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ON ORBIFOLD EMBEDDINGS

Cheol-Hyun Cho, Hansol Hong, and Hyung-Seok Shin

Abstract. The concept of ”orbifold embedding” is introduced. This is
more general than sub-orbifolds. Some properties of orbifold embeddings
are studied, and in the case of translation groupoids, orbifold embedding

is shown to be equivalent to a strong equivariant immersion.

1. Introduction

Orbifolds arise naturally in many areas such as topology, geometric group
theory, symplectic geometry and so on. In the last decade, they have been
actively studied after Chen and Ruan introduced a new cohomology ring struc-
ture on orbifold cohomology [2]. Orbifolds also naturally appears when there
is a symmetry, such as in symplectic reductions or in the presence of group
actions. A very natural and basic question is to find the sub-objects for a
given orbifold. A suborbifold (a subset which is also an orbifold with the in-
duced topology) turns out to be a very restrictive notion. For example, given a
product of two orbifolds the correct notion of diagonal ∆ (see Definition 3.12)
does not become a suborbifold but it is what is called an orbifold embedding

into the product orbifold. Hence, it is clear that one should enlarge the class
of sub-objects of an orbifold by including orbifold embeddings. Although the
definition of orbifold embeddings appear in [1], such a notion has not been
studied further. We became interested in this question of sub-objects in order
to consider a proper notion of a Fukaya category of an orbifold. In the Fukaya
category of a symplectic manifold, its objects are Lagrangian submanifolds
decorated with additional data, and we believe that in the case of symplectic
orbifolds, Lagrangian orbifold embeddings should become an important object
in its Fukaya category (In this paper, we do not consider the Fukaya category
of an orbifold, which is left for future research).

In this paper we give a slightly modified definition of orbifold embedding and
explore several properties of orbifold embeddings. Also we prove that given an
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abelian orbifold embedding, the induced map between inertia orbifolds again
becomes an orbifold embedding (Theorem 4.3).

One drawback of the definition of orbifold embedding is that it is rather
cumbersome to work with as it is defined using local data. Also we observe
that this notion of orbifold embedding is not Morita invariant. The second half
of this paper is to remedy this in the case of translation groupoids. Namely,
we construct an equivariant immersion in Sections 7 and 8, from the data of
an orbifold embedding to an orbifold groupoid which is Morita equivalent to a
translation groupoid [M/G]. Equivariant immersions are much easier to work
with than orbifold embeddings, hence this construction should be very useful in
applications. Pronk and Scull [8] showed that for translation groupoids, Morita
equivalence can be defined only using translation groupoids, and our result is
also in a similar point of view. To construct such an equivariant immersion,
we use the Hilsum-Scandalis map, which is reviewed in Section 6.

Not all equivariant immersions give rise to orbifold embeddings, and we
define what we call a strong equivariant immersion, which is shown to give an
orbifold embedding. Also the equivariant immersion obtained from orbifold
embeddings are also strong. Hence, in the case of translation groupoids, one
can work with strong equivariant immersions, instead of orbifold embeddings.

2. Orbifold groupoids

In this section, we briefly recall well-known notions related to orbifold group-
oids. We refer readers to [7] or [1] for details. One can define orbifolds in terms
of local uniformizing charts (due to Satake).

Definition 2.1. An orbifold is a Hausdorff, second countable topological space
X with a collection of uniformizing charts (Vα, Gα, φα : Vα → X) of X, where
the finite group Gα acts effectively on the manifold Vα, and continuous maps φα
which descend to a homeomorphism φα of Vα/Gα onto an open subset Uα ⊂ X.
This data is required to satisfy following conditions:

(1) {Uα} is a covering of X.
(2) (Local compatibility) For x ∈ Uα ∩ Uβ , there exist an open neighbor-

hood U ⊂ Uα ∩ Uβ of x and a chart (V,G, φ : V → X) of U which
embeds to (Vα, Gα, φα) and (Vβ , Gβ , φβ).

In the modern approach of orbifolds, one usually uses the language of group-
oids in the definition of orbifolds. This generalizes the notion of classical orb-
ifolds allowing noneffective orbifolds. Recall that a groupoid is a (small) cat-
egory whose morphisms are all invertible. Giving a topological structure and
smooth structure on groupoids, we get the notion of Lie groupoids.

Definition 2.2. A topological groupoid G is a pair of topological spaces G0 :=
Obj(G) and G1 :=Mor(G) together with continuous structure maps:

(1) The source and target map s, t : G1 ⇒ G0, which assigns to each arrow
g ∈ G1 its source object and target object, respectively.
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(2) The multiplication map m : G1s ×t G1 → G1, which compose two
arrows.

(3) The unit map u : G0 → G1, which is a two-sided unit for the multipli-
cation.

(4) The inverse i : G1 → G1, which assigns to each arrow its inverse arrow.
This map is well-defined since all morphisms are invertible.

If all of the above maps are smooth and s (or t) is a surjective submersion (so
that the domain G1s ×t G1 of m is a smooth manifold), then G is called a Lie
groupoid.

Definition 2.3. Let G be a Lie groupoid.

(1) G is proper if (s, t) : G1 → G0 ×G0 is a proper map.
(2) G is called a foliation groupoid if each isotropy group Gx is discrete.
(3) G is ètale if s and t are local diffeomorphisms.

Note the every ètale groupoid is a foliation groupoid. It can be easily
checked that a proper foliation groupoid G has only finite isotropy groups
Gx := (s, t)−1(x, x) for each x ∈ G0

Definition 2.4. We define an orbifold groupoid to be a proper ètale Lie group-
oid.

Let us recall morphisms and Morita equivalence of orbifolds.

Definition 2.5. Let G and H be Lie groupoids. A homomorphism φ : H → G
consists of two smooth maps φ0 : H0 → G0 and φ1 : H1 → G1, that together
commute with all the structure maps for the two groupoids G and H. It means
that Lie groupoid morphisms are smooth functors between categories.

The following notion of equivalence is restrictive (it does not define equiva-
lence relation), and later we will recall Morita equivalence which is indeed the
correct notion of equivalences between orbifold groupoids.

Definition 2.6. A homomorphism between φ : H → G between Lie groupoids
is called equivalence if

(i) (essentially surjective) the map

tπ1 : G1 s×φ0
H0 → G0

defined on the fibered product of manifolds

{(g, y) | g ∈ G1, y ∈ H0, s(g) = φ(y)}

is a surjective submersion where π1 : G1 s×φ0
H0 → G1 is the projec-

tions to the first factor;
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(ii) the square

H1 G1

H0 ×H0 G0 ×G0

❄

(s,t)

✲
φ1

❄

(s,t)

✲
φ0×φ0

is a fibered product of manifolds.

An equivalence in Definition 2.6 may not have an inverse. The notion of
Morita equivalence is obtained by formally inverting equivalences in Definition
2.6.

Definition 2.7. G and G′ are said to be Morita equivalent if there exists a
groupoid H and two equivalences

G
φ
←− H

φ′

−→ G.

It is well known that “Morita equivalence” defines an equivalence relation
(see the discussion after Definition 1.43 in [1]). It is clear from the definition
that equivalence is a special case of Morita equivalence.

We give an example of Morita equivalent groupoid which are not equivalent.
For example, if G can be made by tearing off some part G′ and adding arrows
which contains the original gluing information, then we have an equivalence
from G to G′. However, since “tearing off” process is not continuous, there is
no map in the opposite direction in general.

Example 2.8. Consider two orbifold groupoids, G and G′, which are equivalent
to the closed interval. From Figure 1, it is clear that they are Morita equivalent,
but there are no maps neither from G to G′ nor from G′ to G.

Figure 1. Morita equivalence

Definition 2.9. Let φ : H → G and ψ : K → G be homomorphisms of Lie
groupoids. The fibered product H ×G K is the Lie groupoid that makes the



ON ORBIFOLD EMBEDDINGS 1373

following diagram a fibered product.

