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SQL is a high-level nonprocedural data language which has received wide recognition in relational 

databases. One of the most interesting features of SQL is the nesting of query blocks to an arbitrary 

depth. An SQL-like query nested to an arbitrary depth is shown to be composed of five basic types of 

nesting. Four of them have not been well understood and more work needs to be done to improve 

their execution efficiency. Algorithms are developed that transform queries involving these basic 
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1. INTRODUCTION 

A principal advantage of the relational model of data [7-lo] is that it allows the 
user to express the desired results of a query in a high-level nonprocedural data 

language without specifying the access paths to stored data. E.F. Codd proposed 
the relational calculus [7] and the relational algebra [lo] for concisely specifying 

a complex query against the database. However, the mathematics of the relational 
calculus and the relational algebra is not easy for nontechnical users of a database 
system to grasp, and their use as data languages may be limited. As a result, 
much work has been done to develop a data language which is as powerful as the 

relational calculus and the relational algebra and which is easy for nontechnical 
users to learn and use. One such data language that has come to be well received 

is SQL [5,6]. SQL is a block-structured, calculus-based language which has been 
implemented in the SEQUEL system [l], System R [2], and ORACLE [23]. SQL- 
like data languages have also been implemented in ZETA [ll, 151, MRDS [22], 
and DB-85 [14]. 
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One of the more interesting features of SQL is the nesting of query blocks to an 

arbitrary depth. Without this capability, the power of SQL is severely restricted. 

However, techniques which have been used to implement this feature in existing 
systems are in general inefficient and, in view of the popularity of SQL-like data 

languages, it is imperative to develop efficient methods of processing nested 
queries. This paper shows that a query nested to an arbitrary depth is composed 

of five basic types of nesting and that the reason for the less-than-satisfactory 
performance of nested queries in existing systems is that four of the five basic 
types of nesting have not been well understood. It develops algorithms which 

transform nested queries to equivalent, nonnested queries which the query- 
processing subsystems (often called the optimizers) are designed to process more 

efficiently. The algorithms are based on alternative ways of interpreting the 
operations of queries which involve the four types of nesting, and may often 
improve the performance of nested queries by orders of magnitude. Further, 

these algorithms are directly applicable to the processing of queries expressed in 
such highly developed, non-SQL-like data languages as QUEL, which is supported 

by INGRES [21]. 
This paper presumes that the reader is familiar with the syntax of SQL, as well 

as with the basic concepts and terminology of relational databases. 
The illustrative examples used in this paper are based on the following database 

of suppliers, parts, projects, and shipments: 

SUPPLIER @NO, SNAME, SLOC, SBUDGET) 
PART (PNO, PNAME, DIM, PRICE, COLOR) 
PROJECT (JNO, JNAME, PNO, JBUDGET, JLOC) 
SHIPMENT (SNO, PNO, JNO, QTY) 

Each SUPPLIER tuple contains the number (identifier), name, location, and 

budget of a supplier. Each PART tuple contains the number (identifier), name, 
dimension, unit price, and color of a part. A PROJECT tuple has fields for the 
number (identifier), name, budget, and location of a project, along with the part 
number of a part it uses. A SHIPMENT tuple has fields for a supplier number, 
along with the part number, project number, and quantity of the part the supplier 
supplies. 

Throughout this paper Ri denotes a relation in the database, Ck the k th column 
of a relation, and B the size in pages of available main-memory buffer space. 

This paper is organized as follows: Section 2 presents a new scheme for 

classifying a nested query into one of five basic types. Algorithms for transforming 
a nested query of one of four basic nesting types into its semantically equivalent, 
nonnested form are developed and illustrated in Sections 3-5. Section 6 indicates 
potential performance improvements that these algorithms can bring about. 
Section 7 shows how these algorithms may be merged into a coherent strategy 
for processing a general SQL-like nested query of arbitrary complexity. 

2. NESTING OF QUERY BLOCKS 

The fundamental structure of an SQL-like query is syntactically represented by 
a query block which consists of SELECT, FROM, and WHERE clauses. The 
WHERE clause specifies the predicates which tuples of the relation indicated in 
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the FROM clause must satisfy. A predicate is of the form [Ri.Ck op X], where X 
is a constant or a list of constants, and op is a scalar comparison operator (=, 
l=, >, >=, <, <=) or a set membership operator (IS IN, IS NOT IN). The 
SELECT clause specifies the columns of the relation to be output and operations 
on the columns. The following two examples illustrate the basic structure of an 
SQL-like query. 

Example 1. Find the supplier numbers of suppliers which supply parts whose 
part number is Pl. 

SELECT SNO 
FROM SHIPMENT 
WHERE PNO = ‘Pl’; 

Example 2. Find the highest part number of parts whose unit price is greater 
than 25. 

SELECT MAX(PN0) 
FROM PART 
WHERE PRICE > ‘25’; 

As long as the predicates in the WHERE clause are restricted to the simple 
predicates of the form [Ri.Ck op X], only single-relation queries can be formu- 
lated. If n-relation queries which require relational join and division operations 
are to be formulated, more general predicates must Be allowed. The simple 
predicates can only be extended in three ways. 

(1) Nested predicate. X may be replaced by Q, an SQL-like query block, to 
yield a predicate of the form [Ri.Ck op Q]. The op may be a scalar or set 
membership operator. The predicate may also take the form [Q op Ri.Ck]. The 
set membership operator is then replaced by the set containment operator 
(CONTAINS, DOES NOT CONTAIN). The two forms of the predicate are 
symmetric, so the latter will not be further considered. 

(2) Join predicate. X may be replaced by Rj.Ch to yield a predicate of the 
form [Ri. Ck OP Rj. Ch], in which Ri 1~ Rj and the op is a scalar comparison 
operator. 

(3) Division predicate. Ri. Ck and X may be replaced by query blocks Qi and 
Qj, respectively, to yield a predicate of the form [Qi op Qi]. The op may be a 
scalar comparison operator, set comparison operator (=, #), or set membership 
and containment operator. As will be seen later, Qj (or Qi) may be a constant or 
a list of constants, provided that Qi (or Qi) has in its WHERE clause a join 
predicate which references the relation of the outer query block. 

For simplicity, the op in a join predicate is assumed to be an equality operator 
in this paper. The join predicate [Ri.Ck = Rj.Ch] indicates that each tuple of Ri 
is to be joined with all tuples of Rj whose Ch column values are equal to the Ck 
column value of the Ri tuple. The next example illustrates the use of a join 
predicate in formulating a two-relation query. 
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Example 3. Find the supplier numbers of suppliers which supply parts whose 
unit price is higher than 25: 

SELECT SNO 
FROM SHIPMENT, PART 
WHERE SHIPMENT.PNO = PART.PNO AND 

PRICE > ‘25’; 

Note that a query which requires joining two relations has been expressed using 
one join predicate. A query which joins n relations can be written using a 
conjunction of n - 1 join predicates in the WHERE clause. An n-relation query 
which joins n relations via n - 1 join predicates and contains no nested or division 
predicates is termed a canonical n-relation query. As shown later in this section, 

it is possible to write a query which joins relations without the use of join 
predicates. 

