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ON OPTIMUM TESTS OF COMPOSITE HYPOTHESES WITH ONE 

CONSTRAINT1 

BY E. L. LEHMANN 

University of California, Berkeley 

Summary. This paper is concerned with optimum tests of certain composite 
hypotheses. In section 2 various aspects of a theorem of Scheffe concerning type 
B1 tests are discussed. It is pointed out that the theorem can be extended to 
cover uniformly most powerful tests against a one-sided set of alternatives. 
It is also shown that the method for determining explicitly the optimum test 
region may in certain cases· be reduced to a simple formal procedure. These 
results are used in section 3 to obtain optimum tests for the composite hypothesis 
specifying the value of the circular ·serial correlation coefficient in a normal 
distribution. A surprising feature of this example is the fact that for the simple 
hypothesis obtained by specifying values for 'the nuisance parameters no test 
with the corresponding optimum properties exists. 

In section 4 the totality of similar regions is obtained for a large class of prob­
ability laws which admit a sufficient stat.istic. Some composite hypotheses 
concerning exponential and rectangular distributions are treated in section 5. 
It is proved that the likelihood ratio tests of these hypotheses have various op­
timum properties. 

1. Introduction. In developing tests for a class of hypotheses three phases 
may be distinguished. First, tests are obtained which are intuitively appealing; 
next, it is shown that these tests have certain attractive features; finally, it is 
proved that they are <~best possible" tests. 

In dealing with parametric hypotheses, the likelihood ratio principle is fre­
quently used to obtain a reasonable test. For many of the tests so derived for 
normal and exponential distributions, the question of bias has been investigated. 
In most cases unbiasedness has been established; in the other cases, usually a test 
based on the same criterion but with the boundaries shifted, can be proved to be 
unbiased. Other desirable .properties which likelihood ratio tests have been 
shown to possess, relate to the asymptotic behaviour of these tests as the sample 
sizes tend to infinity. An interesting problem which does not seem to have been 
treated is the question of admissibility of likelihood ratio tests, a test being ad­
missible if its power can not be improved upon uniformly by any other test of 
the same level of significance. 

Investigations of optimum tests of composite hypotheses have been carried 
through for many hypotheses concerning normal distributions. When the hy­
pothesis specifies the value of one parameter (hypothesis with one constraint), 
uniformly most powerful one-sided and type B1 (uniformly most powerful un-

1 Presented at a meeting of the Institute of Mathematical Statistics in San Diego, June, 
1947. 
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biased) tests have been obtained. When the number of constraints is larger 

than one, not so much can be expected. It has been shown for some of the tests 

in this class that they have maximum average power uniformly over a family of 

surfaces in the parameter space, or that they are uniformly most powerful with 

respect to the subclass of tests whose power depends only on some function of 

the parameters. (All optimum properties mentioned are relative only to the 

class of all similar regions. This will be so throughout the paper and will usually 

not be stated explicitly). 

Two methods for finding uniformly most powerful or uniformly most powerful 

one-sided regions and type Bt tests, if they exist are known. Neyman and Pear­

son [1] developed a method for determining all similar-regions, and applied it 

to obtain uniformly most powerful one-sided tests of certain hypotheses. N ey­

man [2, 3] extended the method to obtain, for certain hypotheses, the class of all 

bisimilar (unbiased similar) regions, and Scheffe [4], developing the method 

further, proved the existence of type Bt tests for an important class of hypotheses. 

A different method for obtaining all similar and bisimilar regions was devised 

by P . L. Hsu and was used by him and other writers to prove various optimum 

properties of the likelihood ratio tests for the general linear hypothesis, of Hotel­

ling's T 2 and of other tests [5, 6, 7, 8]. 

In the present paper we are concerned with applications of these two methods 

to composite hypotheses with one constraint. However, the applicability is not 

so restricted. In fact, the second method has been used mainly in connection 

with composite hypotheses with many constraints, and the author believes it to 

be suitable also for deriving optimum classification procedures. An essential 

restriction of both methods seems to be that a set of sufficient statistics must exist 

with respect to the parameters involved: with respect to the nuisance parameters 

so that all similar regions can be found, with respect to the parameters specified 

by the hypothesis so that there exists a best of all similar regions. 

Extensions of the existing theory based on the first method are obtained in 

section 2, and the theory is applied in section 3 to a hypothesis concerning a mul­

tivariate normal distribution. Sections 4 and 5 are concerned with applications 

of the second method to problems to most of which the earlier method is not 

applicable, in particular to hypotheses concerning exponential and rectangular 

distributions, hitherto only treated from the likelihood ratio point of view. 

2. On the theory of optimum tests. 

2.1 One-sided tests. In an interesting paper [4], Scheffe determined the type 

B and type B1 tests of a certain class of composite hypotheses specifying the 

value 00 of a parameter 0 in the presence of nuisance parameters. 

Scheffe's results can, in an obvious way, be extended to cover one-sided sets 

of alternatives. To show this, consider the method used in [4]. Under certain 

assumptions all tests2 are found which satisfy the two conditions: 

2 The terms "the test w" and "the region [of rejection] w "will be used interchangeably. 
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(a) The power function f:J·w at Oo has a preassigned value E (the level of signifi­
cance), independent of the nuisance parameters; 

(b) the power function at Oo has derivative 0. (Condition of unbiasedness) . 
Then that test wo is determined for which, of all those satisfying (a) and (b), 

(c) the second derivative at Oo, {3~(0 0 ), is as large as possible. 
By definition wo is a type B test. Under a certain additional assumption (this 

is the convexity assumption ~ 2 ~ > 0 of Scheffe's Theorem 2) it is shown that of all 
oyl 

tests satisfying (a) and (b), wo has maximum power against all alternatives, 
i.e. is of type B1 . 