H×G K

pr1

��

pr2 // K

ψ

��
H

φ // G

which commutes up to a natural transformation. More explicitly,

(H×G K)0 := H0 ×φ0,G0,s G1 ×t,G0,ψ0
K0,(2.1)

(H×G K)1 := H1 ×sφ1,G0,s G1 ×t,G0,sψ1
K1(2.2)

with following source and target maps

s(h, g, k) = (s(h), g, s(k)),

t(h, g, k) = (t(h), ψ(k)gφ(h)−1, t(k)).

We will also write H×G K as φ∗K occasionally.

To be more precise, an element of (H×G K)0 is a triple (x, g, z) such that

(2.3) x φ0(x)
g // ψ0(z) z

and a morphism between (x, g, z) and (x′, g′, z′) is a triple (h, g, k) which makes
the following diagram commutative:

(2.4) x

h

��

φ0(x)

φ1(h)

��

g // ψ0(z)

ψ1(k)

��

z

k

��
x′ φ0(x

′)
g′ // ψ0(z

′) z′

i.e., for (h, g, k) ∈ (H×KG)1 which satisfies s(g) = φ0(s(h)) and t(g) = ψ0(s(k))
by definition,

s(h, g, k) = s(h) φ0(s(h))
g // ψ0(s(k)) s(k)

and

t(h, g, k) = t(h) φ0(t(h))
g′ // ψ0(t(k)) t(k)

where g′ = ψ1(k)gφ1(h)
−1.

Remark 2.10. The fibered product H ×G K may not be a Lie groupoid, since
(H×G K)0 or (H×G K)1 may not be manifolds.

The following lemma is well-known.
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Lemma 2.11. If ψ : K → G is an equivalence, then H×G K is a Lie groupoid

and the projection H×G K → H is an equivalence

(2.5) H×G K
pr2 //

pr1

��

K

ψ ∼=

��
H

φ
// G.

Proof. From (2.1), one can see that if s ◦ pr1 : G1 ×t,G0,ψ0
K0 → G0 is a sub-

mersion, then (H×GK)0 is a manifold. This happens when ψ is an equivalence.
Since s : K1 → K0 is a submersion, a similar argument shows that (H×G K)1
is a manifold for the equivalence ψ.

Recall that H×G K is a Lie groupoid whose set of objects and arrows are

(H×G K)0 = H0 ×φ0,G0,s G1 ×t,G0,ψ0
K0,

(H×G K)1 = H1 ×sφ1,G0,s G1 ×t,G0,sψ1
K1,

respectively. We first check the condition (i) of Definition 2.6. We have to show
that the following map

tπ1 : H1 ×s,H0,pr1 (H0 ×φ0,G0,s G1 ×t,G0,ψ0
K0)→ H0

is a surjective submersion where π1 is the projection to the first factor H1.
Consider the following diagrams of fiber products.

H1 ×s,H0,pr1 (H×G K)0 //

π1

��

(H×G K)0 //

��

G1 ×t,G0,ψ0
K0

��
H1

// H0
// G0

The rightmost vertical map G1 ×t,G0,ψ0
K0 → G0 is a surjective submersion,

since ψ : K → G is an equivalence. Then, it follows from a general property of
fiber product diagrams that the middle vertical map H0 ×φ0,G0,s G1 ×t,G0,ψ0

K0 → H0 is also a surjective submersion, and hence so is π1. Finally, tπ1 is a
surjective submersion since it is given by a composition of two such kinds of
maps.

To show the second condition of equivalence, we consider the following dia-
gram:

(H×G K)1 H1

(H×G K)0 × (H×G K)0 H0 ×H0

❄

(s,t)

✲
pr1

❄

(s,t)

✲
pr1×pr1



ON ORBIFOLD EMBEDDINGS 1375

Since (s, t) : H1 → H0 × H0 is a submersion, we only need to check that
the above diagram is a fibered product of sets. Suppose h ∈ H1, and denote
x = s(h) and x′ = t(h). Since pr1 : H0 ×φ0,G0,s G1 ×t,G0,ψ0

K0 → H0 is
surjective, there exist (x, g, y) and (x′, g′, y′) in H0 ×φ0,G0,s G1 ×t,G0,ψ0

K0.
Since ψ is equivalence, there exists a unique k ∈ K1 satisfying ψ1(k) =
g′φ1(h)g

−1. Since h ∈ H1 determines a unique element (h, g, k) in the fiber
over ((x, g, y), (x′, g′, y′)), the above diagram is a fiber product as sets. �

3. Orbifold embeddings

In this section we recall the main definition of this paper, an orbifold embed-
ding, and explore its properties. The following notion is a slight modification
from the one defined by Adem, Leida, and Ruan in their book [1].

Definition 3.1. A homomorphism of orbifold groupoids φ : H → G is an
embedding satisfying the following conditions:

(1) φ0 : H0 → G0 is an immersion
(2) Let x ∈ im(φ0) ⊂ G0 and let Ux be a neighborhood such that G|Ux

∼=
Gx ⋉ Ux. Then, the H-action on φ−1

0 (x) is transitive, and there exists
an open neighborhood Vy ⊂ H0 for each y ∈ φ−1

0 (x) such that H|Vy
∼=

Hy ⋉ Vy and

(3.1) H|φ−1

0
(Ux)
∼= Gx ⋉ (Gx ×Hy

Vy)

(3) |φ| : |H| → |G| is proper and injective.

A Lie groupoid H together with φ is called an orbifold embedding of G.

Figure 2. Local shape of an orbifold embedding

In (2) of the above definition, the action of Gx is defined by

Gx × (Gx ×Hy
Vy)→ Gx ×Hy

Vy, (g, [k, z]) 7→ [gk, z],

where (kφ1(h), z) ∼ (k, h · z) is the equivalence relation defined by the action
of Hy and [k, z] denotes a class in the quotient Gx ×Hy

Vy.
There are two modifications in the definition from that of Adem, Leida, and

Ruan (Definition 2.3 in [1]).
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(1) We use the local model Gx ×Hy
Vy instead of Gx/Hy × Vy.

(2) We require that |φ| : |H| → |G| is injective (which was not present in
[1]).

Let us explain why we have made such modifications.
Firstly, in [1] Gx/φ1(Hy)× Vy was used instead of Gx ×Hy

Vy. But φ1(Hy)
may not be a normal subgroup of Gx (see Example 3.2). Also, it is not easy to
find a natural Gx action on Gx/φ1(Hy) × Vy which reflects the Hy action on
Vy. The only plausible action of Gx that may exist on Gx/φ1(Hy) × Vy is by
the left multiplication on the first component. Now, any reasonable definition
of an embedding should include the identity map, and therefore in this case
we would have that Gx ⋉ Ux ∼= Gx ⋉ (Gx/Gx × Vy) where x = y and Ux = Vy
but, on Ux the group Gx acts and on Gx/Gx × Vy the action is trivial. Hence,
Gx ×Hy

Vy in (3.1) should be the correct local model.

Example 3.2. Let S3 act on C
3 as permutations on three coordinates where

S3 is the permutation group on 3 letters. Consider V := C×C×{0} ⊂ C
3 and

the subgroup H of S3 generated by the transposition (1, 2). Then, H acts on
V and the natural map

S3 ×H V → C
3

induces an orbifold embedding S3 ⋉ (S3 ×H V )→ S3 ⋉C
3. Note that H is not

a normal subgroup of S3.

Secondly, in [1], an orbifold embedding φ : H → G does not necessarily
induce an injective map |φ| : |H| → |G|. We first provide an example where |φ|
is not injective but satisfies the other conditions of embedding. We will call a
morphism φ of Lie groupoids essentially injective if |φ| is injective.

Example 3.3. Let G be given by G0 = R∐R and Z/2Z identifying two copies
of R. Suppose H is the disjoint union of two copies of R with only trivial
arrows.

Immerse (embed) H0 to G0 by idR ∐ idR. One can easily check that φ
satisfies the other axioms of orbifold embedding, except that |φ| is injective.
The induced map between quotient space is rather a covering map from trivial
double cover of R to R.

Remark 3.4. A morphism of groupoids φ : H → G is essentially injective if
the H-action on φ−1

0 (t(s−1(y))) (φ0 inverse image of H1-orbit) is transitive for
every y ∈ G0, i.e. if one can find an arrow in H1 from x to x′ whenever there
exists an arrow in G1 from φ0(x) to φ0(x

′). If this happens, one can find an
arrow in H1 from x to x′.