Examples 4 through 7 later in this section illustrate uses of nested predicates, 

and Example 8 shows a query which makes use of a division predicate. 
Besides providing the capability for expressing a canonical n-relation query, 

the generalized predicates allow the user to nest query blocks to an arbitrary 
depth. For the following discussion, however, a query is assumed to be of nesting 

depth one. That is, a query consists of an outer block and an inner block. (The 
query blocks Qi and Qj in a division predicate are the left- and right-hand sides 
of the inner block.) Further, it is assumed that the WHERE clause of the outer 

block contains only one nested predicate or division predicate. These assumptions 
cause no loss of generality, as is shown in Section 7. Finally, as in SQL, it is 
assumed that only one column name may be specified in the SELECT clause of 
a query block that is nested within another query block. 

It is clear that, of the three types of generalized predicates defined above, only 
the nested predicate and the division predicate give rise to the nesting of query 
blocks. A nested predicate may cause one of four basic types of nesting, according 
to whether the inner query block Q has in the WHERE clause a join predicate 
that references the relation of the outer query block and whether the column 
name in the SELECT clause of Q has associated with it an aggregate function 
(SUM, AVG, MAX, MIN, COUNT). A division predicate yields a fifth basic 

nesting. It appears that the present specification of SQL gives rise to no other 
basic nesting types. However, it does not appear that an extra nesting type will 

enhance the power of SQL-like data languages. The remainder of this section will 
illustrate these five basic nesting types and, for later use, develop graphical 
representations for them. 

A nested predicate gives rise to type-A nesting if the inner query block Q does 
not contain a join predicate that references the relation of the outer query block 
and the SELECT clause of Q indicates an aggregate function associated with the 
column name. Note that if Q does not contain in the WHERE clause a join 
predicate that references the relation of the outer query block, Q may be 
completely evaluated independently of the outer query block. Moreover, when 
the SELECT clause of Q specifies an aggregate function, the result of evaluating 
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Q will be a single constant rather than a list of constants. A type-A nesting of 
depth 1 is illustrated by the following example. 

Example 4. Find the supplier numbers of suppliers which supply parts whose 
part number is the highest of those parts whose unit price is greater than 25. 

SELECT SNO 
FROM SHIPMENT 
WHERE PNO = (SELECT MAX(PN0) 

FROM PART 
WHERE PRICE > ‘25’) ; 

There is only one way to process a type-A nested query on a single processor. 
The inner block has to be evaluated first. The nested predicate of the outer block 
then becomes a simple predicate, since Q can be replaced by a constant. The 
outer block then is no longer nested and can be processed completely. 

A type-A nested query (predicate) of depth 1 is graphically represented as 
follows. The graphical representation for a query will be called the query graph 
for the query. 

The left-hand node represents the outer block (which requires access to Ri), and 
the right-hand node the inner block (which references R;). The arc represents 

the nested predicate and is labeled ‘A’ followed by the column name that appears 
in the SELECT clause of the inner query block. In general, if the WHERE clause 

of the outer block consists of n nested predicates, n arcs leading to n right-hand 
nodes emanate from one left-hand node. 

A nested predicate yields a type-N nesting, if Q does not contain a join predicate 
that references the relation of the outer query block and the column name in the 
SELECT clause of Q does not have an aggregate function associated with it. The 

result of evaluating the Q of a type-N nested predicate is a list of constants, and, 
as in a type-A nested query, Q may be completely evaluated independently of the 

outer query block. The following example illustrates a type-N nesting. 

Example 5. Find the supplier numbers of suppliers which supply parts whose 
unit price is greater than 25. 

SELECT SNO 
FROM SHIPMENT 
WHERE PNO IS IN (SELECT PNO 

FROM PART 
WHERE PRICE > ‘25’) ; 

Note that Examples 3 and 5 show two different formulations of the same query. 
This observation has some interesting implications, as can be seen in Section 3. 

The System R approach to processing the above query is first to process the 
inner query block Q in order to replace the type-N nested predicate, PNO IS IN 
Q, with a simple predicate PNO IS IN X, where X is the result of evaluating Q, 
and then to completely process the resulting nonnested query. 
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The query graph for a type-N nested query of depth 1 is 

A type-N nested query in which the op of the nested predicate is the set 
noninclusion operator (IS NOT IN) requires a different treatment from a type-N 
nested query involving the set inclusion operator (IS IN), as is shown in Section 

3. This special type-N nested query is represented by a straight arc labeled ‘Nx’. 

A type-N nested query of depth n(n >= 1) is defined as a nested query whose 
query graph consists of only straight arcs labeled ‘N’. The following is the query 

graph for a type-N nested query of depth 2. 

A nested predicate gives rise to a type-J nesting when the WHERE clause of 
Q contains a join predicate that references the relation of the outer query block 
and the column name in the SELECT clause of Q is not associated with an 
aggregate function, The next example illustrates a type-J nesting. 

Example 6. Find the supplier numbers of suppliers which supply projects that 
are located in New York and whose project numbers are the same as the supplier 
numbers. 

SELECT SNO 
FROM SHIPMENT 
WHERE PNO IS IN (SELECT PNO 

FROM PROJECT 
WHERE SHIPMENT.SNO = PROJECT.JNO AND 

JLOC = ‘NEW YORK’) ; 

The following is the query graph for a type-J nested query of depth 1. 

a3 
Ri.C,=Ri.C, 

The straight arc is labeled ‘N’, since except for the presence of a join predicate in 

the inner block, a type-J nested query has the same form as a type-N nested 
query. The circular arc, labeled with a join predicate, links the two query blocks 
that the join predicate references. 

The query graph for a type-J nested query of depth 1 involving the set 
noninclusion operator is shown in the following. 

ACM Transactions on Database Systems, Vol. 7, No. 3, September 1982. 



On Optimizing an SQL-like Nested Query l 449 

Ri.C,=Rj.C, 

A type-J nested query of depth n(n >= 1) is defined as a nested query whose 
query graph consists of at least one circular arc and no straight arc labeled ‘A’. 
The following is the query graph for a type-J nested predicate of depth 2. 

@-3+AyJ 

R,.C,=R,.C, 

A type-JA nesting results from a nested predicate if the WHERE clause of Q 
contains a join predicate that references the relation of the outer query block and 

an aggregate function is associated with the column name in the SELECT clause 
of Q. The next example illustrates a type-JA nesting. 

Example 7. Find the supplier numbers of suppliers which supply parts whose 
part numbers are the highest of those parts used by each of the projects located 

in New York. 

SELECT SNO 
FROM SHIPMENT 
WHERE PNO = (SELECT MAX( PNO) 

FROM PROJECT 
WHERE PROJECT.JNO = SHIPMENT.JNO AND 

JLOC = ‘NEW YORK’); 

The query graph for a type-JA nested predicate of depth 1 is 

@yg 

Ri.C,=Rj.C, 

The straight arc joining the two nodes is labeled ‘A’. The circular arc connects 
the two query blocks referenced in the join predicate. 

A type-JA nested query of depth n(n >= 1) is defined as a nested query whose 
query graph exhibits at least one circular arc and at least one straight arc labeled 
‘A’, as shown below. 