If now we want to maximize the power against only the one-sided set of alter­
natives, 0 > Oo, we determine that test Wt of all those satisfying (a), for which 

(d) the first derivative at Oo , {:J:(oo), is as large as possible. 
Under a certain additional assumption (in Scheffe's notation this would be the 

monotonicity assumption :g > 0) it can then be shown that of all tests satisfy-
vyt 

ing (a), Wt has maximum power against all alternatives 0 > Oo, (it also has 
minimum power against all alternatives 0 < Oo), i.e. Wt is uniformly most power­
ful against alternatives 0 > Oo. We shall not carry through the discussion 
in detail since Scheffe's argument applies step by step, with only the obvious 
changes. 

2.2 Determination of the boundaries. Let X1 , • • • , X,. ben random variables 
with a joint probability density function p, depending on parameters 81 and 0 = 

(82, · · · , o,). We shall denote the probability density function of a set of ran­
dom variables X1, · · · , X,. whose distribution depends on a parameter 0 by 
p(x1 , · · · , x,. I 0) or simply by p(x1 , • • • , x,.) when the dependence on 0 is 
clear from the context. The set of points (x1 , · · · , x,.) for which 

p(x1 , · · · , x,. I 0) 

is positive we shall denote by W +(0). 

Let 

(2.1) 
() 

"'·(xl .. · X ) = - log p(X· • · · X I 81 0) Ia s0 
.,.., ' ' n iJO i l t , n , • 1- 1 , 

and let the random variable <I>; be defined by 

(2.2) <I>, = cp;(Xl, · · ·, X .. ). 

(i = 1, .. . , l), 

Then for testing the hypothesis H: 01 = ot under the assumptions stated by 
Scheffe, the type B1 test wo is defined by the inequalities 

(2.3) (kt < ~) 

where k1 , ~depend on ot 0, cp2 , • • • , cp 1 and are determined by the two equa­
tions3 

(2.4) (s = 0, 1) . 

3 Although k1 and k2 may depend on 0, w0 is independent of 0, as was shown in [4] . 
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The equations (2.3) and (2.4) are not suitable for the determination of the 
boundary of Wo • The variables have to be transformed so as to obtain for 
w0 an expression from which the calculation of the boundaries becomes feasible, 
(cf. [9]). This part of the work may be formalized in the following theorem. 

THEOREM 1. Let 

u = f(ifh , ~ , ... , ~,) 

(2.5) 
v, = g,(~, ... , ~,), (i=2 ... l) , , , 

be a system of functions, continuously differentiable and with non-vanishing Jaco­

bian almost everywhere, and such that 
(i) U is a linear function of ~1 

(2.6) U = aellt + b 

with coefficients which may depend on~ , · · · , ell, and such thai a(~ , · · · , ell,) > o, 
(ii) it is possible to solve for ~2 , • • • , ~~ in terms of the V's, 
(iii) under the hypothesis H, U is distributed independently of 

V = (V2 , • • · , Vz). 

Then the region wo is equivalent to the re(Tion 

(2.7) U < Ct, > C:l 

where c1 , C2 are determined by 

(2.8) 1 ~ 1. 
c1 u• p(u) du = (1 - E) -• u• p(u) du (s = 0, 1). 

PRooF. 

(2.9) 

I o(u, V2, ••• Vz) I 
p(((JJ., tpz, • • • , '{Jz) = p(U, V:~, • • • , Vz) • a( ) 

'/)1 J • • ' J 'PI 

au I a(v2 • • • Vz) I 
= p(u)•p(v2, · ··, vz)- · ' ' . 

a'P1 a( '1'2 , ••• , 'Pz) 

But 

u = a('P2 , • • • , 'fJz) • '/)1 + b('P2 , • • • , 'fJz) 

(2.10) 

= a(vs, · · · , vz) · 'Pt + {3(v2, · · · , vz) 

so that (2.4) reduces to 

l cs(tos,···,•z> (U 13)• 
~ p(u)p(v2, · · · , Vz) du 

e1 (Ys.· · ··"') a 

= (1 - E) L: same 

(2.11) 

(s = 0, 1) 

• A similar theorem holds when we assume ll(<J!2 , ••• , <I!,) < 0. 
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and hence to 

(2.12) (s = 0, 1) 

which shows c1 and l:2 to be independent of the v's. Also obviously (2·.3) trans­
forms into (2.7) which completes the proof. 

If u is such that its distribution (when o. = on is independent of 8, cl and l:2 

of theorem 1 will depend only onrthe data of the problem: E, n, ot However, the 
existence of constants Ct and l:2 satisfying (2.8) still has to be proved. We may 
show more generally the existence of kt and k, satisfying (2.4). A proof is im­
mediately supplied by an argument which was used by Neyman [10] and Wald 
[11] to prove the existence of type A tests, and which may be stated in the 

following 

LEMMA. Let 0 <a < 1, letf(x) > 0 and 1: x!(x) dx < oo for s = 0, 1. Then 

there exist A, B such that 

(2.13) L B x• f(x) dx = a L: x• f(x) dx (s = 0, 1). 

3. Testing for circular serial correlation in a normal population. We now 
apply the results of the previous section to obtain the optimum tests (i.e. uni­

formly most powerful against the one-sided set of alternatives, type B1 in the 
two-sided case) for the h)rpothesis specifying the value of the circular serial cor­
relation coefficient in the normal population considered by Dixon [12]. (For 
the literature on testing for non-circular serial correlation in normal populations 

cf. [121). 

We assume 

1- a,. [ 1 ~ . J 
(3.1) p(x1, · · ·, x,.) = (y'Z;u)" exp - 2u2 f::t. [(x,- ~) - a(x,+J - ~)] 2 

where Xn+l = Xt and I a I < 1' and we test the hypothesis a = ao • For testing 
purposes only the value ao = 0 is of interest presumably, however, the family of 
tests for arbitrary oo is required for estimating a by means of confidence intervals, 

and therefore the more general hypothesis is considered. 
Making a transformation in one of the parameters we write 

p(xt, · · · , x,.) 