Compare it with the notion of essential surjectivity: φ : H → G is called
essentially surjective if for any point x in G0, there is an arrow g : φ(y) → x
from a point in the image of φ to x.

Remark 3.5. The essential injectivity is Morita-invariant since it is a property
of the induced map between quotient spaces.
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The necessity and importance of the concept of orbifold embedding come
from the fact that suborbifolds lack some essential properties. For example,
objects such as the diagonal do not become suborbifolds. Therefore, we need
to enlarge the definition of suborbifolds to include orbifold embeddings. See
Example 3.12 to note that the diagonal homomorphism is indeed an orbifold
embedding.

Now we investigate the properties of orbifold embeddings.

Lemma 3.6. If φ : H → G is an orbifold embedding, then the restriction of φ1
on local isotropy groups is injective.

Proof. Note that the point y corresponds to [e, y] in this model, where e is
the identity element in Gx. Since equivalence between orbifolds preserves local
isotropy groups, the local group φ1(Hy) at [e, y] of Gx⋉ (Gx×Hy

Vy) has to be
isomorphic to Hy, and it proves the lemma. �

Remark 3.7. For the case of an effective orbifold H, Lemma 3.6 follows directly
from the 0-level immersion φ0. Assume that there is a nontrivial element
h ∈ ker(φ1|Hy

). Fix a tangent vector v ∈ TyVy. Since the action of H is
effective, the difference of two vectors v − h∗v is not a zero vector. By the
assumption on h,

(φ0)∗(v − h∗v) = 0,

and it contradicts that φ0 is an immersion.

Remark 3.8. In the above Lemma 3.6, φ1 may not be globally injective.

We remark that the orbifold embedding is not Morita invariant. Indeed, the
following two examples illustrate this phenomenon.

Figure 3. An orbifold embedding and equivalence 1
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Example 3.9. Let H be a circle with the trivial orbifold groupoid structure
and G be a teardrop whose local group at the unique singular point x is Z/3 as
in Figure 3. The orbifold morphism φ : H → G is not an orbifold embedding
since it does not satisfy the second condition at x ∈ G.

However, we can change the orbifold structure of H as follows. Let φ(y) = x
and U be a open neighborhood of y as in the figure. We add two more copies
of U to get new objects U ′ and add additional arrows identifying three copies
of U . Denote the resulting orbifold by H′. Note that there is an equivalence
from H′ to H. The obvious modification φ′ : H′ → G of φ is now an orbifold
embedding.

Figure 4. An orbifold embedding and equivalence 2

Example 3.10. Let H be the disjoint union of three copies of real lines and
G be R

2 equipped with a Z/3 action generated by 2π/3-rotation. Consider an
orbifold embedding φ : H → G shown in Figure 4. We similarly change the
orbifold structure of H by adding three more copies of R to H to get a new
orbifold groupoid H′, i.e., H ′

0 = R × Z6 and ((h, g), k) ∈ H ′
1 = H ′

0 × Z6 sends
(h, g)→ (h, kg). It is clear from Figure 4 that there is an equivalence H′ → H,
which is induced by the projection Z6 → Z3. The morphism φ′ : H′ → G is
defined by the composition of φ and this equivalence. Then, we see that φ′

is no longer an orbifold morphism because there is no transitive Gx action on
φ′−1(x) where x is the unique singular point in G.

Example 3.11 (Orbifold diagonal). As an example of an orbifold embed-
ding, we introduce a diagonal suborbifold of product orbifolds.

Definition 3.12. The diagonal suborbifold ∆ is defined as G ×G G.

Lemma 3.13. The natural map ∆ = G×G G → G×G is an orbifold embedding.
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Proof. We verify that ∆ above is a subgroupoid in the sense of Definition 3.1.
It suffices to prove this when G is a global quotient orbifold G ⋉M . In this
case, ∆ is given by (G × G) ⋉ (⊔g∆g), where ∆g = {(x, gx) : x ∈ M} and
(h, k) ∈ G × G takes (x, g, gx) to (hx, kgh−1, kgx) (The second terms in the
triples are used to distinguish (x, gx) from (x, ghx) for h ∈ Gx). The most
natural choice of orbifold morphisms will be φ0 : (x, g, gx) 7→ (x, gx) ∈M ×M
and φ1 : (h, k) 7→ (h, k) ∈ G × G. φ0 is clearly an immersion. Note that φ1 is
injective.

Choose a point p = (x, y) in im(φ0). Let U be a small connected neighbor-
hood of p inM×M , which is preserved under the (G×G)p-action. Since (x, y)
is in the image of φ0, there is some g in G satisfying y = gx. So, in particular
φ−1
0 (x, y) = {(x, g′, g′x) | g′x = gx = y}. (G × G)p acts on φ−1

0 (p) transitively

since (g−1g′, e) sends (x, g′, g′x) ∈ φ−1
0 (p) to (x, g, gx) and g−1g′ ∈ Gx when

g′x = gx.
Let q denote (x, g, gx) ∈ φ−1

0 (p). Note that (G×G)q = {(h, k) : h ∈ Gx, k ∈

Ggx, kgh
−1 = g}. Let Vg be the connected component of φ−1

0 (U) which contains

q (Vg is given by ∆g ∩φ
−1
0 (U)). We define a smooth map ψ from (G×G)p×Vg

to φ−1
0 (U) by

(3.2) ψ : ((h, k), (x′, g, gx′)) 7→ (hx′, kgh−1, kgx′).

Then, ψ is (G × G)p-equivariant by the definition of the G × G-action on ∆.
Since U is preserved under the (G×G)p and Vg is a connected component, ψ
should be surjective.

Suppose two different points

q1 = ((h1, k1), (x1, g, gx1)) and q2 = ((h2, k2), (x2, g, gx2))

in (G×G)p×Vg are mapped to the same point in φ−1
0 (U) by ψ. This happens

precisely when (h−1
2 h1, k

−1
2 k1) sends (x1, g, gx1) to (x2, g, gx2). In particular,

we have (h−1
2 h1, k

−1
2 k1) ∈ (G×G)q. Therefore, ψ descends to a map

ψ̄ : (G×G)p ×(G×G)q Vg → φ−1(U)

which is bijective (Here, (a, b) ∈ (G×G)q acts on the first factor of (G×G)p×Vg
by (h, k) 7→ (ha−1, kb−1)). Since the (G×G)q-action and the (G×G)p-action
on (G × G)p × Vg commute, the (G × G)p-equivariance of ψ implies that of
ψ̄. �

4. Inertia orbifolds and orbifold embeddings

In this section we show that given an orbifold embedding, there is an induced
orbifold embedding between their inertia orbifolds under abelian assumption.

First, let us recall inertia orbifolds. The following diagram defines a smooth
manifold SG , which can be interpreted intuitively as a set of loops (i.e., elements
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of local groups) in G:

(4.1)

SG G1

G0 G0 ×G0.
❄

β

✲

❄

(s,t)

✲
diag

Then, the inertia orbifold ΛG will be an action groupoid G ⋉ SG , i.e.,

(ΛG)0 = SG ,

(ΛG)1 = G1 ×G0
SG ,

where for h ∈ G1 the induced map h : β−1(s(h)) → β−1(t(h)) is given by the
conjugation. More precisely, for any g ∈ β−1(s(h)), set h(g) = hgh−1. This
gives a target map from (ΛG)1 to (ΛG)0 whereas the source map is simply the
projection to the second factor of (ΛG)1. Note that β−1(s(h)) and β−1(t(h))
are the sets of loops in G based at s(h) and t(h), respectively. Similarly, one
can define SH and ΛH for a suborbifold H of G.

Now, let us see how φ : H → G induces a morphism Λφ between inertia
orbifolds. Λφ0 should be a map from (ΛH)0 = SH to (ΛG)0 = SG . Suppose
(h, y), y = β(h) ∈ H0 is a loop h : y → y in H. Then, the image of this loop is
(φ1(h), φ0(y)) or, φ1(h) : φ0(y)→ φ0(y), i.e.,

Λφ0 : (h, y) 7→ (φ1(h), φ0(y)).