R,.C,=R,.C, 

A join predicate and a division predicate together give rise to a type-D nesting, 
if the join predicate in either Qi or Qj (or both) references the relation of the 
outer block. As the next example shows, a type-D nested query expresses the 
relational division operation. 
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Example 8. Find the names of suppliers which supply all red parts that are 
priced higher than 25. 

SELECT SNAME 
FROM SUPPLIER 
WHERE (SELECT PNO 

FROM SHIPMENT 
WHERE SHIPMENT.SNO = SUPPLIER.SNO) 

CONTAINS 

( SELECT PNO 
FROM PART 
WHERE COLOR = ‘RED’ AND 

PRICE > ‘25’) ; 

The division predicate in this query specifies the division of TMPl (SNO, 

PNO) by TMP2 (PNO), where TMPl is obtained by projecting the SHIPMENT 
relation over the SNO and PNO columns, and TMP2 by evaluating the right- 

hand side of the division predicate. 

The query graph for a type-D nested query of depth 1 is 

The straight arc is labeled ‘D’. One straight arc leads to two right-hand nodes, 

since the inner block consists of two query blocks, Qi and Qj . The top right-hand 
node is the left-hand side of the division predicate. The circular arc connects the 

outer block and the left-hand side of the division predicate. 
Both sides of the inner block of a type-D nested query may contain join 

predicates which link them to the outer block. However, a division predicate in 

which neither query block contains a join predicate that references the outer 
block is meaningless. The reason is that a predicate is a condition which is 
imposed on tuples of the relation indicated in the FROM clause of the query 
block, and a division predicate which does not contain a join predicate which 

references the relation is either always true or always false. 

The System R technique for processing a nested query in which the WHERE 
clause of the inner query block contains a join predicate that references the 
relation of the outer query block (that is, types J, JA, and D) is the conceptually 

simple, nested-iteration method [16-18, 20, 241. This method suggests the com- 
plete processing of the inner query block for each tuple of the relation of the 
outer query block. For example, the query of Example 6 may be processed by the 
nested-iteration method by fetching each SHIPMENT tuple, isolating its SNO 
column value for substitution in the join predicate of the inner query block, 
evaluating the inner query block (which by now is free of any join predicate that 
references the relation of the outer query block), and reducing the type-J nested 
predicate of the original query to a simple predicate PNO IS IN X, where X is the 
result of evaluating the inner query block for a particular SNO value of the 
SHIPMENT tuple. 
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Although it provides a convenient way of viewing the semantics of a nested 
query, the nested-iteration method is an inefficient way to evaluate it in a paged- 

memory environment. In fact, the main thrust of this paper is the development 
of algorithms for transforming, with some intermediate query processing, a nested 

query of various types to a semantically equivalent canonical form which can be 
evaluated more efficiently. This is illustrated in Section 6. 

3. PROCESSING A TYPE-N OR TYPE-J NESTED QUERY 

Examples 3 and 5 have shown that some query may be expressed in its canonical 
form or type-N nested form. The equivalence of the two forms of the same query 

has been recognized by others [see 12, Chap. 71. However, some important 

questions which arise have not been investigated. Can a type-N nested query of 

depth n - 1 be transformed to a semantically equivalent canonical n-relation 
query, and vice versa? Which of the two forms of the query can be more efficiently 

processed? 
First, Lemma 1 establishes the equivalence of the canonical and type-N nested 

form of a two-relation query in which the op is not the set noninclusion operator, 
IS NOT IN. 

Let Q1 be 

SELECT RieCk 
FROM Ri, Rj 
WHERE Ri.Ch = Rj.Cm 

And let Qz be 

SELECT Ri.Ck 
FROM R, 
WHERE Ri.Ch ISIN (SELECT R,.Cm 

FROM Rj); 

LEMMA 1. Q1 and Q2 are equivalent; that is, they yield the same result. 

PROOF. By definition, the inner block of Q2 can be evaluated independently of 
the outer block and the result of evaluating it is X, a list of values in the C, 

column of Rj. Qz is then reduced to 

SELECT Ri.Ck 
FROM Ri 
WHERE Ri.Ch ISIN X; 

The predicate Ri. G, IS IN X is satisfied only if X contains a constant 3c such that 
Ri.Ch = X. That is, it can be satisfied only for those tuples of Ri and Rj which have 
common values in the Ch and C, columns, respectively. The join predicate 
Ri. Ch = Rj. C, specifies exactly this condition. Cl 

Lemma 1 implies one important assumption. The result of evaluating the inner 

block of Qz is X, a list of values in the C, column of Rj. Since the list is obtained 
by projecting R; over the C, column, in general it will contain duplicate values. 
But the effect of the simple predicate Ri. Ch IS IN X is to implicitly remove any 
redundant values from X. However, the join predicate Ri. Ch = Rj. C, of Q1 does 
not imply removal of duplicate values from the C, column of Rj and the result of 
&I reflects their presence. Therefore, it is assumed throughout this paper that, if 
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a canonical n-relation query has been obtained from a type-N or type-J nested 
query and if and only if the op of the nested predicate is IS IN, it is processed by 
first restricting and projecting the relation which corresponds to the relation of 
the inner query block in the nested query (e.g., Rj in Q1) and then removing 
duplicate values from the resulting unary (i.e., single-column) relation before 

joining it with the relation which corresponds to the relation of the outer query 
block in the nested query (e.g., Ri in Q1). This assumption guarantees the 

correctness of Lemma 1 and appears to be reasonable, since the relation which 
results from projecting and restricting a relation is usually much smaller than the 

initial relation, and the cost of joining reduced relations is, therefore, usually 

smaller than the cost of joining unreduced relations. 
It is also important to recognize that Lemma 1 establishes only that the type- 

N nested form of a query in which the op of the nested predicate is the set 

inclusion operator can be transformed to its canonical form. Lemma 1 does not 
apply when the op of the nested predicate is the set noninclusion operator, as is 

shown later. Further, the canonical form of a query cannot in general be trans- 
formed to the type-N nested form. This is because only one column (the join 
column) is allowed in the SELECT clause of the inner block [6]. If, for example, 

the SELECT clause of Q1 contained Rj.Cq hs well as Ri.Ck, it would not be 
possible to express the query in the nested form. Lemma 1 can be readily extended 
to type-N nested predicate in which the op is a scalar comparison operator. 

The scalar comparison operator becomes the op of the join predicate in the 
canonical form of the query. It is assumed that the result of evaluating the inner 

query block is always a single constant. If it is desirable to be able to abort the 
query when the inner query block yields a list of constants, the canonical 
equivalent must be processed as if the op is IS IN. 

Lemma 1 suggests Algorithm NEST-N-J for transforming a type-N nested 
query of depth n - 1 to its canonical form. 

Algorithm NEST-N-J 

(1) Combine the FROM clauses of all query blocks into one FROM clause. 
(2) AND the WHERE clauses of all query blocks into one WHERE clause. 
(3) Replace [Ri. C,, op (SELECT Rj. C,] by a join predicate [Ri. CI, new-op Rj. .C,], and 

AND it to the combined WHERE clause obtained on step 2. Note that if op is IS IN, 
the corresponding new-op is ‘=‘; otherwise, new-op is the same as op. 