= C(o, a) exp[ a [<1 + o'") t (x, - ~) 2 - 2o t (x,- ~)(Xa+t - ~)JJ 
,_1 i-1 

(3.2) 

where in the notation of the previous section 81 = o, Bt = a, 8a = ~. 
THEOREM 2. For testing the hypothesis 0 = oofor the distribution (3.2) 

(a) the type B1 test exists and is given by 

(3.3) 
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where 

" 

(3.4) 

L (x, - x)(xi+1 - x) 
i-1 

r =~-------
1 " 

X =-LX• 
n >-l 

and where Tt and r2 are determined by 

(3.5) l rt ( r )& ioo 
r

1 
1 + 0~ - 2oor p(r) dr = (1 - E) co same (s = 0, 1). 

(b) the uniformly most powerful similar region for testing H against the alter­
natives o > o0 exists and is given by 

(3.6) r > r' 

where r' is determined by 

(3.7) 1: p(r) dr = (1 - E) 1: p(r) dr.6 

PROOF. We compute 

<Pt = Ct(Oo, a) + 2a[ool:(x, - ~) 2 - l:(x, - ~)(XHt - ~)] 

(3.8) 1/)2 = C2(0o' a) + (1 + o~)l:(x. - ~) 2 - 2ool:(x. - ~)(Xi+l - ~) 

4'3 = - 2na(1 - o~)(x - ~). 

There is no difficulty in checking the conditions of Scheffe's theorems [4]. 

Next we apply Theorem 1 of the previous section, and define 

V2 = (1 + o~)};(X, - X) 2 - 2ool:(X, - X)(Xi+t - X) 

(3.9) Va = X - ~ 

U = l:(X,- X)(XHI -X) 

v2 · 
Conditions (i) and (ii) of Theorem 1 are easily seen to be satisfied. To show that 

U is independent of V = (V2, Va) we employ arguments which have recently 

been used by various authors in a number of similar problems (cf. [13, 14, 15]). 

It is seen that an orthonormal transformation exists: 

X1, · · · , X,.-+ Y1, · · · , Y, 

such that 

" " 
(3 .10) 

L (X, - X)(Xi+l -X) = L >., y~ 
i-1 i~2 

n n 

"" - 2 "" 2 £....J (X,- X) = £....J Yj. 

6 A corresponding result holds for the other one-sided case. 
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Under H the Y's are distributed with probability density 

(3.11) p(yt, · · · , y,.) = C(oo, a) exp [a [ k(yJ - v'n~) 2 + t JJ•Y~ JJ 
where k, JJ2 , • • • , "'" depend on oo and where the JJ'S are all positive. Introducing 
new variables 

(3.12) (i = 2, · · · , n), 

and, then, generalized polar coordinates in the space of the Z's, 

(3.13) R= .ltz~, 
'V i-2 

'lr h • • • , 'IJr u-2 

we see that Yt , R and 'l't, · · · , 'IJtn-2 are completely independent. Also 

1 
Va = v'n CY1 - ~) 

while U, being homogeneous of degree 0 in the Z's, is a function of the 'IJr's only. 
This proves that U, V2 and Va are completely independent. The type Bt test 
of H is therefore given by 

" L (x, - x) (x,+l - x) 

(3.14) 
i-1 

U = - ---11.---=--- ---n------- < Ct, > C2 

(1 + o~) L: (x, - xi - 2oo :E (x, - x) (xHt - x) 
i-1 i~l 

where Ct and C2 are determined by 

(3.15) l q 1~ 
c1 u'p(u) du = (1 - E) -~ u'pu() du (s = 0, 1). 

We still have to show that this test is equivalent to the one defined by (3.3) 
and (3.5). For o0 = 0 this is trivial. Let us assume oo < 0. (The other 
case goes through similarly.) The inequality u < Ct is equivalent to 

(3.16) (1 + 2ooct)~(x.: - x)(xi+l - x) < (1 + o~)~(x,- x)2 

and hence to 

(3.17) 

provided 1 + 2ctoo > 0. Suppose 1 + 2ctoo < 0, i.e. Ct > 
1 

Then6 

2oo · 

(3.18) { 1} - 2 P { U < c1l =::: P U < - 200 · = P { 0 < ~(X.: - X) } - 1 

eWe denote the probability of an event A by P {A}. 
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i.e. PI U < cd = 1 which would contradict (3.15). Similarly if 1 + 2C20o < 0 
we would have P { U > C2} = 0 and hence our test would be one-sided and there­
fore not unbiased. The inequalities u < c1 , > C2 are thus equivalent to the 
inequalitieS T < rt 1 > r2 and Since 

r 
u == 2 , 

1 + oo - 2oor 

(3.5) also follows. 

The existence of type B1 and uniformly most powerful one-sided tests of the 
hypothesis His rather surprising. For when a and ~are assumed known, neither 
the type A1 test nor the uniformly most powerful one-sided test of the simple 
hypothesis H': o = oo exists. This is easily seen by determining the most 
powerful and the most powerful unbiased test against a specific alternative 81 

for the hypothesis H' in the population 

(3.19) 
1- 8" 

p(x1, · • • , x,.) = ( y'2;)" exp [ -i-[(1 + o 2 )~x~ - 2o~x,xHt11· 

The distribution of the criterion R was obtained by R. L. Anderson [16] (see 
also [17]) for the case o = 0. Madow [15] using Anderson's result found the dis­
tribution for arbitrary o. (Approximations to the distribution have been studied 

by various authors; for the literature on this cf. [18]. Recently Hsu [19] ob­
tained an asymptotic expansion.) A direct derivation for arbitrary o may be 

based on the following theorem of Cramer, which was communicated to the 
author by Dr. P. L. Hsu. 