Λφ1 maps (h′, h) ∈ (ΛH)1 = H1 ×H0
SH as follows:

Λφ1 : (h′, h) 7→ (φ1(h
′), φ1(h)).

If h : y → y, then φ1(h) : φ0(y)→ φ0(y).

Lemma 4.1. If G is abelian, i.e., Gx is an abelian group for each x ∈ G0, then
ΛH-action on Λφ−1

0 (g, x) is transitive.

Proof. To observe the local behavior of Λφ, we use the local model of embed-
dings. Near y ∈ H0, the local model and the morphism, again denoted by φ, is
given as follows:

φ : Gx ⋉ (Gx ×Hy
Vy)→ Gx ⋉ Ux,

where Vy and Ux are suitable neighborhoods of y and x, respectively and x =
φ0(y). Note that φ0 : Gx ×Hy

Vy → Ux is given as φ0[g, y
′] = g · φ0(y

′) and
φ1 = (id, φ0) : Gx × (Gx ×Hy

Vy) → Gx × Ux. One can easily check that φ is
well-defined.

Recall that we assumed φ1 to be injective and identify Hy as a subgroup of

Gx. We observe the fiber Λφ−1
0 (g, x) for a loop g : x → x in G in these local

models.
In our local model, any objects in Λφ−1

0 (g, x) can be written as (g, [g′, y])
for some g′ ∈ Gx. Suppose that (g, [g1, y]) and (g, [g2, y]) are distinct objects in
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Λφ−1
0 (g, x). Now we want to find k ∈ ΛH1 which sends (g, [g1, y]) to (g, [g2, y]),

i.e., k such that k · (g, [g1, y]) = (g, [g2, y]) or, equivalently (kgk−1, [kg1, y]) =
(g, [g2, y]). This can be achieved simply by choosing k = g2g

−1
1 . �

For general G, ΛH-action on Λφ−1
0 (g, x) is not necessarily transitive. In the

last paragraph of the proof of the lemma, the abelian assumption is crucial
to find k ∈ ΛH1 satisfying (kgk−1, [kg1, y]) = (g, [g2, y]). If Gx is not abelian,
such k may not exist. One may try with k = g2g

−1
1 which sends [g1, y] to [g2, y],

but the loop kgk−1 is different from g if k does not commute with g. See the
following example.

Example 4.2. Let G be the subgroup of SL (2,C) generated by

(4.2) a =

(
ρ 0
0 ρ−1

)
, b =

(
0 1
−1 0

)
,

where ρ = eπi/3. Then G is the binary dihedral group of order 12. Consider its
fundamental representation on C

2. Relations on generators a and b are given
by

a6 = b4 = 1, bab−1 = a−1, a3 = b2.

Let V be the first coordinate axis in C
2. Then, the subgroup H of G generated

by a acts on V . Now,
G⋉ (G×H V )

gives rise to an orbifold embedding into [C2/G] whose image is the union of two
coordinate axes in C

2. Note that on the level of inertia, (a, [e, 0]) and (a, [b, 0])
in Λ (G⋉ (G×H V )) are both mapped to (a, (0, 0)) in Λ[C2/G] by the induced
map between inertias.

We claim that there is no arrow between (a, [e, 0]) and (a, [b, 0]) in the inertia
Λ (G⋉ (G×H V )) and therefore, the induced map is not an orbifold embed-
ding. Such an arrow would first send [e, 0] to [b, 0] and hence, it would be of
the form bh for some h ∈ H. This arrow sends the loop a at [e, 0] to the loop
(bh) a (bh)−1 at [b, 0]. However, for any h ∈ H, (bh) a (bh)−1 = bab−1 = a−1

since H is abelian.

Finally we prove that Λφ : ΛH → ΛG satisfies the condition (2) of the
orbifold embedding (3.1) under the abelian assumption.

Proposition 4.3. Given an orbifold embedding φ : H → G, consider the in-

duced map between inertia orbifolds Λφ : ΛH → ΛG. If G is an abelian orbifold,

then Λφ is again an orbifold embedding.

Proof. The sector fixed by the loop h ∈ H1 should be mapped through φ0 to
the sector fixed by φ1(h) ∈ G. So Λφ0∗ is essentially the same as φ1∗, which
sends tangent vector to the sector fixed by h ∈ H1 to the one determined by
φ1(h). Therefore Λφ0 is an immersion.

The only non-trivial part is the second condition of the orbifold embedding.
For this, we can work on local charts. Suppose φ0(y) = x for y ∈ H0, x ∈ G0,
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and we fix a neighborhood Ux of x in G0 from the embedding property of φ, so
that H|φ−1(Ux) can be identified with the action groupoid Gx ⋉ (Gx ×Hy

Vy).
We may identify Hy as a subgroup of Gx via the embedding map.

We fix an element g ∈ Hy ⊂ Gx. In general, the local chart of inertia orbifold
ΛG near (g, x) ∈ ΛG0 can be written as

(4.3) CG(g)⋉
(
Ugx × {g}

)
,

where Ugx is the set of g-fixed points in Ux and CG(g) = {h ∈ Gx | hg = gh}
acts on Ugx by the left multiplication. We put {g} in (4.3) to indicate the sector
in the inertia orbifold ΛG, and we will suppress it for notational simplicity in
the following.

In our case, CG(g) = Gx since G is abelian. We rewrite the local chart (4.3)
as

(4.4) Gx ⋉ Ugx .

Choose an element (g, [e, y]) in Λφ−1
0 (g, x). Then V gy is an open neighborhood

of (g, [e, y]) and

ΛH|V g
y

∼= Hy ⋉ V gy .

Note that Hy = CH(g) := {h ∈ Hy | hg = gh}, since Hy is a subgroup of the
abelian group Gx.

We claim that the inverse image of the local chart (4.4) of (g, x) by Λφ−1

can be written as

Gx ⋉
(
Gx ×Hy

V gy
)
.

To see this, we only need to show that the twisted g-sector in the local chart of
H|φ−1(Gx⋉Ux) is isomorphic to Gx⋉

(
Gx×Hy

V gy
)
. It can be checked as follows:

If [g′, z] ∈ Gx×Hy
Vy is a fixed point of g, then [gg′, z] = [g′, z]. By definition,

this happens if gg′ = g′h and hz = z for some h ∈ Hy. This is equivalent to
(g′)−1gg′z = z, and by the abelian assumption on Gx, gz = z. Hence, objects
in g-twist sector of H|φ−1(Gx⋉Ux) are contained in Gx ×Hy

V gy . Conversely,
using the condition that Gx is abelian and g ∈ Hy, it follows that any element
[g′, z] ∈ Gx ×Hy

V gy is fixed by g.
By the definition of arrows in an inertia groupoid, Gx × (Gx ×Hy

V gy ) is the
arrow space of the g-twisted sector of H|φ−1(Gx⋉Ux) with an obvious action
map, and this proves the proposition. �

5. Orbifold embeddings and equivariant immersions

In this section we show that equivariant immersions which are strong (which
will be defined later) give rise to orbifold embeddings between orbifold quo-
tients.

First, let us review orbifold quotients and its groupoid analogue, translation
groupoids. Let G be a compact Lie group which acts on M smoothly. The
quotient [M/G] naturally has a structure of a translation groupoid.
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Definition 5.1. Suppose a Lie group G acts smoothly on a manifold M from
the left. The translation groupoid [G ⋉ M ] associated to this group action
is defined as follows. Let (G ⋉ M)0 := M and (G ⋉ M)1 := G × M , with
s : G ×M → M the projection and t : G ×M → M the action. The other
structure maps are defined in the natural way.

In particular, we are interested in group actions which give rise to an orbifold
groupoid structure.

Definition 5.2. A G-action on M is said to be locally free if the isotropy
groups Gp are discrete for all p ∈M .

Now we assume that the G-action on M is locally free. The compactness
of G implies that Gx is finite for all x ∈ M . Since G acts on M locally freely,
we have a representation of [M/G] as an orbifold groupoids in the following
manner which is called the slice representation in [7].