(4) Retain the SELECT clause of the outermost query block. 

Algorithm NEST-N-J attaches no significance to join predicates. A type-J 
nested query can also be transformed to its canonical form by the algorithm. The 
join predicate in the inner block which references the outer block is ANDed to 
other simple predicates on step 2. The following example illustrates Algorithm 
NEST-N-J. 

Example9 

SELECT Ri.Ck 
FROM Ri 
WHERE Ri.Ch IS IN (SELECT Rj.Cm 

FROM Rj 
WHERE Ri.Cn=Rj.CP); 
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The canonical form of this query is shown below: 

SELECT Ri.Ck 
FROM Rip Rj 
WHERE Ri.Ch = Rj.Cm AND 

Ri.Cn = Rj.Cp; 

The query joins relations Ri and Rj, on (Ch, C,) and (Cm, C,) columns, respectively. 
The process of transforming a type-N or type-J nested query of depth n to its 

canonical equivalent can be viewed as one of eliminating all straight or circular 
arcs as well as all but the leftmost node on the query graph for the nested query. 

A type-N nested query in which the op in the nested predicate is the set 
noninclusion operator requires a careful, special consideration. Consider the 

following query. 

Example 10. Find the names of suppliers that do not supply parts whose part 

number is Pl. 

SELECT SNAME 
FROM SUPPLIER 
WHERE SNO IS NOT IN (SELECT SNO 

FROM SHIPMENT 
WHERE PNO = ‘Pl’) ; 

It is important to understand that the following query is not equivalent to the 
above query. 

SELECT SNAME 
FROM SUPPLIER 
WHERE SNO IS IN (SELECT SNO 

FROM SHIPMENT 
WHERE PNO l= ‘PI’); 

Further, as pointed out in 1121, the operation of the query may be viewed as 

fetching each SUPPLIER tuple, checking whether the supplier supplies part Pl, 
and, if not, outputting the supplier name. This alternate interpretation of the 
query results in the formulation of a type-D nested query. 

SELECT SNAME 
FROM SUPPLIER 
WHERE (SELECT PNO 

FROM SHIPMENT 
WHERE SHIPMENTSNO = SUPPLIER.SNO) 

DOES NOT CONTAIN 

Pl; 

As is shown in Section 5, efficient processing of a type-D nested query in 
general requires sorting the relation of the left-hand side of the inner block, the 

SHIPMENT relation in the present example. The equivalent type-N nested form 
of the query, on the other hand, requires sequentially scanning the SHIPMENT 
relation only once. Therefore, the type-D nested form of the query is not helpful. 
However, the type-N nested form also suffers if X, the result of evaluating the 
inner block, is large compared with B, the size of main-memory buffer space. 
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A potentially better method of processing the above query when the result of 

evaluating the inner block is large is a special merge join of X and SUPPLIER. 
Both relations are first sorted in SNO-column order and then simultaneously 
scanned to find SUPPLIER tuples which have SNO values that are not shared 

by X. X and SUPPLIER may be said to be ‘antijoined’ by the antijoin predicate 
l(SUPPLIER.SNO = XSNO). The above query may then be transformed to its 

pseudocanonical form as follows, 

SELECT SNAME 
FROM SUPPLIER, X 
WHERE l(SUPPLIER.SNO = X.SNO); 

The set noninclusion operator in a type-N or type-J nested query requires an 

extension to Algorithm NEST-N-J. Now [Ri.Ck IS NOT IN (SELECT Rj.Ch] is 
replaced by the antijoin predicate l(Ri.Ck = Rj.Ch) and ANDed to the merged 
WHERE clause obtained on steps 2 and 3 of the algorithm. 

The result of a query is independent of the order in which its predicates are 

evaluated. However, an antijoin predicate must be evaluated only after all join 
predicates have been evaluated. The following query explains this point. 

SELECT Ri.Ck 
FROM 
WHERE ii:.& IS NOT IN (SELECT RjaCm 

FROM Rj 
WHERE RjeCn = Ri.Cp); 

The operation of the query may be thought of as fetching each tuple of Ri, 
retrieving all tuples of Rj whose C, column values are the same as the C, column 
value of the Ri tuple (i.e., if Rj.Cn = Ri.Cp), and outputting the C’k column of the 
Ri tuple if its C,, column value is not found in the C,,, column of the retrieved Rj 
tuples ,(i.e., if I( Ri.Ch = Rj.Cm)). Notice how the join predicate, Rj.Cn = Ri.Cp, is 
evaluated before the antijoin predicate, l(Ri.Ch = Rj.Cm) (implied in Ri.Ch IS 

NOT IN (SELECT Rj.Cm) for each value in the C, column of Ri. 

4. PROCESSING’A TYPE-JA NESTED QUERY 

A new algorithm for processing a type-JA nested query is developed in this 
section. The algorithm not only improves the performance of a type-JA nested 
query but also appears to be easy to implement. Lemma 2 provides the basis for 
the algorithm. An algorithm similar to the one described in this section has been 
independently developed by Epstein in the context of the QUEL data language 

c131. 
Let Q3 be 

SELECT R, . G 
FROM Ri 
WHERE Ri. CA = (SELECT AGG(Rj. Cm) 

FROM R, 
WHERE R,.Cm = Ri.Cp); 
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Further, let Q4 be 

SELECT R, . Ck 

FROM Ri 
WHERE Ri.Ch = (SELECT RI.& 

FROM R1 
WHERE Rt.CI = Ri.Cp); 

where Rt(C1, C,) is obtained by 

Rt(C1, Cz) = (SELECT Rj.Cn, AGG(Rj.Cm) 
FROM Rj 
GROUP BY Rj*Cn); 

LEMMA 2. Q3 and Q4 are equivalent, that is, they produce the same result. 

PROOF. It is shown in Section 2 that the operation of Q3 may be thought of as 

first fetching a tuple of Ri and all tuples of Rj whose C,, column values are the 
same as the C, column value of the Ri tuple, then applying the aggregate function 

AGG on the C,,, column of the Rj tuples to obtain a constant X, and, finally, 
outputting the Ck value of the Ri tuple if x = C,, column value of the Ri tuple. 

Now RI is a binary relation of each distinct value in the C,, column of Rj and the 
corresponding value obtained by applying the aggregate function AGG on the Rj 
tuples. Then it is clear that the query may be processed by fetching each tuple of 
Ri, then fetching the Rt tuple whose Cl column has the same value as the C, 
column of the Ri tuple, and outputting the Ck column value of the Ri tuple if the 
C2 column value of the Rt tuple is the same as the C,, value of the Ri tuple. But 
this is exactly the operation of Q4. Cl 

Note that Q3 is type-JA nested, but Q4 is type-J nested and can be transformed 

to its canonical form by Algorithm NEST-N-J. Since the op of the type-J nested 
predicate is the scalar equality operator, rather than the set inclusion operator IS 
IN, the problem of removing duplicates from Rt does not arise here. In other 
words, the straight arc labeled ‘A’ on the query graph for Q3 is replaced by a 
straight arc labeled ‘N’, and the circular arc is retained. 