THEOREM 3. (Cramer) 7• If X, Yare two random variables, (not necessarily 

independent), Y > 0, then 

(3.20) p {! < x} = _ _!,_ f_oo ((J.,(t) - 1/l(t) dt 
y - 21r 00 it 

where IP.: and 1/1 are the characteristic functions of X - x Y and Y respectively, 

provided 

(3.21) 

THEOREM 4. If 

(3.22) 

1- 8" 
p(Xt, "• , Xn) = ( yi2;o-)" 

exp [- ~ i: [(x, - E) - o(xHt - ~)] 2 ], 
2u 1-1 

7 Differentiated forms of the theorem were given by R. C. Geary [Jour. Roy. Stat. Soc. 

Vol. 107 (1944) p. 56] a.nd H. Cramer [Exercise 6 on p. 317 of Mathematical Methoda of 

Statistics. Princeton Univ. Press (1946)]. 
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and if 

n 

L (X, - X)(Xit-1 - X) 

(3.23) R = i-1 
----~n~-----------

L (X,- X') 
i-1 

PIR > r} 
2"+112 1 - a" 

---
n (1 - 8)(1 + 82 - 28r) 

( 1)1+1(' )n-3/1 • jr . 2j1f" - /\"- r sm -sm-. L , n n 
1 1 + 82 - 2o~ 1 

(3.24) 

where the summation is extended over all integer j, 1 < j <;,for which >..1 > r, and 

where 

(3.25) 
2jr 

>..i = 2 cos-. 
n 

The proof of this theorem from Theorem 3 is straightforward and only will 
be indicated here. If X and Y denote the numerator and denominator of R 

respectively, the characteristic functions of Y and X - rY may be obtained by 
the method of circulants (cf. [12, 17]). The integral on the right hand side of 
(3.20) is then easily evaluated by the theory of residues when n is odd. In the 
case that n is even, the integrand has two branchpoints, one in the lower and one 
in the upper half plane. These may be separated, and then again the method 
of residues may be applied. 

4. Similar regions. The problem of finding all regions similar to the sample 
space with respect to a parameter 0 was solved by Neyman and Pearson [1] for 
a certain class of probability laws. In a later paper Neyman proved ([20] 

proposition IX) that if there exists a sufficient statistic T for a parameter 0, 

then w is similar with respect to 8 if it has the following structure: For the inter­
section w(t) of w with the surface T = t, the relative probability of w(t) given 
T = t has a constant value independent oft. We shall show in this section that 
for a large class of probability laws which admit a sufficient statistic for 8 the 
regions with the above structure are the only ones that are similar with respect 
to 8. 

We consider samples from a univariate distribution and we distinguish three 
cases as one, both or neither of the extremes of the range of the distribution 
depend on the parameter 0. For the first of these cases (cf. Pitman [21]) we con­
sider samples from a distribution with probability density 
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f(x) 
p(x) = g(8)' k(8) <X< c, 

where k(8) is a strictly monotone continuous function of 8 and where c may be 

infinite. Introducing a new parameter o = k(8) the distribution of a sample 

from (4.1) is given by 

( ) f(xl) · • • f(x,.) 
(4.2) p Xt, · · · , x,. = b(o) , 

To obtain the totality of regions w similar with respect to o let us denote by 

W1, · · · , W,. the portions of the sample space where the smallest of the x's is 

x1, · · · , x,. respectively. For any region w denote by w~ the intersection or" w 

with Wk. Consider a transformation carrying W2, · · · , W,. into Wt, letting 

YI = min(Xt' ... 'x,.) and letting in wk : 

(4.3) Y2 = xi' Ya = X2' ••• ' Yk = Xk-1' Yk+l = Xk+l' ••• ' Yn = x,.. 

Denote by Wk the image of w~ under this transformation. The condition that 

w be similar with respect too, 

(4.4) f. f(xi) · · · f(x,.) • • • ca> 
tD b(o) dx1 dx,. - E, 

may be written in the form 

1c J(yl) f~ 1 l 
b( .t) '£...., f(y2) ... f(y,.) dy2 .•• dy,.J dyl 

a v \k-1 w.~: <111 > 
(4.5) 

m 1c f(y) {J } = nE a b(;) (W(IIt))f(y2) • • • f(y,.) dy2 '' • dy,. dy1 

where W(yt) denotes the region Yt < Yi ~ c, (i = 2, · · · , n), that is, the region 

of variation of Y2 , · · · , y,. given Y1 , and where wk(YI) denotes the region of vari­

ation of Y2, • • • , y,. given Yx and Wk. From (4.5} we obtain 

1 t (a) 

(4.6) b(o) la f(Yt)l/;(yt) dyx = 0 

where 

1/;(yi) = t 1 f(y2) ... f(y,.) dy2 .•• dy,. 
k-1 tDk (l/1) 

(4.7 ) 

But (4.6) implies 

(4.8) 

- nE lc ' •' ic j(y2) ' .. j(yn) dy2 •" dy,. • 
lll lll 

1/;(yx) = 0 almost everywhere 

and since we can only determine w up to a set of measure 0, we may omit the 

qualification in (4.8) . Therefore a necessary and sufficient condition for w to 

be similar is 



105

OPTIMUM TESTS 

(4.9) 1 n f. 
[le Jn-1 L f(y2) • • • J(y,.J dy2 ' ' • dy,. = E 

n f(y) dy 1c-1 tDiCIIt> 

Ill 

for all Y1. 

To see more clearly the structure of these regions, let us taken = 2. Equa· 

tion (4.9) states that on each of the broken lines of Fig. 1 the relative probability 

of w = w~ + w~ given Y1 = Yt is e, where the decomposition of this probability 

into its two components may vary with Y1 • 

{ 

FIG. 1 

In general equation (4.9) states that on each hyperplane Yt = Yt the relative 

probability of w is independent of Yt. Since f.t = min (Xt, · · · , X,.) is a suffi. 

cient statistic for 8, Neyman's theorem in this case does give all similar regions. 

Next let us consider the case where both extremes of the range of the distribu­

tion depend on the parameter. We shall assume (cf. r21]) that Xt, · · · , X,. 

are distributed with probability density 

(4.10) p(x) = f(x) m (J < x < b(O) 
g(O) 

where b is a strictly decreasing continuous function over an interval [-co, 

b(- oo)] and where b[b(- oo)] = - oo . These assumptions insure that there 

exists a unique number a, - oo < a < b(- oo), such that b(a) = a. 