Proposition 5.3. For any translation groupoid [M/G], there is an orbifold

groupoid G with an equivalence groupoid homomorphism p : G → [M/G].

Proof. By the slice theorem, we can cover M by a collection of G-invariant
open sets {Ui} with G-equivariant diffeomorphisms

ψi : G×Gi
Vi → Ui,

where Vi is a normal slice with local action of Gi ≤ G. Define G as follows. Let
G0 := ⊔iVi be the disjoint union of all the Vi, and define a map p : G0 → M
as p(i, v) := ψi([1, v]). Define G1 as the pullback bundle of following diagram:

G1 G×M

G0 ×G0 M ×M
❄

(s,t)

✲

❄

(s,t)

✲

(p,p)

Then groupoid homomorphism p : G → [M/G] is an equivalence. See the proof
of Theorem 4.1 in [7] for more details. �

The converse in general still remains as a conjecture. The conjecture was
partially proven in the case of effective orbifold groupoids (Theorem 1.23 of
[1]).

Conjecture 5.4. Every orbifold groupoid can be represented by translation
groupoid with locally free group action.

Now, let us recall the definition of an equivariant immersion and introduce
what we call strong equivariant immersion.

Definition 5.5. Let N,M be G-manifolds. A G-equivariant immersion from
N into M is a smooth map ι : N →M such that

(1) the derivative dι : TxN → Tι(x)M is injective at every point in N ;
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(2) ι(g · x) = g · ι(x).

When ι is an equivariant immersion, the inverse image of p ∈ ι(N) ⊂ M
admits a natural Gp action. If q ∈ N is a point in ι−1(p), then for g ∈ Gp

(5.1) ι(g · q) = g · ι(q) = g · p = p.

Definition 5.6. Suppose the G-action on N is locally free and ι : N →M be
a G-equivariant immersion. We call ι a strong G-equivariant immersion if for
every p ∈M , Gp action on ι−1(p) is transitive.

Here is an example. Let N be a submanifold of M , which may not be
necessarily preserved by G-action. We take G copies of N , and denote it by

Ñ , i.e., Ñ = G×N . Ñ admits a natural G-action

(5.2) g : (h, x) 7→ (gh, x)

for g, h ∈ G and x ∈ N . An immersion ι : Ñ →M defined by ι(g, x) = g · x is
then G-equivariant.

Lemma 5.7. The G-equivariant immersion ι̃ : Ñ → M obtained above is

strong if and only if

(5.3) N ∩ g ·N = Ng

for all g ∈ G.

Proof. From the definition of ι, only the image under ι of a point in h ·N ∩g ·N
can have a multiple fiber. It suffices to consider the case when h = 1 and othere
cases can be handled by a parallel argument. Let y be a point in N ∩ g · N .
Then, there exists x ∈ N such that g · x = y. Observe that (1, y) and (g, x) in

Ñ maps to the same point y ∈M . For ι to be strong, there should be a group
element mapping (1, y) to (g, x), and from (5.2), this implies x = y. Therefore,
g · x = x and, hence x ∈ Ng. �

When a nontrivial subgroup GN of G preserves N but does not fix N , then
condition (5.3) cannot be satisfied in general. However, we may try to use
the minimal number of copies of N . Define GN so that we have the property,
g · N = h · N if and only if g−1h ∈ GN . Thus, for an element α of the coset
space G/GN , αN is well defined. Let

Ñ =
⋃

α∈G/GN

αN × {α}.

Ñ is a G-space by letting

g : (x, α) 7→ (g · x, g · α).

Obviously, the natural immersion ι : Ñ →M , ι(x, α) = x, is G-equivariant.
With this construction, we can interpret the orbifold diagonal for a global

quotient orbifolds (cf. 3.12) as a strong equivariant immersion: Suppose a finite
group G acts on M and let N be the diagonal submanifold of M ×M . Then,
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G × G/∆G parametrizes sheets of the domain of the immersion where ∆G =
{(g, g) | g ∈ G}, i.e.,

Ñ =
⋃

α∈G×G/∆G

αN × {α}.

To see that Ñ → M ×M is strong, assume (x, gx, [1, g]) and (x, hx, [1, h]) are
mapped to the same point z in M × M ([1, g], [1, h] ∈ G × G/∆G). Then,
(h−1g, 1) belongs to the local isotropy of z = (x, gx) = (x, hx) ∈ M ×M and
it sends (x, gx, [1, g]) to (x, hx, [1, h]) since h−1gx = x and

(h−1g, 1)[1, g] = [h−1g, g] = [h−1, 1] = [1, h].

One nice property which follows from the strong condition is that the strong
equivariant immersions always induce injective maps between the quotient
spaces.

Lemma 5.8. If ι : N → M is a strong G-equvariant immersion between two

G-spaces N and M , then,

|ι| : |N/G| → |M/G|

is injective.

Proof. Let |ι|(q1) = |ι|(q2) in |M/G| for qi ∈ |N/G|. Then,

ι(q1) = g · ι(q2)

for some g ∈ G. Denote ι(q1) by p. We have to find h ∈ G such that h ·q1 = q2.
Observe that

ι(g · q2) = g · ι(q2) = ι(q1) = p,

which implies that g · q2 and q1 lie over the same fiber ι−1(p) of ι. Since ι is
strong, there is h′ ∈ Gp such that h′ · q1 = g · q2. By letting h = g−1h′, we
prove the claim. �

Next, we use the local model of strong G-equivariant immersion to construct
an orbifold embedding.

Proposition 5.9. Let ι : N →M be a strong G-equivariant immersion between

two G-manifolds with locally free G-actions. Then, there exist orbifold groupoid

representations H and G of [N/G] and [M/G] respectively so that ι induces an

orbifold embedding φι : H → G whose underlying map between quotient spaces

is injective.

We will give a proof at the end of this section, after we discuss local models.
The following lemma is an analogue of standard slice theorem.

Lemma 5.10. Let M be a manifold on which a compact Lie group G acts

locally freely. Suppose ι : N → M is a G-equivariant immersion. For q ∈ N

and p = ι(q) ∈ M , we can find a G-invariant neighborhood Ũp of G · p in M

and Ṽq of G · q in N with the following properties:
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(i) There are normal slices Up and Vq to G·p and G·q at p and q respectively
such that

(5.4) Ũp ∼= G×Gp
Up, Ṽq ∼= G×Gq

Vq.

(ii) There is an Gq-equivariant embedding e : Vq → Up such that the dia-

gram

Ṽq
ι //

∼=

��

Ũp

∼=

��
G×Gq

Vq
[id,e] // G×Gp

Up

commutes where the map on the second row is given by (g, v) 7→(g, e(v)).

Proof. This is a relative version of the slice theorem (see for example Theorem
B.24 of [3]). We briefly sketch the construction of the slice here. Fix any G-
invariant metric ξ on M . The exponential map E identifies a neighborhood of
p inM with a neighborhood of 0 in TpM . Moreover, ξ induces a decomposition

(5.5) TpM ∼= Tp(G · p)⊕W,

where W is normal to the orbit and hence, it is equipped with the linear Gp
action (coming from the one on TpM/Tp(G · p). Let Up ⊂W be a Gp-invariant
small disk in W around the origin on which E is a diffeomorphism. Now,

ψ : G×Gp
Up →M, [g, u] 7→ g · E(u)

is well defined and G-equivariant. Since ψ is a local diffeomorphism at the point
[e, o], G-equivariance implies that it is a local diffeomorphism at all points of
the form [g, 0]. One can check that ψ is indeed injective if Up is sufficiently
small (see the proof of Theorem B.24 in [3] for details).

To get the relative version, we pull back ξ to N by ι. Since ι is an immersion,

ι∗ξ gives a metric on N . From the G-equivariant injection TqN
ι∗−→ TpM , we

can choose a decomposition compatible with (5.5):

TqN ∼= Tp(G · q)⊕W
′,

i.e., ι∗ is decomposed as

ι∗ = (ιO∗ , ι
N
∗ ) : Tq(G · q)⊕W

′ → Tp(G · p)⊕W.