Lemma 2 directly leads to an algorithm which transforms a type-JA nested 
query of depth 1 to an equivalent type-J nested query of depth 1. Consider the 

following query. 

SELECT R,. C,,+z 
FROM R, 
WHERE R,.C,,+I = (SELECT AGG(R~.C,+I) 

FROM Rz 
WHERE R,.C, = R,.C, AND 

Rz.Cz = R,.C2 AND 

Rz.C,, = R,.C,,); 

Algorithm NEST-JA 

(1) Generate a temporary relation Rt( Cl, . . . , C,, C,,,,) from R2 such that each C,,+l 
column value of Rt is a constant obtained by applying the aggregate function AGG OP 
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the C,,,, column of the Rz tuples which share a common value in columns C1 through 
C,,. In other words, the primary key of Rt is its lirst n columns. Rt can be obtained by 

RttCl,..., C,, C,+l) = (SELECT Cl,. . . , C,, AGG(C,+l) 
FROM RZ 
GROUP BY C,, . . . , Cn) ; 

(2) Transform the inner block of the initial query by changing all references to Rz columns 
in join predicates that reference R, to corresponding RI columns. The initial type-JA 
nested query is now type-J nested, since the aggregate function in the SELECT clause 
has been replaced by a simple reference to the C,+1 column of Rt. 

SELECT RI. C, +2 
FROM RI 
WHERE Rl.C,,+l = (SELECT Rt.C,+l 

FROM Rt 
WHERE R1.G =R,.C, AND 

RI.& =Rl.Cz AND 

Rt.C,, = RI.&); 

In order to extend Lemma 2 to an algorithm for transforming a type-JA nested 
query of depth n(n >= 1) to an equivalent, type-J nested query, it is instructive 

to consider first the transformation of a type-JA nested query of depth 2. A type- 

JA nested query of depth 2 has at least one circular arc on its query graph and 
one or both of the straight arcs must be labeled ‘A’. Therefore, there are 3 types 

of type-JA nested query of depth 2, as illustrated below. 

type JA(NA) 

QeQs 

tvw JA(AA) 

QQa 

type JA(AN) 

0 

It is clear that Algorithm NEST-JA, when applied to the two right-hand nodes, 
transforms a type-JA(NA) nested query to an equivalent type-J query of depth 
2 shown below. 
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Similarly, it transforms a type-JA(AA) nested query to an equivalent type- 

JA(AN) nested query. A type-JA(AN) nested query can be transformed to a 
type-JA query of depth 1 if Algorithm NEST-N-J is first applied to the two 

innermost blocks (i.e., the two rightmost nodes on the query graph). The next 
example illustrates this. 

Example 11. The following is a type-JA(AA) nested query of depth 2. 

SELECT Ri.Ck 
FROM Ri 
WHERE Ri. CA = (SELECT AGG(R,.C,) 

FROM Rj 

WHERE RjsCn = (SELECT AGG(Rk. C,) 
FROM Rk 
WHERE Rk.Cq = Ri.Cr)); 

First, a temporary relation &(Cr, Cz) is obtained by step 1 of Algorithm 

NEST- JA. 

Rt,(Cl, Cz) = (SELECT Rk . C, , AGG (Rk . C,, 
FROM & 
GROUP BY Rk.C9); 

By step 2 of Algorithm NEST-JA, the innermost block is transformed to 

SELECT R~I < Cz 
FROM Rt1 
WHERE Rtl.CI = Ri.Cr; 

The initial type-JA(AA) nested query is now type-JA(AN) nested. The two inner 
blocks of the type-JA(AA) nested query can then be transformed to its canonical 
form by Algorithm NEST-N-J, yielding the following type-JA nested query of 
depth 1. 

SELECT 
FROM 
WHERE 

Ri. Ck 
R, 
Ri. Ch = (SELECT AGG(Rj.C,! 

FROM Rj, Rtl 
WHERE Rt1.G = R,.C, AND 

Rt1.c~ = Rj.Cn); 

Next, another temporary relation, Rtz(G, C2), is obtained by step 1 of &ofithm 

NEST-JA. 

R&Cl, Cz) = (SELECT R~I.CI, AGG(Rj.Cm) 
FROM &I, Rj 
WHERE Rj.Cn = Rtl.Cz 
GROUP BY Ro.C,); 

By another application of step 2 of Algorithm NEST-JA, the initial query is 
transformed to an equivalent type-J query of depth 1. 
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SELECT Ri.Ck 
FROM Ri 
WHERE Ri.Ch = (SELECT Rt2.c~ 

FROM 

WHERE ilZ.Cl = Ri.Cr); 

An algorithm for transforming a type-JA query of depth n to an equivalent 

type-J nested query can now be given. The following query graph for a type-JA 

nested query provides the framework for the description of Algorithm NEST- 

JA(G). 

(The label “A/N” over each straight arc means A or N. Remember at least one 
straight arc must be labeled “A” if the query is type-JA nested.) 

Algorithm NEST-JA(G) 

I = n (the nesting depth of the query); 
DO WHILE (there-is-at-least-one-straight-arc-labeled-A); 
If the Ith straight arc is labeled N THEN I = I - 1; 
ELSE DO; 

Apply Algorithms NEST-JA and (NEST-N-J) to the n - I + 1 nodes to the right 
of the Ith straight arc; 

The Zth straight arc of the resulting query of depth I is labeled N; 

n = I; 
END; 

END; 

Example 12. The following type-JA nested query of depth 4 is transformed to 
an equivalent type-J nested query by Algorithm NEST-JA(G). 

c 
First, the fourth straight arc is labeled “N”, so set I = n - 1 = 3. The third 
straight arc is labeled “A”, so Algorithms NEST-N-J and NEST-JA are applied 

to the n - I + 1 = 2 right-hand nodes of the third straight arc to yield a query of 
depth 3 shown below. 

The query is now type-J nested, and the algorithm terminates. 
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5. PROCESSING A TYPE-D NESTED QUERY 

As far as this author is aware, none of the currently operational relational 
database systems supports the division predicate. However, it is often necessary 
to formulate a query that requires division of one relation by another relation, 
and it does appear that the relational division operation can be efficiently 
performed. A more efficient algorithm than the nested-iteration method for 
processing a type-D nested query can be found by, once again, recognizing an 
alternate interpretation of the operation of the query. The algorithm is based on 
Lemma 3. Let Q5 be the following query. 

SELECT Ri.Ck 
FROM Ri 
WHERE (SELECT Rj.Ch 

FROM 
WHERE z.Cn=Ri.Cp) 

OP 
(SELECT Rk . C, 
FROM Rd; 

Further, let Q6 be 

SELECT Ri.Ck 
FROM Ri 
WHERE Ri.C,, = (SELECT Cl 

FROM RI) ; 

where Rt is obtained as 

R,(G) = (SELECT Rj.Cn 
FROM Rj RX 
WHERE (SELECT Rj.Cb 

FROM RjRY 
WHERE RY.C,, = RX.C,) 

(SELECT Yi:. c, 
FROM Rk) ; 

LEMMA 3. Q5 and Qs are equivalent, that is, they produce the same result. 