Denote by W,1 , (i, j = 1, · · · , n; i r!: j), the portion of the sample space 

where the smallest and the largest of the x's are x, and x1 respectively. Denote 

by W,;t and W,;2 those portions of W,1 where x, is greater than and less than 

b-1(x;) respectively. For any region w denote by w~;k the intersection of w with 
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W iik . Consider · a transformation carrying the sample-space into W1 .. , letting 

Y1 = min (x1 , · · · , x .. ), Yn = max (x1, · · · , x .. ) and in Wii letting Y2, • • · , Yn-1 

denote the remaining x's in the order of their subscripts .. Next make a trans­

formation carrying W1n into W1n1, letting z1 = max [y1 , b-1(y.,)], z~ = min 

[y1 , b-1(y .. )] and Zk = Yk for k = 2, · · · , n - 1. Denote by Wsfk the image of 
I • w 

Wijk Ill lnl. 

Then z .. is a sufficient statistic for 8 (cf. [21]) and there exist functions ft , g1 

such that the density of z .. is given by 

(4.11) p(z,) = ft(z .. ) m 8 < z., < a 
g1(8) 

while the distribution of the remaining Z's given z .. is independent of 8. 

The condition that w be a similar region may now be written, analogously to 

(4.5), in the form 

and hence by the argument which led to (4.6), as 

~ J. p(z1 , • • • , Zn-1 I ~ .. ) dzt • • • dz,._1 = E 
,,,,k "'HI.(~,.) 

(4.13) for all z.,. 

Thus in this case also Neyman's theorem gives the most general similar region. 

For the case that neither extreme of the range of the distribution depends on 

the parameter 8, it has been shown by various authors [22, 21, 23] under slightly 

varying assumptions concerning the regularity of.the distribution function, that 

the existence of a sufficient statistic implies 

(4.14) p(x I 8) = exp [P(8) + T(x)Q(8) + R(x)]. 

This (cf. [10]) is a special case of that for which Neyman and Pearson determined 

the totality of similar regions, however under the restriction that the moments 

of ct> = !_ ± log p(X,) uniquely determine the distribution of ct>. We shall 
o8 •-1 

briefly indicate how this assumption may be avoided. 
Let X 1 , • • • , X., be a sample from (4.14), or, more generally, (this is the case 

considered by Neyman and Pearson), let X1, · · · , X., be distributed with prob· 

ability density 

p(x1, · · · , x.,) 
(4.15) 

= exp [P(8) + u(x1 , • • • , x.,)Q(8) + v(x1 , • • · , x .. )] 

in a sample space W +which is independent Qf 8. We shall assume that the set 

of values which Q takes on .contains at least some interval. Introd~cing o = 
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-Q(O) as a new parameter, we shall obtain all regions similar to 8 (where the 
set of values of 8 contains an interval) for the distribution' 

p(Xt, • · • , x,.) 
(4.16) 

- exp [px(o) - o · u(xt , · · • , x,.) + v(xt , · · • , x,.)] 

under the assumption that t (:u.)2 
=/: 0 except possibly on a set of measure 0. 

•-1 vX 1 

Let us for a moment assume that there exist functions fa(x; , • • • , Xn), 

(i = 2, · · · , n), with continuous partial derivatives almost everywhere and such 
that the transformation 

(4.17) Yt = u(xx ' • • • ' Xn) ; y i = /a(Xt ' • . • , Xn), (i = 2, .. · , n), 

is one to one on W + except possibly on a subset of measure 0. Applying this 
transformation we may write the condition of similarity in the form 

roo eP1(1)-I%111 j(yt' • • • I y,.) dyz • • • dy,.·dyl 
Loo ..,(1,1) 

(4.18) 

where W(yt) denotes the region of variation of Y2 , · • • , y,. given Yt , and where 
w(yt) denotes the region of variation of Y2 , · • • , y,. given Yt and w. Furthermore 
f(Yt, · · · , y,.) is independent of o. From the theory of bilateral Laplace trans­
forms it is known that (4.18) implies that 

(4.19) r J(yl , ... , y,.) dy2 • . • dy,. = E f. f(yl , ••• , y,.) dy2 ••• ay,. 
1..,(111) W(l/1) 

which is the desired result. 
More generally it may be shown that our assumption concerning u(x1 , • • • , x,.) 

insures the existence of functions/a, (i = 2, · · • , n), such that under the trans­
formation (4.17) no point (Yt ,· • • , y,.) has more than a denumerable infinity of 
counter images in x-space. . Our proof can be modified to cover this case. The 
argument is similar to that used to obtain equations (4.9) and (4.13) which were 
also arrived at through many to one transformations. 

5. Testing exponential and rectangular distributions. In their fundamental 
1928 paper [24] on likelihood ratio tests, Neyman and Pearson discussed various 
hypotheses relating to normal, exponential and rectangular distributions. Later 
they and other authors developed a theory of similar and bisimilar regions which 
made it possible to obtain optimum tests of many composite hypotheses with 

a An assumption that we can solve for (} as a function of 8 is not needed since we can 
determine P 1 (8) by integrating the density (4.16) over W +· 
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one constraint concerning normal populations. This theory however is not 
applicable to most hypotheses concerning exponential or rectangular distribu­
tions. We $all in this section obtain optimum tests of some hypotheses relating 
to these latter distributions, using the method of the previous section. 

Let us first consider a sample X1 , · · · , X,. from an exponential population, 
the probability density of the sample being. 

(5.1) p(x1, · · · , x,.) = - exp -- L: (x, - b) if x, > b, (i = 1, · .. , n) 1 [ 1 .. J 
a" a •-t ' 

and let us consider the two hypotheses H1:a =o, H2:b = bo where, without loss 
of generality, we shall take a0 = 1, b0 = 0. The likelihood ratio tests of both 
these hypotheses were shown to be completely unbiased by Paulson [25]. We 
shall prove 

THEOREM 5. The likelihood rat£o tests of H1 and H2 are type Bt and uniformly 
most powerful, respectively. The one-sided tests based on the likelihood ratio criterion 
for H 1 are the uniformly most powerful one-sided similar regions for testing this 

hypothesis. 
PRooF. In order to simplify the argument we shall give a detailed proof only 

for the restricted class of tests which are symmetric in the variables X1 , · · · , X,. . 
For testing H1 let us make the following transformation introduced by 

Sukhatme [26]: 

Z1 = nYt 

(5.2) 

(i=2 ··· n) ' ' ' 

where Y, is the ith of the X's in order of magnitude. Then 

(5.3) 
p(z1, • • • , z,.) = - exp -- (Zt - nb) -- L z, 1 [ 1 1 " J 

a" a a 1-2 

(i = 2, · · · , n). 