Note that Gq ⊂ Gp and ιN∗ is Gq-equvariant. Let Vq be the inverse image of
Up by ιN∗ . We may assume that G×Gq

Vq is diffeomorphic to a neighborhood
of G · q by shrinking Up if necessary. Thus, we proved (i).

Finally, by letting e the restriction of ιN∗ to Vq, we get (ii). �

The following lemma provides the local model which is needed for the orb-
ifold embedding.
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Figure 5. Slices

Lemma 5.11. Under the setting of Lemma 5.10, assume further that ι is

strong. Then, we can find a Gp-invariant neighborhood Up(⊂ Ũp) of p in M

and a Gq-invariant neighborhood V q(⊂ Ṽq) of q in N such that there is a Gp-
equivariant isomorphism

(5.6) ι−1(Up) ∼= Gp ×Gq
V q,

where the Gq-action on Gp × V q is given by

h · (g, x) = (gh−1, h · x).

Proof. We take a product type neighborhood V q(⊂ Ṽq) and Up(⊂ Ũp) of q and
p as follows. We first identify the orbit G · q with G/Gq where q corresponds
to the image of identity [e] in G/Gq and G · p with G/Gp in a similar way.
Then the tubular neighborhood G ×Gq

Vq can be regarded as a fiber bundle
over G/Gq. Take an open neighborhood Oq of [e] in G/Gq which is invariant
under the left Gq-action on G/Gq. As [e] is fixed by this Gq-action, one can
for instance choose left Gq-invariant metric on G/Gq and then, take O to be a
small open ball around [e]. We may assume O is small enough so that

(5.7) g ·Oq ∩Oq = φ

for nontrivial g ∈ Gp \ Gq (Note that Gp also acts on G/Gq from the left).
This is possible since Gp is finite. Let Op be the image of Oq by the map
G/Gq → G/Gp. (5.7) implies that the map Oq → Op is an embedding.

Finally, we define V q and Up to be open neighborhoods of q and p, respec-
tively, such that the following diagrams are cartesian (see Figure 5).

(5.8) V q

��

�

� // G×Gq
Vq

��

Up

��

�

� // G×Gp
Vp

��
Oq

�

� // G/Gq Op
�

� // G/Gp
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Then, by (5.7) we have

(5.9) g · V q =

{
V q if g ∈ Gq,
disjoint from V q if g ∈ Gp \Gq

(More precisely, V q and Up are image of these fiber products under the iso-

morphisms shown in (i) of the previous lemma). Observe that ι|V q
: V q → Up

is an embedding since both Oq → Op and Vq → Up are embeddings.
Since the Gp-action on ι−1(p) is transitive, there is |Gp|/|Gq|-open subsets

of N (isomorphic to V q) which are mapped to Up. By (5.9), ι−1(Up) is the
disjoint union of these open subsets of N .

Now, define φ̃ : Gp × V q → ι−1(Up) by

φ̃ : Gp × V q −→ ι−1(Up)
(g, x) 7−→ g · x

This map is well defined because ι is Gp-equivariant and Up is Gp-invariant

subset of M . Furthermore, φ̃ is surjective (and hence a submersion) by the
strong condition of ι. It remains to show that it is injective up to Gq-action.

Suppose φ̃ sends (g, x) and (g′, x′) in Gp×V q to the same point in ι−1(Up).

Then g ·x = g′ ·x′, equivalently (g′)
−1
g ·x = x′. Note that both x and x′ belong

to V q and (g′)
−1
g ∈ Gp. From the dichotomy (5.9), we have (g′)

−1
g = h for

some h ∈ Gq. Therefore, g′ = gh−1 and x′ = h · x for h ∈ Gq. We conclude

that φ̃ is indeed a principal Gq-bundle and the isomorphism (5.6) follows. �

Remark 5.12. Note that the induced map φ : Gp ×Gq
V q → ι−1(Up) is Gp-

equivariant by definition.

Proof of Proposition 5.9. Suppose we have a strong G-equivariant immersion
ι : N → M . By equivariance, ι induces a map φ′ι : [N/G] → [M/G] and
|φ′ι| : N/G→M/G is clearly injective.

Consider a point p̄ in |M/G| and let πM (p) = p̄ for the quotient map πM :
M → |M/G|. From the definition of strong equivariant immersion, the group
action on ι−1(p) is transitive. If q ∈ N maps to p, then there exists a Gp-

invariant product type neighborhood Up of p in M and Gq-invariant V q of q
in N which satisfies (5.6) from the lemma 5.11. We add all such slices Up and
Vq into the slice representations of [N/G] and [M/G] to get orbifold groupoids
H and G.

Now the previous remark implies that

H|φ−1

0
(Up)
∼= Gp ⋉

(
Gp ×Gq

Vq
)
.

Essential injectivity of the resulting orbifold morphism follows directly from
Lemma 5.8. Since the other conditions in Definition 3.1 are automatic, we get
an orbifold embedding φ : H → G. �

Section 7 will be devoted to prove the converse of this proposition.
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6. Hilsum-Scandalis maps

We give brief review on Hilsum-Skandalis map, and we refer readers to [8]
and [5] for further details. We first recall the definition of the action of a
orbifold groupoid on manifolds

Definition 6.1. Let G be an orbifold groupoid. A left G-space is a manifold
E equipped with an action by G. Such an action is given by two maps:

• an anchor π : E → G0;
• an action µ : G1 ×G0

E → E.

The latter map is defined on pairs (g, e) with π(e) = s(g), and written µ(g, e) =
g · e. It satisfies the usual identities for an action:

• π(g · e) = t(g);
• 1x · e = e;
• g · (h · e) = (gh) · e

for x
h
−→ y

g
−→ z in G1 with π(e) = x.

A right G-space is the same thing as a left Gop-space, where Gop is the
opposite groupoid obtained by exchanging the roles of the target and source
maps.

Definition 6.2. A left G-bundle over a manifold M is a manifold R with
smooth maps

R M

G0

❄

r

✲
ρ

and a left G-action µ on R, with anchor map r : R→ G0, such that ρ(gx) = ρ(x)
for any x ∈ R and any g ∈ G1 with r(x) = s(g).

Such a bundle R is principal if

(1) ρ is a surjective submersion,
(2) the map (π1, µ) : R ×r,G0,s G1 → R ×M R, sending (x, g) to (x, gx), is

a diffeomorphism.

Definition 6.3. A Hilsum-Scandalis map G → H is represented by a principal
left H-bundle R over G0

R G0

H0

❄

r

✲
ρ

which is also a right G-bundle (over H0), and the right G-action commutes with
the H-action. R is called the Hilsum-Scandalis bibundle.
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Definition 6.4. For two bibundles R : G → H and Q : H → K, their compo-
sition is defined by the quotient of the fiber product Q×H0

R by the action of
H:

(6.1) Q ◦R := (Q×H0
R)/H1,

where the action of H1 on Q ×H0
R is given by h · (q, r) := (qh, h−1r). Since

the left action of H on R is principal, the action of H on Q ×H0
R is free

and proper; hence, the Q ◦ R is a smooth manifold. It also admits a principal
K-bundle structure with a right G-action, because H-action commutes with G-
and K-actions on R and Q, respectively.

One can compose two Hilsum-Scandalis maps as follows:

Definition 6.5. Two Hilsum-Scandalis maps P,R : G → H are isomor-
phic if they are diffeomorphic as left H- and right G-bundles: i.e, there is
a diffeomorphism α : P → R satisfying α(h · p · g) = h · α(p) · g for all
(h, p, g) ∈ H1 ×H0

P ×G0
G1.

For example, any Lie groupoid homomorphism φ : G → H defines a Hilsum-
Scandalis map

Rφ := H1 ×s,H0,φ0
G0 G0

H0

❄

t◦π1

✲
π2

where π1 and π2 are the projection maps. One can easily check that π2 is
principal in this case. We will use this construction crucially in the next section
to construct an equivariant immersion from an orbifold embedding.

Remark 6.6.