PROOF. As has been shown, the operation of Q5 may be thought of as fetching 
each tuple of Ri and checking whether the division predicate is satisfied by the C, 
column value of the tuple. But what if there is a list of the C,, column values of 
Rj which satisfy the division predicate? Then all that needs to be done is to fetch 
each Ri tuple and determine whether the C,, column value of the tuple is in the 
list. But this is precisely the operation of Qs, since Rt is just such a list. 0 

Note that the initial type-D nested query has been transformed to an equivalent 
type-N nested query. The fact that the op of the type-N nested predicate is the 
scalar equality operator, rather than the set inclusion operator IS IN, means that 
the type-N nested query may be transformed to its canonical equivalent form 
without having to remove duplicates from Rt. In terms of query graphs, the 
straight arc labeled “D” on the query graph for the initial query is replaced by a 
straight arc labeled “N”, the two right-hand-side nodes are replaced by one node, 
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and the circular arc on the initial query graph is eliminated. It should be clear 
that the initial query could have been directly transformed to its canonical form. 

The following example illustrates Lemma 3. 

Example 13. Find the names of suppliers which supply all red parts. 

SELECT SNAME 
FROM SUPPLIER 
WHERE (SELECT PNO 

FROM SHIPMENT 
WHERE SHIPMENT. SNO = SUPPLIER. SNO) 

= 

(SELECT PNO 
FROM PART 
WHERE COLOR = ‘RED’) ; 

The query is equivalent to 

SELECT SNAME 

FROM SUPPLIER 
WHERE SNO IS IN (SELECT SNO 

FROM TMP) ; 

where the temporary relation TMP(SN0) is obtained by 

TMP(SN0) = (SELECT SNO 
FROM SHIPMENT SX 
WHERE (SELECT PNO 

FROM SHIPMENT SY 
= 

WHERE SX.SNO = SY.SNO) 
(SELECT PNO 
FROM PART 
WHERE COLOR = ‘RED’); 

The query which generates the temporary relation Rt is simply an SQL-like 
formulation of the relational division operator. Lemma 3 provides the basis for 
Algorithm NEST-D, which transforms a general type-D nested query to an 
equivalent canonical two-relation query. Consider the following query which 
requires dividing Rz( Cl, . . . , CL) by R3(C1, . . . , C,), where n > m. 

SELECT RI. C, 
FROM RI 
WHERE (SELECT Rz. Cl 

FROM RZ 
WHERE R2.G = R,.Cz AND 

Rz.Cz = R1.G AND 

Rz.C,, = RI.&) 
= 

(SELECT R3. CI 

FROM RS 
WHERE R3.C2 = R,.G AND 

R3.C3 = R,.Cz AND 

R3.C,,, = R,.C,); 
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Algorithm NEST-D 

(1) Generate a temporary relation &I(& . . . , C,) by 

Rtl(C1, . . . , Cm) = (SELECT Cl, . . . , C, 
FROM Rx); 

Also generate a temporary relation Rt2(C1, . . . , C,) by 

RdG, . . . , C,,) = (SELECT C,, . . . , C, 
FROM Rz) ; 

(2) Divide Rt2(C1, . . . . C,) by Rtl(G, . . . . C,). The result is a new temporary relation 
RtdCm+~, . . . , Cd. 

(3) Transform the initial query to its canonical equivalent by first dropping the query 
block on RS, replacing all references to columns of RP to corresponding columns of Rt3 
in the query block on Rz, and eliminating the SELECT and FROM clauses of the 
query block on RP. The FROM clause of the resulting canonical query must now 
include Rt3 as well. 

SELECT R, . C, 
FROM R,, Rt3 

WHERE RI.C,+I =RmC,,,+l AND 
R1.C,,,+2 = Rta.Cm+z AND 

R,.C, = Rt3.G; 

6. RATIONALE FOR TRANSFORMING NESTED QUERIES 

What is the reason for transforming a nested query to its canonical equivalent? 
The answer is that the optimizers in currently operational relational database 
systems that support SQL-like query languages have been designed to evaluate 
the canonical form of multiple-relation queries and they resort solely to the 
nested-iteration method for evaluating the nested form of the queries. The nested- 

iteration method is efficient only for a limited set of query and database charac- 
teristics, as is shown in this section. 

A generally more effective strategy for evaluating a nested query (of arbitrary 
depth and complexity) is to transform it to its canonical form and have the 
optimizer determine an optimal set of algorithms and access paths for evaluating 
it. The System R optimizer, for example, considers both the nested-iteration 

method and the merge-join method, as well as all possible “reasonable” orders in 
which relations may be scanned, in processing a canonical n-relation query [19]. 
Whereas the nested-iteration method of joining two relations requires the inner 
relation to be retrieved as many times as there are tuples that satisfy predicates 
on the outer relation, the merge-join requires both relations to be simultaneously 
retrieved only once, provided that the relations are first sorted in join-column 

order. It appears that the equivalence-transformation approach developed in this 
paper may be adopted as the foundation for an optimizer of SQL-like queries and 
the nested-iteration method may then be used to augment the performance of 
the optimizer for the rather special situations for which the latter method is more 
efficient. 

This section analyzes and compares the costs of processing types N, J, JA, and 
D nested queries using the System R approach and the transformation algorithms 
presented in this paper. For simplicity, nested queries of depth greater than 1 are 
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not considered. Ri denotes the relation of the outer query block, Rj the relation 

indicated in the FROM clause of the inner block, and Rt the temporary relation 
obtained by an intermediate processing on Rj . Pk is the size (in pages) of relation 
Rk, and Nk the number of tuples in Rk. fi denotes the fraction of the tuples of Ri 
that satisfy all simple predicates on Ri, and Jk,, the number of distinct values in 
the C, column of Rk. Further, it is assumed that a (B - l)-way multiway merge 

sort is used, which requires 2.P-log~-,P page I/OS to sort a relation R [3, 41. 
This section takes page I/OS as the primary measure of performance of a query, 
and assumes, for expository simplicity, that Ri and Rj are sequentially scanned. 

System R evaluates a type-N nested query by first evaluating the inner query 

block in order to reduce the nested predicate to an equivalent, simple predicate, 

and by then evaluating the outer query block. As long as Rt, the unary relation 
obtained by evaluating the inner query block, is small enough to fit into B - 1 

pages of the main memory buffer, clearly the System R approach is optimal: Rj 
needs to be fetched only once to generate R,; and also Ri once, one page at a time 
into the remaining buffer page, to compare against Rt. The System R method 

costs at most 

Pj + Pi page fetches 

If, however, Rt is larger than B - 1 pages, this approach can cause serious 

thrashing, since Rt has to be fetched once for each tuple of Ri that satisfies all 
other simple predicakes on Ri. Then it costs up to 

Pj + Pt + Pi + fi*Ni.P, page I/OS, 

where the first two terms are the cost of generating Rt. 
In contrast, if the type-N nested query is transformed to its canonical equivalent 

to merge join Ri and Rt, the total cost is 

Pj + Pt + 2’Pt’ logs-1Pt + Pi + Ptl + 2*Ptl’ lo@-1Ptl + Pt + Ptl, 

where the first three terms are the cost of generating R1 and removing duplicates 
from it, the next three terms are the cost of restricting and projecting Ri into Rn 
and sorting it, and the last two terms are the cost of merge joining Rt and Rtl. 
The cost of removing duplicates from Rc is subsumed by the cost of merge-joining 

Rt with Rtl, since Rt needs to be sorted for the merge-join anyway. Note that the 
total cost expressed in the above formula may be further reduced since Rt may be 
reduced in size by removal of duplicates. 