We want to determine all regions w which under Hare similar to the sample 
space with respect to b, i.e. all regions w satisfying 

1 e -<zt-nb) exp [- t z,] dz2 · · · dz,. dz1 
w •~2 

(5.4) = roo e-<•t-nb) {1 exp [- ± z.J dz2 ... dz .. } dzl 
J .. b w(zt> •-2 

(b) (b) 100 
= E = E e -<•t-nbl dzt 

nb 

where w(z1) denotes the intersection of w with the hyperplane Zt = z1. Now 
(5.4) is equivalent to 
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(5.5) 

where 

and this in tum is equivalent to 

(5.7) 

Of all the regions w satisfying (5.7) we want to determine the one which against 
a specific alternative, say a1, has maximum power, i.e. for which 

(5.8) 100 
e-\1/o1H•1- nb) ( exp [- .!_ t z,] dz2 • • ' dz,. dz1 

nb JtD (Zl) a1 i-2 

is as large as possible. We thus see that w will have the desired properties if 
w(zt) is determined according to the two conditions 

(5.9) r exp [- t z,Jaz2 •.. dzn = 4! 
JID(Zl) i-2 

and 

(5.10) r exp [- ~ i: z.] dz2 .•. dzn = max. 
Jw(al) al i-2 

Hence by the Neyman-Pearson fundamental lemma w(z1) is the set of points 
satisfying 

(5.11) 

and therefore according as a1 is greater or less than 1, w(z1) is determined by 

n " 

L z, = L [x, - min (x1, • • • , x,.)] > k(a1, Zt), or 

(5.12) 
i-2 i-1 

n n 

'L:z, = L [x, - min (x1, • • · , x,.)] < k'(al, z1). 
i-2 i-l 

n 

But L z, is independently distributed of Z1 and under H the distribution of 
i-2 

n 

L z, does not depend on a1, in fact it is a chi-square distribution with 2n - 2 
i - 2 

degrees of freedom. Thus k and k', as determined by (5.9) are independent of 
a1 and the two tests (5.12) are uniformly most powerful one-sided. 

Next we consider the more restricted class of unbiased similar regions. For w 

to be unbiased we must have 
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:a { :~~ i exp [ - Zt : nb J exp [ - 1 ~ z, J dz 1 • • • dz,} 1-1 

(5.13) = J .. (zt - nb - n) exp [- (zt - nb)]J. exp[- i:zi] dz2 · · · dz, dz1 
nb w(•l) i-2 

+ J.oo exp [- (z1 - nb)l J. (t z,) exp [- t z,] dz2 · · · dz,. dz1 = 0. 
nb w(•l) i-2 i-2 

The first of the integrals in the middle member equals 

100 

(z - n) e -· r exp [ - t z,] dz2 • • • dz, dz 
0 J wl•+nhl i-2 

= E [co (z - n) e-• dz = -(n - 1)E. 

(5.14) 

Therefore 

(5.15) 

or 

(5.16) 

where 

(5.17) g(zl) = r (t z,) exp [- t z,J dz2 •.• dz,. - (n - 1)E. 
J ... (.l) •-2 -2 

Thus finally the condition of unbiasedness reduces to 

(5.18) £ (t z,) exp [ - t z,] dz2 .. • dz,. = (n - 1)E 
w(a1l -2 -2 

and we seek the region w(zl) ·which satisfies (5.9), (5.10) and (5.18). 

By the fundamental lemma w(zt) is given by 

(5.19) exp [- !. i: z,] > (c1(a1, z1) t z, + C2(a1, Zt)J · exp [- ± z,] 
a1o-2 1-2 o-2 

which is equivalent to 

(5.20) 
n 

I: z, < k1Ca1, z1), > ~(a1, zJ 
i-2 

where k1 and~ are determined by (5.9) and (5.18), and are therefore independent 
of Zt and a. Thus the region (5.20) which of all unbjased similar regions 
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maximizes the power against the alternative a =. a1 is independent of a1 and 
hence is a region of type Bt . This completes the proof since it is easily verified 
that (5.10) is equivalent to the likelihood ratio test. 

The proof for regions which are not necessarily symmetric in the variables 

follows similarly if instead of the transformation (5.2) one uses a transformation 

" u, = j,(Xt, · · · , X") which is one to one and such that Ut = Zt, U2 = L z,. 
i-2 

The distribution of Ua, · · · , U" is then independent of a and b since Ut, U2 
are a pair of sufficient statistics for these parameters, and the proof carries over 

step by step. 
Next we consider the hypothesis H2 : b = 0, and again we restrict ourselves to 

regions which are symmetric in the variables, although as before the proof can 

be modified to cover also nonsymmetric regions. 

We first make the transformation to Zt, · · · , Z" given by (5.2) . In the 
n - 1 dimensional space of Z2 , · · · , Z" , we then transform to new variables 

n 

U, '1'1 1 •• • , '~'-2 · where U = L z, and where the iF's are the generalized polar 
i-2 

angles. Obviously the distribution of the iF's does not depend on a, since they 
are homogeneous of degree 0 in the Z's. Furthermore the iF's are independently 

distributed of U since the probability density of the Z's is constant over the 

hyperplanes U = u. Thus 

p (Zt , u, 1/11 , · · · 1 1/ln-2) 

(5 .21) 

K 
=--.. a 

[ 
2t - nb] n-2 -u/tJ ( ) 

exp - a u e p 1ft , • • • , 1/ln-2 • 

We next introduce new variables 

(5.22) V = Zt + U and T = 
Zt + U 

and find 

p(v, t1 1ft, · · · , 1/ln-2) = ~ exp [- v a nb J v"-1 (1 - t)"-2 p{lft, · · · , 1/!n-2) 

(5.23) 

nb 
for v > nb, - < t < 1. 

v 

For w under H2 to be similar with respect to a, we must have 

L CD~ exp [- ~] v"- 1 1 {1 - t)"-2 p(!ft, • • • , 1/ln-2) dt d 1/11 • • • d!/1-2 • dfJ 
0 a a uo(tl) 

(5.24) 

[
CD K [ VJ n-1 d 

= E O a" exp - a V V 
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where w(v) designates the intersection of w with the hyperplane V = v, and 

where wo(v) denotes the part of w(v) lying between the hyperplanes t = 0 

and t = 1. 