(1) Not every Hilsum-Scandalis map is induced from Lie groupoid homo-
morphisms. In fact, a Hilsum-Scandalis map R : G → H is isomorphic
to some Rφ for some Lie groupoid homomorphism φ : G → H if and
only if the map ρ : R → G0 has a global section. See Lemma 3.36 in
[5].

(2) We use slightly different notion of the Hilsum-Skandalis map from [8].
In [8],

Rpsφ = H0 ×φ0,G0,t G1

is used to construct a Hilsum-Skandalis map from φ. Here, we use R∗
φ

to make it a left G-space. See the following diagrams.

Rφ
π1 //

π2

��

G1

s

��

Rpsφ
//

��

H0

φ0

��
H0

φ0 // G0 G1
t // G0
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Now, we want to translate the notion of equivalence in the category of orb-
ifold groupoids into Hilsum-Scandalis maps. We first refer to the following two
lemmas from [5].

Lemma 6.7 ([5], Lemma 3.34). A Lie groupoid homomorphism φ : G → H
is an equivalence of Lie groupoids if and only if the corresponding Rφ is G-
principal.

Lemma 6.8 ([5], Lemma 3.37). Let P : G → H be a Hilsum-Scandalis map.

Then, there is a cover φ : U → G0 and a groupoid homomorphism f : φ∗G → H
so that

P ◦Rφ̃
≃
−→ Rf ,

where φ̃ : φ∗G → G is the induced functor and “
≃
−→” an isomorphism of Hilsum-

Scandalis maps. Here, φ∗G is the Lie groupoid with (φ∗G)0 = U and (φ∗G)1
given by

(φ∗G)1 G1

U × U G0 ×G0

❄

(s,t)

✲

❄

(s,t)

✲

(φ,φ)

From the above two lemmas, we obtain the following characterization of
Morita equivalence in terms of Hilsum-Scandalis language.

Lemma 6.9. If a Hilsum-Skandalis map P : G → H is also right G-principal,
then f : φ∗G → H obtained from the above lemma is an equivalence of groupoids.

Note that φ̃ : φ∗G → G is trivially an equivalence of groupoids.

Proof. Note that Rφ̃ is biprincipal, since φ̃ is an equivalence of groupoids. The
composition of two biprincipal bundle P ◦ Rφ̃ is also biprincipal, and hence
the isomorphic bibundle Rf also biprincipal. Therefore f is an equivalence of
groupoids φ∗G and H. �

The above lemma justifies the notion of the Morita equivalence in the Hilsum-
Skandalis setting.

Definition 6.10. A Hilsum-Scandalis map (R, ρ, r) is a Morita equivalence
when it is both a principal G-bundle and a principal H-bundle.

7. Construction of equivariant immersions from orbifold
embeddings

Let H be an orbifold groupoid, and φ : H → [M/G] be a groupoid morphism
which factors through an orbifold embedding ψ and a slice representation p :
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G → [M/G].

(7.1) H

ψ:orb.emb.
��

φ
// [M/G]

G

p:∼=

<<

With this assumption in this section, we construct a G-equivariant immersion
map ι : N →M for some G-manifold N .

Proposition 7.1. Consider H, [M/G], φ, ψ as above. Then, there exists G-
space N and a strong G-equivariant immersion ι : N →M such that

• [N/G] is Morita equivalent to H.
• the induced map [N/G] → [M/G], again denoted by ι, fits into the

following diagram of Lie groupoid homomorphisms

(7.2) [N/G]
ι //

Morita∼=

��

[M/G]

H

φ

66

and ι is a G-equivariant immersion.

Proof. From the groupoid structure of [M/G], we have smooth maps

φ0 : H0 →M, φ1 : H1 → G×M

which are compatible with the structure maps of an orbifold groupoid. As in
[8], we interpret φ as a Hilsum-Skandalis-type map. So, we define a bibundle
Rφ as

Rφ := (G×M)×s,M,φ0
H0.

Note that Rφ is a smooth manifold since s is a submersion.

(7.3) Rφ
π1 //

π2

��

G×M

s

��
H0

φ0 // M

This space is first of all smooth and has two maps to H0 and M ,

H0
π2←− Rφ

ι̃:=t◦π1−→ M

which will be used as anchor maps below (We denote t ◦ π1 by ι̃).
We define a right H-action and a left G-action on Rφ as follows: Write an

element of Rφ by (g, φ0(y), y) which indicates a point y in H0 and an arrow
g ∈ G×M whose source is φ0(y). Then,

• For an arrow h ∈ H1,

(g, φ0(y), y) · h := (g ◦ φ1(h), φ0(s(h)), s(h)) ;
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• For g ∈ G,

g′ · (g, φ0(y), y) := (g′ ◦ g, φ0(y), y) .

Rφ is a rightH-space and a leftG-space as Figure 6 below shows. As mentioned,
the corresponding anchor maps are π2 and ι̃, respectively. Indeed, π2 is a
principal left G-bundle (π2 is a submersion since s in the diagram (7.3) is
submersion).

Figure 6. the right H-action and the left G-action on R∗
φ

Now, the following are clear from the definition of both actions.

Lemma 7.2. Two actions defined above have the following properties:

(1) The right H-action we have defined is free;
(2) The left G-action and the right H-action commute;
(2) ι̃ is a G-equivariant map which is invariant under the H-action.

Proof. We only show (1) and the others follow from the definition. Suppose h
fixes ((g, φ0(y)), y) ∈ Rφ. Then h should be an element of Hy and g ·φ1(h) = g,
where Hy is a local isotropy group of y ∈ Vy for some local chart Hy ⋉ Vy of
H. Thus h lies in the kernel of the group homomorphism

φ1|Hy
: Hy → G.

Note that equivalence map p : G → [M/G] preserves isotropy groups. More
precisely,

HomG(x, z) ∼= Hom[M/G](p(x), p(z))

for all x, z ∈ G0. Now it follows that φ1| = p1 ◦ ψ1| is injective, because ψ1|
is injective from the definition of orbifold embedding and p1 preserves isotropy
groups. Hence, the h is the identity. �
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We denote by N the quotient space of Rφ by the right H-action and by
π : R∗

φ → N the quotient map.

Lemma 7.3. N is a smooth manifold.

Proof. This follows directly from the fact that the right H-action on Rφ is free
((2) of Lemma 7.2) and proper (because H itself is étale and hence proper). �

From (2) of Lemma 7.2, N admits a left G-action which is induced by G-
action on Rφ. Since the G-action on M is locally free, so is it on N . Therefore,
we get a global quotient orbifold [N/G] from the orbifold embedding φ : H →
[M/G].

Lemma 7.4. [N/G] is Morita equivalent to H.

Proof. Note that we have a Hilsum-Skandalis map H → [N/G] (or, π̄2 :
[N/G]→ H from π2 : Rφ → H0):

Rφ

π

��

π2 // H0

N

We have shown that π is principal in (2) of Lemma 7.2. It is also obvious from
the Hilsum-Skandalis construction that π2 is principal. So the Hilsum-Skandalis
map from Rφ is a Morita equivalence. �

From (3) of Lemma 7.2, we can observe that ι̃ factors through the quotient
space H. Since ι̃ is a G-equivariant, we get a G-equivariant map ι : N → M .
Furthermore,

Lemma 7.5. ι is a G-equivariant immersion.

(7.4) Rφ

π

��

ι̃ // M

N

ι

88

Proof. Since being an immersion is a local property, it suffices to prove it locally.
However, we have a nice local model of ι from (3.1). Thus, it is enough to prove
it with H = Gx⋉ (Gx×Hy

Vy), G = Gx⋉Ux, ψ : Gx⋉ (Gx×Hy
Vy)→ Gx⋉Ux

and p : Gx ⋉ Ux → G⋉ Ũx for Ũx ∼= G×Gx
Ux as in the Lemma 5.10.