Intuitively, the nested-iteration method of processing a nested query of any 
type will tend to be efficient and will obviate the need to transform the query, if 
(1) Pt is “large” (which increases the cost of sorting Rt for the merge-join, thereby 

placing the transformation approach at a disadvantage) and (2) fi.Ni is very 
“small” (around 2. logB--l P,), so that the nested-iteration method will not require 
R, to be retrieved as many times as it is required to sort Rt. However, these 
represent a very small subset of the set of all possible query and database 
characteristics. The following example compares the performance of the two 
methods for a type-N nested query. 

Example 14. Suppose B = 6, Pi = 100, fi- Ni = 500, Pj = 100, and Pt = 20. The 
nested-iteration method may cost 10,220 page fetches. If Rtl, the temporary 
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relation generated by reducing Ri, is 50 pages and a five-way merge-sort is used 
to sort Rtl and Rt, the transformation approach costs total 720 page I/OS. 

Now let us consider the cost of processing nested queries in which the inner 

query block contains a join predicate Ri. C,, = R,. C,,,, that is, types J, JA, and D 
nested queries, by the nested-iteration method. The drawback of the nested- 
iteration method is that, by definition, it requires Rj to be retrieved potentially 

very many times: fi’ Ni times if there is no index on the C, column of Rj, and up 
to min( fi.Ni, Jjm) times if C, is indexed. If the index on the C, column is 
clustered, that is, if the tuples of Rj that share the same key value are stored 

physically “close” together, only ( Pj/Jjm 1 pages may need to be retrieved each 
time. If the index on C, is not clustered, min( 1 Nj/ Jjm 1, Pj) pages must be fetched 
each time. 

The total cost of processing types J, JA, or D nested queries by the transfor- 
mation approach proposed in this paper consists simply of the cost of generating 
a temporary relation Rt and merge-joining it with Ri. For a type-J nested query, 

the cost of generating R1 is 

Pj + Pt + 2-P,’ logs-1Pt, 

where the last term is the cost of removing duplicates from Rt. Since duplicates 

are removed from Rt by sorting it, only Ri (or, more likely, Rtl, obtained by 
restricting and projecting Ri) needs to be sorted for the merge-join. 

Example 15. Let Pi = Pj = 50, Pt = 20, B = 6, and fi*Ni = 500. The nested- 
iteration approach costs 10,120 page fetches for a type-J nested query. If a five- 
way external merge-sort technique is used to sort Rt and Ri in join-column order 
and Ri is not reduced in size by restriction and projection, the transformation 
approach costs 550 page I/OS. 

The penalty for transforming a type-JA nested query to an equivalent type-J 
nested query has been shown to be the cost of generating temporary relation RL 
by evaluating a query with a GROUP BY clause on the relation(s) of the inner 
query block. System R uses one of two methods in implementing the GROUP 
BY construct [19]. One is to use an index on the GROUP BY column. The other 

is to sort the relation in GROUP BY column order. Therefore, the intermediate- 
processing penalty can be seen to be 

min(Pj, 2-Pn-lOgs-1Pn + Pj) + Pt, 

where RQ is the reduced relation which results from restricting and projecting Rj. 
The reader may easily verify that Rt thus obtained is free of duplicates and is in 

join-column order; that is, Rt need not be sorted to be merge-joined with Ri. 

Example 16. Consider Q3 and Q4 of Section 4. Let P, = 50, Pj = 30, Pt = 5, 
B = 6, and fi. Ni = 100. The nested-iteration method of processing Q3 is, in the 
worst case, 50 + 100.30 = 3050 page fetches. If a five-way merge-sort technique 
is used (to generate Rt and to merge-join Ri and Rt), it costs 560 page I/OS to sort 

Ri and Rj. The merge-join of Ri and Rt costs additional 55 page fetches. So Q4 
incurs 615 page fetches. Note that the cost may be even smaller if Ri is first 
reduced by restriction and projection and the resulting reduced relation is sorted 
for the merge-join. 
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Recall that a type-D nested query contains two inner query blocks, which 

reference Rj and Rk, respectively. Assume for expository simplicity that the query 
block on Rj has in its WHERE clause a join predicate Ri. C, = Rj.Cm, where Ri 
is the relation of the outer query block. The query block on Rk is assumed to 

contain only simple predicates, so that it may be processed only once to yield a 
unary relation Rt3. Then the nested-iteration method of processing a type-D 

nested query requires, for each tuple of Ri that satisfies simple predicates on Ri, 
retrieval of not only Rj but also Rt3. 

In order to transform a type-D nested query to a semantically equivalent type- 
N nested query, one of the two relations in the inner query block must be 
relationally divided by the other. The binary division of a relation of degree 2, 

Rj (Cl, Cz), by a unary relation Rk( Cz) yields a unary relation Rt( C1 ). The quotient 
Rt can then be merge-joined with Ri. 

R, can be obtained by grouping the dividend Ri by the values in the C1 column, 
and extracting the C1 values from each group of tuples that contain in the Cz 
column all the values of Rk. Since the dividend needs to be grouped by be values 
of the quotient column, sorting of the dividend relation in quotient-column order, 
as well as the divisor relation, has been suggested as a method for computing 
relational division [20]. Therefore, the cost of generating Rt for a type-D nested 

query is 

Pi+ Pa+ 2*Ptz*lOgB-lPa + Pk+Pfi + 2*Pt3*lOgB-1Pt3 

+Pt‘i! + Pt3+Pt+ Pi+ Ptl+ 2’Ptl’lOgB-1 Ptl+ Ptl+ Pt, 
I 

where the first six terms are the cost of generating temporary relations Rti and 

Rf3 from the two inner relations of the division predicate, the next three terms 
are the cost of dividing Rti by Rt3 and generating the quotient Rt, and the last five 
terms are the cost of merge-joining Rt and Rtl. As was the case with a type-JA 
nested query, the quotient R, is also free of duplicates and is in join-column order 
to be merge-joined with Rtl. 

Example 17. Let Pi = 50, Pj = Pn = 30, pt = 5, Pk = Pts = 1, B = 4, and fig Ni 
= 1000. The nested-iteration method of processing a type-D nested query requires, 
in the worst case, 50 + 1000.30 + 1 = 30051 page fetches. If a three-way merge- 

sort technique is used to sort Rt3 and R a, it costs 296 page I/OS to generate the 
quotient of dividing Rti by Rt3. Further, it costs 400 page I/OS to sort Ri. So the 

cost of merge-joining Ri and Rt is 400 + 50 + 5 = 455. The total cost of processing 

the type-D nested query by the algorithms of this paper is 296 + 455 = 751 page 
I/OS. 