Hence the condition of similarity may be written as 

(5.25) {,. exp [- ~] vn-t f(v) dv = 0 for all a > 0 

where 

(5.26) f(v) = f. (1 - tt-2 p(lJ.tt, • · · 1/tn-2) dt dtflt • · • dlJ.tn-2 - E. 
tDQ (11) 

By the uniqueness theorem for Laplace transforms; (5.25) implies f(v) - 0 

for all v > 0, so that the condition of similarity finally reduces to 

(5.27) 1 (1 - tt-2 p(t/11, • • • , tfn-2) dt dt/11 • • • dtfln-2 = E. 
IDQ(tl) 

Of all similar regions, let us find the one which has maximum power. Obvi­

ously we want to include in w(v) all points for which t < 0. In addition we want 

to choose wo(v) such that 

f. (1 - tt-2 p(tflt' ..• ' tfn-2) dt dt/11 ... dlJ.tn-2 = max 
tD. (tt) 

(5.28) 

where Wb(v) is that part of w(v) in which max ( 0 , :b) ~ t. 

If, for some alternative b, wo(v) is contained in nb < t < 1, then w,(v) and 
v 

w0(v) coincide and hence (5.28) attains its maximum value E whatever the posi-

tion of wo(v) in nb < t < 1. If on the other hand nb is so close to 1 that 
v v 

nb < t < 1 is too small to contain w0(v), then (5.28) attains its maximum for 

" 
any w0(v) containing nb < t < 1. There exists therefore a unique w0(v) which 

v 

maximizes (5.28) for all v:;~lues of b and v, namely the region defined by 

(5.29) C(v) ~ t ~ 1 

where C is determined by (5.27). 

Since under H 2 , the statistics V and T are independent, C does not depend 

on v. The test 

(5.30) t < 0, 

which we have just shown to be uniformly most powerful, is also the likelihood 

ratio test which completes the proof of the theorem. 

We shall finally consider an example of an optimum test in connection with a 
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rectangular distribution. Let X1 , • • • , X,. be independently and uniformly 
distributed over (a, a + 8), where 8 is positive. For testing the hypothesis 

H: a = ao , the test 

(5.31) >C 

where Y1 and Y .. are the smallest and the largest of the X's respectively, is the uni­

formly most powerful of all similar regions. 

The proof of this goes through very much like that for H2 in Theorem 5. 
Without loss of generality we take ao = 0. Also again, to simplify the proof, 
we restrict ourselves to regions which are symmetric in the variables. We need 
the following lemma. 

LEMMA. Let X1, • • • , X, be independently and uniformly distributed over 

(a, a+ 8). Let Yi denote the ith X in order of magnitude, and let 

(5.32) ( = 1, · · · , n - 1). 

Then for a > 0 

(5.33) ( ) n! t"-l t"-2 t P h , · • · , t,. = o;; n n-1 • • • 2 

when 

(k = 1, · · · , n - 1). 

This is easily seen by applying the usual method of Jacobians. The inequali­
ties describing the sample space of the T's are equivalent to the following more 
convenient ones: 

a 
(5.34) a~ t .. <a+ 8, t,:::::; t1~ ··· tn-l < ·'l;tk < 1, (k =1, ... ,n -1). 

Let us denote by w(t,) the intersection of a region w with the hyperplane 
T n = t .. , and by w0(t,) that part of w(t,) contained in the cylinder 0 ::::; tk ::::; 1, 
(k = 1, · · · , n - 1); then we find as a necessary and sufficient condition for 
w to be similar with respect to 8 (assuming H) 

(n - 1)! f. t::i t::~ • • · t2 dtn-l • • · dt1 = E. 
wo ( t,.) 

(5. 35) 

Of all regions satisfying (5.35) we want to find the most powerful one. Let 
us first consider alternatives a > 0. If wa(t,) denotes the common part of w0(t,.) 

and the region 

(5.36) 

we must choose wa(t,) such that 
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(5.37 ) 1 tn-2 tn-3 dt d . 
n-1 • n-2 ••• t2 n-1 • • • h = max. 

1Da(t,.) 

From this it follows easily that against alternatives a > 0 the uniformly best 

choice for w 0 ~t .. ) is 

(5.38) 

and since under H, ~~is independently distributed ofT .. , C'(t .. ) does not depend 

on tn . 
Consider next alternatives a < 0. We include in the region of rejection all 

points for which Y1 < 0. To determine w0(t") we notice that, given Y1 > 0, 

the X's are uniformly distributed between 0 and a+ 0. (Provided a+ 0 > 0; 

the case a + 0 ~ 0 is trivial). Hence the probability distribution of the T's 

given Y1 > 0 is 

(5.39) 

when 

Thus 

(5.40) 

P (t1 , • • • , tn I Y 1 > 0) 
n! n-1 

- (a + 0)" tn • • • t2 

0 < tn <a+ 0, for k = 1, • · • , n - 1. 

p(h, • • • , ln-1 j tn, a < 0, Y1 > O) 

p(t1, .•. , tn-1 I t .. , a = o) 

is independent of t1 , · · · , tn-1 and hence the power of w against alternatives 

a < 0 is independent of the choice of w0(t .. ). Therefore the region 

(5.41) Y1 < 0, y1 > C' 
Yn 

is uniformly most powerful against all alternatives. But (5.41) is equivalent to 

(5.42) Y1 < 0, >c. 
Yn- Y1 

It is interesting to compare this result with that for the corresponding simple 

hypothesis. Let H' be the hypothesis: a = 0 when the X's are assumed inde­

pendently and uniformly distributed over (a, a + 1). There exists no uniformly 

most powerful test of H'; instead the two uniformly most powerful one-sided 

tests exist. By analogy with the normal case one might then expect for H' 

that of all tests with symmetric power-functions, there be a uniformly most 

powerful one. This however is not so: there exist infinitely many admissible 

tests with symmetric powerfunction. 
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In this and the previous section we restricted ourselves to problems involving 
only one nuisance parameter. However, the method applies also to problems 
involving several nuisance parameters. 

