010.

[2] G. Biggs and B. MacDonald, “A survey of robot programming
systems,” in Proceedings of the Australasian Conference on Robotics
and Automation, 2003.

[3] D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook, The
traveling salesman problem: a computational study. Princeton
University Press, 2007.

[4] S. Srivastava, S. Kumar, R. Garg, and P. Sen, “Generalized traveling
salesman problem through n sets of nodes,” in CORSE Journal, vol. 7,
1969, pp. 97–101.

[5] W. Mennell, “Heuristics for solving three routing problems: close-
enough traveling salesman problem, close-enough vehicle routing
problem, sequence-dependent team orienteering problem,” Ph.D. dis-
sertation, University of Maryland, 2009.

[6] M. Dror, A. Efrat, A. Lubiw, and J. S. B. Mitchell, “Touring a
sequence of polygons,” in 35th annual ACM symposium on Theory
of Computing. ACM Press, 2003, pp. 473–482.

[7] E. M. Arkin and R. Hassin, “Approximation algorithms for the
geometric covering salesman problem,” Discrete Applied Mathematics,
vol. 55, pp. 197–218, 1995.

[8] S. Arora, “Approximation schemes for NP-hard geometric optimiza-
tion problems: A survey,” Mathematical Programming, vol. 97, pp.
43–69, 2003.

[9] J. S. Mitchell, Shortest paths and networks. Chapman & Hall/CRC,
2004, ch. 27, pp. 607–641.

[10] D. Karapetyan and G. Gutin, “Lin–Kernighan heuristic adaptations
for the generalized traveling salesman problem,” European Journal of
Operational Research, vol. 208, no. 3, pp. 221–232, 2011.

[11] K. M. Elbassioni, A. V. Fishkin, and R. Sitters, “Approximation algo-
rithms for the euclidean traveling salesman problem with discrete and
continuous neighborhoods,” International Journal of Computational
Geometry and Applications, pp. 173–193, 2009.

[12] S. Alatartsev, M. Augustine, and F. Ortmeier, “Constricting Insertion
Heuristic for Traveling Salesman Problem with Neighborhoods,” in
23rd International Conference on Automated Planning and Scheduling
(ICAPS), 2013.

[13] X. Pan, F. Li, and R. Klette, “Approximate shortest path algorithms
for sequences of pairwise disjoint simple polygons.” in Canadian
Conference on Computational Geometry, 2010, pp. 175–178.

[14] K. Baizid, R. Chellali, A. Yousnadj, A. Meddahi, and T. Bentaleb,
“Genetic algorithms based method for time optimization in robotized
site.” in IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2010, pp. 1359–1364.

[15] P. T. Zacharia and N. A. Aspragathos, “Optimal robot task schedul-
ing based on genetic algorithms,” Robotics and Computer-Integrated
Manufacturing, vol. 21, pp. 67–79, 2005.

[16] I. Gentilini, F. Margot, and K. Shimada, “The travelling salesman prob-
lem with neighbourhoods: MINLP solution,” Optimization Methods
and Software, vol. 0, pp. 1–15, 2011.

[17] S. Lin, “Computer solutions of the traveling salesman problem,” The
Bell System Technical Journal, 1965.

[18] D. S. Johnson and L. A. McGeoch, Local search in combinatorial
optimization, E. Aarts and J. K. Lenstra, Eds. John Wiley and Sons,
London, 1997.

[19] F. Bock, “An algorithm for solving traveling-salesman and related net-
work optimization problems,” in Unpublished manuscript associated
with talk presented at the 14th ORSA National Meeting, 1958.

[20] V. Mersheeva and G. Friedrich, “Routing for continuous monitoring
by multiple micro UAVs in disaster scenarios,” in 20th European
Conference on Artificial Intelligence (ECAI), 2012, pp. 588–593.

[21] I. T. Hernádvölgyi, “Solving the sequential ordering problem with
automatically generated lower bounds,” Operations Research Proceed-
ings 2003, pp. 355–362, 2003.

[22] C. Rego and F. Glover, The Traveling Salesman Problem And Its
Variations. Kluwer Academic Publishers, 2002, ch. Local search
and metaheuristics, pp. 309–368.

[23] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Nu-
merical recipes – the art of scientific computing, 3rd ed. Cambridge:
Cambridge University Press, 2007.

[24] S. Alatartsev, M. Augustine, and F. Ortmeier. (2012)
http://euromover.cs.uni-magdeburg.de/cse/robotics/tspn/.

223