7. PROCESSING A GENERAL NESTED QUERY 

So far it has been assumed for simplicity that the WHERE clause of a query 

block contains only one nested or division predicate. In general, however, a query 
block may be nested to an arbitrary depth and contain an arbitrary number of 
any type of predicates. This section presents a coherent strategy for processing 
such a general query. 

It has been shown that a type-N or type-J nested query may be transformed 
directly to an equivalent canonical query (Algorithm NEST-N-J). A type-JA 
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nested query may be converted to a type-J nested query once query blocks with 
an aggregate function in the SELECT clause have been evaluated (Algorithm 
NEST-JA(G)). And a type-D nested query can be transformed to its canonical 
form once the relational division operation it implies has been performed (Algo- 
rithm NEST-D). What this means is that a nested predicate which gives rise to 
a type-N, type-J, or type-JA nesting and a division predicate which results in a 

type-D nesting may each be replaced by a set of join predicates. Further, it was 
shown in Section 2 that a nested predicate which yields a type-A nesting must be 

replaced by a simple predicate. Algorithm NEST-G, which replaces all nested 
predicates and division predicates in the WHERE clause of the outermost block 

of a general nested query with a set of join predicates and simple predicates, 
emerges immediately from these observations. The algorithm is described below 

in terms of the query graph for a general query. 

Algorithm NEST-G 

(1) Transform each type-A predicate to a simple predicate by completely evaluating the 
query block Q represented by the right-hand node on the query graph for the subquery 
(predicate). If Q is itself nested, Algorithm NEST-G is invoked recursively on Q. Once 
Q has been evaluated, Q and the straight arc labeled ‘A’, leading to Q from the 
outermost query block, are eliminated from the initial query graph. 

(2) Transform each typedA nested subquery to an equivalent type-N or type-J subquery 
by Algorithm NEST-JA(G). If the right-hand node of the circular arc is further nested, 
Algorithm NEST-G may be invoked recursively on the node. The query graph for the 
resulting type-N or type-J nested subquery replaces the query graph for the initial 
type-JA subquery. 

(3) Transform each type-D nested subquery to its canonical form by Algorithm NEST-D. 
If either of the two right-hand nodes on the query graph of the subquery is further 
nested, Algorithm NEST-G may be recursively invoked on the node. Once the division 
predicate has been replaced by an appropriate set of join predicates, the two right- 
hand nodes and both the straight arc and the circular arc leading to them are removed 
from the query graph of the initial subquery. 

(4) Transform the resulting query, which consists only of type-N and type-J subqueries, 
to an equivalent canonical query by Algorithm NEST-N-J. 

Example 18. This example illustrates Algorithm NEST-G. The following is a 
general nested query of considerable complexity. 

SELECT R, . Cl 
FROM RI 
WHERE R,.Cz ISIN (SELECT Rz.Cz 

FROM RP 
WHERE Rz.Cs = (SELECT AGG(R3. C’s) 

FROM 
WHERE i&L, = RI.&) 

AND Rz. Cq IS IN (SELECT Rd. C., 
FROM Rd) 

AND R, . Cz = (SELECT AGG(R5. Cs) 
FROM R5 
WHERE R5.G IS NOTIN (SELECT Rs.Gj 

FROM Rs)) 
AND (SELECT R7.G 

FROM 
WHERE ::.Cs = R1.G) 

(SELECT= Rs. CB 
FROM Rd; 
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The outermost block of the query consists of three predicates (subqueries); a 
type-JA nested predicate of depth 2, a type-A nested predicate of depth 2, and a 
type-D nested predicate. The Q of the type-JA nested predicate of depth 2 in 

turn consists of 2 predicates; a type-JA nested predicate of depth 1 and a type-N 
nested predicate of depth 1. The Q of the type-A nested predicate of depth 2 
contains a type-N nested predicate of depth 1 involving the set noninclusion 
operator. The query graph for the above query is given below. 

First, the type-JA subquery of depth 2 will be transformed to its type-J equivalent 
by Algorithm NEST-JA(G). The right-hand node of the subquery consists of two 

subqueries: one is type-JA of depth 1 and the other is type-N of depth 1. 
Algorithm NEST-JA transforms the type-JA nested predicate of depth 1 into a 
conjunction of join predicates, &. C3 = RH. CZ AND Rtl . Cl = RI. Cd, where the 
temporary relation Rn is obtained by 

R~(G, Cd = WCLECT Rs.Cd, AGG(R3.W 
FROM 
GROUP BY &4,; 

Further, Algorithm NEST-N-J transforms the type-N nested predicate of depth 
1 into a join predicate, Rz.Cd = Rd.Cd Then the initial type-JA nested predicate 
of depth 2 will have been transformed to the following type-J nested predicate of 
depth 1 by Algorithm NEST-N-J. 

RI.C~ ISIN (SELECT R2.C2 
FROM R2, R4, R~I 
WHERE Rz. Cs = R,, . Cz AND 

Rt,.Cl = R,.Cd AND 
Rz.Cd = R4.1-24); 

l 

The following query graph has now been obtained. 
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R,.C, = R,,.C, 

AND R,,.C, = R,.C, 

AND R2.C, = R,.C, 

Next, the type-A subquery of depth 2 is evaluated. The right-hand node of the 
subquery is itself type-N nested. A recursive call of Algorithm NEST-G trans- 
forms the node to 

SELECT AGG(&,. C’s) 
FROM Rs, RG 
WHERE l(Rs.CG = &.C6); 

The transformed node is then evaluated to a constant X, and the nested predicate 
of the initial type-A subquery becomes a simple predicate, RI. C3 = x. The 
resulting query graph is shown below. 

R, .Cg = R,, .C2 

AND R,,.C, = R,,C, 

AND R2.C4 = R,.C, 

AND R,.C,=x 

Then, the type-D subquery is evaluated so as to replace the division predicate 
with a join predicate by Algorithm NEST-D. The resulting join predicate is RI. CS 

= Rn. Cl, where the unary relation Ra(C,) is the quotient of dividing RT(CB, CT) 

by RdCs). 
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The resulting query is type-J nested and Algorithm NEST-N-J can be used to 
transform it into its canonical equivalent, shown in the following. 

SELECT RI. C, 
FROM R,, Rtl, Rtz 
WHERE R,.Cz= Rz.Cz AND 

R2.Ca= Rt1.G AND 
Rtl.C,=R1.C., AND 
R2.C4= R4.G AND 
R,.Cs=x AND 
R,.Cs = R,.C,; 

8. SUMMARY 

The fundamental structure of an SQL-like, block-structured data language has 
been analyzed. A query nested to an arbitrary depth has been shown to be 
composed of five basic types of nesting. Four of them have not been well 

understood and their present implementation suffers from the use of the ineffi- 
cient nested-iteration method. Alternate ways of interpreting the operations of 
queries that involve these types of nesting have provided the basis for algorithms 
which transform the queries to equivalent, nonnested queries that existing optim- 
izers are designed to process more efficiently. The algorithms have been shown 
to improve the performance of nested queries often by orders of magnitude. 

Finally, they have been combined into a coherent strategy for completely pro- 
cessing a general query of arbitrary complexity. 
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