In the usual way (cf. [20, 9]) the results of this section may be translated to 
give optimum sets of confidence intervals for estimating the parameters in ques­
tion. In this connection it is an open question whether the confidence regions 
based on the type B1 tests discussed in section 2 will always be intervals; one 
would expect this to be the case. 

The author wishes to acknowledge his indebtedness to Professor P . L. Hsu 
for many helpful suggestions. 
Added in proof: In a joint paper by Professor Henry Scheffe and the present 
author which has been submitted to the Proceedings of the National Academy of 
Sciences, a result is given concerning the existence of certain 1: 1 transformations. 
This result bears on Section 4 of the present paper where a question arises con­
cerning the existence of a 1: 1 transformation. The existence of such a trans­
formation is now assured and, as a consequence, the last paragraph of Section 4 
has become superfluous. 

REFERENCES 

[1] J . NEYMAN AND E. S. PEARSON, "On the problem of the most efficient tests of statistical 
hypotheses", Roy. Soc. London ·Phil. Trans., Ser. A, Vol. 231 (1933}, p . 289. 

[2] J . NEYMAN; "Sur la verification des hypotheses statistiques composees", Bull . Soc. 
Math . France, Vol. 63 (1935}, p.l. 

[3] J . NEYMAN, "On a statistical problem arising in routine analysis and in sampling in­
spection of mass production", Annals of Math. Stat., Vol. 12 (1941}, p. 46. 

[4} H . ScHEFFll, "On the theory of testing composite hypotheses with one constraint", 
Annals of Math. Stat., Vol. 13 (1942}, p. 280. 

[5] P. L. Hsu, "Analysis of variance from the power function standpoint", Biometrika, 
Vol. 32 (1941), p. 62. 

[6] J. B. SIMAIKA, "On an optimum property of two important statistic_al tests", Bio· 
metrika, Vol. 32 (1941}, p. 70. 

[7] A. WALD, "On the power function of the analysis of variance test", Anhals of Math . 
Stat ., Vol. 13 (1942), p . 434. 

[8] P. L. Hsu, "On the power function of the E 2-test and the T2-test", Annals of Math . 
Stat., Vol.16 (1945}, p. 278. 

[9] H . ScHEn·t, "On the ratio of the variances of two normal populations", Annals of 
Math . Stat ., Vol. 13 (1942), p. 371. 

(10] J. NEYMAN, "L'estimation statistique traiMe comme un probleme classique de prob­
abiliM", Actualites Sci. et Ind. No. 739, Hermann et Cie, Paris, 1938. 

[11) A. WALD, "Notes on the theory of statistical estimation and testing hypotheses", 
Columbia University. 

[12] W. J . DIXON, "Further contributions to the problem of serial correlation", Annals of 
Math. Stat ., Vol.15 (1944} , p.l19. 

[13) J. voN NEUMANN, "Distribution of the ratio of the mean square successive difference 
to the variance", Annals of Math . Stat., Vol.12 (1941), p . 367. 

(14) M. KAc, "A remark on independence of linear and quadratic forms involving independ­
ent Gaussian variables", Annals of Math. Stat., Vol. 16 (1945), p . 400. 

[15) W. G. MADOW, "Note on the distribution of the serial correlation coefficient", Annals 
of Math . Stat., Vol.16 (1945}, p. 308. 



116

E. L. LEHMANN 

[16] R. L. ANDERSON, "Distribution of the serial correlation coefficient", Annals of Math. 

Stat., Vol.13 (1942), p.l. 
[17] T. KooPMAN's, "Serial correlation and quadratic forma in normal variables", Annala of 

Math. Stat., Vol.13 (1942), p. 14. 

[18] R. B. LEIPNIK, "Distribution of the serial correlation coefficient in a circularly cor­

related universe", Annals of Math. Stat., Vol. 18 (1947), p. 80. 
(19] P. L. Hsu, "On the asymptotic distributions of certain statistics used in testing the 

independence between successive observations from a normal population", 

Annals of Math. Stat., Vol.17 (1946), p. 350. 
[20] J. NEYMAN, "Outline of a theory of statistical estimation based on the classical theory 

of probability", Roy. Soc. London Phil. Trans., Ser. A, Vol. 236 (1937), p. 333. 

[21] E. J. G. PITMAN, "Sufficient statistics and intrinsic accuracy", Proc. Camb. Phil. Soc., 

Vol. 32 (1936), p. 567. 
[22] B. 0. KoOPMAN, "On distributions admitting a sufficient statistic", Trans. Amer. 

Math. Soc., Vol. 39 (1936), p. 399. 
(23] D. DuGill:, "Application des propriet6s de la limite au sens du calcul des probabilit6s 

8. l'etude des diverses questions d'estimation", J. £cole Poly., Vol. 3 (1937), 

p.305. 
[24] J. NEYMAN AND E. S. PEARSON, "On the use and interpretation of certain test criteria 

for purposes of statistical inference", Biometrika, Vol. 20A (1928), p. 175. 

(25] E. PAULSON, "On certain likelihood ratio tests associated with the exponential distribu­

tion", Annals of Math Stat., Vol.12 (1941), p. 301. 
[26] P. V. SUKHATME, "Tests of significance for samples of thext population with two degrees 

of freedom", Annals of Eugenics, Vol. 8 (1937), p. 52. 


	ON OPTIMUM TESTS OF COMPOSITE HYPOTHESES WITH ONE CONSTRAINT
	Summary
	1. Introduction
	2. On the theory of optimum tests
	2.1 One-sided tests

	3. Testing for circular serial correlation in a normal population
	4. Similar regions
	5. Testing exponential and rectangular distributions
	REFERENCES