Then, Rφ =
(
G× Ũx

)
×s,Ũx,φ0

(
Gx ×Hy

Vy
)
. We mod it out by the right

Gx-action (considered as a local H1-action) to get the local shape of N , again
denoted by N in this proof. Recall that this Gx-action is given by

((k1, a), [g1, b]) · g = [(k1g, g
−1 · a), [g−1g1, b]]
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for g ∈ Gx, k1 ∈ G and g1 ∈ Gx where a = g1 · φ0(b). And ι̃ on Rφ which
projects down to ι on N is defined as

(7.5) ι̃ ((k1, a), [g1, b]) = k1 · a = k1g1 · φ0(b) ∈ ·̃x,

where φ = p ◦ ψ : H → [M/G].

For given z ∈ Ũx, we check how many points in N are mapped to z. Suppose

ι[(k1, a1), [g1, b1]] = z and ι[(k2, a2), [g2, b2]] = z.

Up to the Gx-action, we may assume that g1 = g2 = 1 (recall N = Gx \ Rφ).

Therefore, we have k1φ0(b1) = k2φ0(b2) = z by (7.5). This implies that k−1
2 k1 ∈

Gx since both φ0(b1) and φ0(b2) belong to the normal slice at x. As Gx is finite,
there are finitely many k2 with this property.

Since p0 is an embedding and every fiber of ψ0 is finite, φ0 = p0 ◦ ψ0 is
an immersion whose fibers are all finite as well. Finally, as b2 lies in the fiber
φ−1
0 (k−1

2 k1b1), there can exist only finitely many such b2’s. �

Finally, we show in the following lemma that the resulting equivaraint im-
mersion is strong which will finish the proof of the proposition. �

Lemma 7.6. ι : N →M constructed above is strong.

Proof. Note that |N/G| ∼= |H| and |M/G| ∼= |G|. From the construction in
Section 8 (or Section 7), we have

|N/G|
|ι| //

∼=

��

|M/G|

∼=

��
|H|

|φ|
// |G|

Since |φ| is injective from the definition of the orbifold embedding, |ι| is injec-
tive. �

8. General case

So far, we have considered a translation groupoid [M/G] as our target space.
The construction can be generalized to the case of general orbifolds which we
will discuss from now on. We state this as a theorem, first.

Theorem 8.1. Let φ : H → G be an orbifold embedding, where G is Morita

equivalent to a translation groupoid [M/G]. Then, there exist a manifold N on

which the Lie group G acts locally freely such that

(i) H ≃ [N/G] and G ≃ [M/G], and
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(ii) there exists a G-equivariant immersion ι : N → M which makes the

diagram

(8.1) HOO

Morita

��

φ // GOO

Morita

��
[N/G]

ι
// [M/G]

commute.

Remark 8.2. The diagram in (ii) of the theorem can be regarded as a diagram of
morphisms in the category of Lie groupoids where we can invert equivalances
(see Definition 2.7, or [1] for the precise definition of the morphisms in the
category of groupoids).

We proceed the proof of theorem 8.1 as follows:
After fixing a Morita equivalence map

G
ψ≃
←− G′

σ≃
−→ [M/G]

for some Lie groupoid G′, we pull back the equivalence map ψ : G′ → G to H
to get φ∗G′ = H×G G

′. Recall that

(φ∗G′)0 = H0 ×φ0,G0,s G1 ×t,G0,ψ0
G′

0,

(φ∗G′)1 = H1 ×sφ1,G0,s G1 ×t,G0,sψ1
G′

1.

We denote the composition σ ◦ pr2 : φ∗G′ → [M/G] by φ̃. Then,

φ̃0 = σ0 ◦ (pr2)0 φ̃1 = σ1 ◦ (pr2)1,

where pr2 is the projection from φ∗G′ = H ×G G
′ to G′. We will apply the

construction in the previous section to φ̃.

(8.2) [M/G]

φ∗G′
pr2 //

φ̃

<<

pr1

��

G′

σ:equiv.

OO

ψ:equiv.

��
H

φ:orb.emb.
// G
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First of all φ∗G′ is equivalent to H. Pull-back of any equivalence is again an
equivalence as shown in Lemma 2.11.

To construct a G-equivariant immersion from φ̃ : φ∗G′ → [M/G], we intro-

duce the Hilsum-Skandalis bibundle associated to φ̃ as we did in the previous
section. Recall

Rφ̃ = (G×M)×s,M,φ̃0
(φ∗G′)0.

An element of R∗
φ̃
consists of the following data:

m
⊙

a

��

⋆
(
= [x, φ0(x)

g
−→ ψ0(z), z]

)

where m ∈ M , a ∈ G, x ∈ H0, z ∈ G′
0 and σ0(z) = m. Write r for this

element. Then, pr2(r) = z and the G-equivariant map ι̃ : Rφ̃ →M is given by

ι̃(r) = a · σ0(z). Recall

(8.3) Rφ̃

��

ι̃ // M

N

ι

>>

where N is obtained from Rφ̃ after taking a quotient by φ∗G′-action. Since local
groups are preserved by equivalences, restriction of 1-level maps appearing in
8.2 to any local groups are all injective. Then, similar argument as in Lemma
7.2 shows the right φ∗G-action on Rφ̃ is free and proper. Note that φ∗G is proper

since it is equivalent to the proper Lie (indeed, étale) groupoid G. Therefore,
N is a smooth manifold.

It remains to show that the induced G-equivariant map ι : N → M is
indeed an immersion. We will directly compute the kernel of dι̃. For notational
simplicity, we will write τ∗ for the derivative dτ of a smooth map τ between
two manifolds.

A tangent vector on Rφ̃ at r is given by the tuple

v = [(vl = va ⊕ vm, vm), vx, vg, vz],

where vl ∈ T (G×M) and va ∈ TG with the relations

• s∗(vl) = vm,
• (σ0)∗ (vz) = vm,
• s∗(vg) = (φ0)∗ (vx) t∗(vg) = (ψ0)∗ (vz).

Since G is étale and hence both

s∗ : TgG1 → Tφ0(x)G0 and t∗ : TgG1 → Tψ0(z)G0

are isomorphisms, we may rewrite the third relation as

(8.4) • s−1
∗ (φ0)∗ (vx) = t−1

∗ (ψ0)∗ (vz) = vg.
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From the first relation, it suffices to represent v as

v = [va ⊕ vm, vx, vg, vz].

Note that vm and vg are determined by vx and vz. One can easily check that

ι̃∗(v) = t∗(va ⊕ vm) = (va)
#
+ (La)∗(vm),

where (va)
# is a vector field on M generated by the infinitesimal action of va

on M . For simplicity, we assume that a is the identity element of G. Then,

ι̃∗(v) = (va)
# + vm.

Our goal is to compute the kernel of this map. If we can show that the kernel
of ι̃∗ lies in the tangent direction of (φ∗G′)-orbit, then it will imply that ι is an
immersion.

To do this, we first characterize the direction of (φ∗G′)-orbit. By the defini-
tion of the right φ∗G′ action on Rφ̃, we should consider an arrow of φ∗G′ given

by a pair (h, k) ∈ H1 ×G
′
1 such that

(8.5) t(h) = x and t(k) = z.

Considering the infinitesimal version of φ∗G′-action carefully, we have the fol-
lowing lemma.

Lemma 8.3. v is tangent to (φ∗G′)-orbit if and only if there exists (vh, vk) ∈
ThH1 × TkG

′
1 such that

(8.6) t∗(vh) = t∗(vk) = 0

and

(8.7) v = [(σ1)∗(vk), s∗(vh), vg, s∗(vk)]

(Here, we do not specify vg since they are completely determined by other com-

ponents (8.4)).

Remark 8.4. In the equation (8.6), t∗(vh) = 0 implies vh = 0 since H is étale.
Then the equation (8.7) can be rewritten as

(8.8) v = [(σ1)∗(vk), 0, 0, s∗(vk)].

Now, we are ready to prove the desired property of ι.

Lemma 8.5. ι : N →M above is an immersion.

Proof. Let v = [(va, vm), vx, vg, vz] ∈ ker ι̃∗, i.e., t∗(va⊕ vm) = (va)#+ vm = 0.
We should show that vh = 0 and find vk satisfying (8.6) and (8.8). First, we
find vk as follows:

From the condition (σ0)∗ (vz) = vm = (−va)#, we get

exp(t · (−va)) ·m = m(t),

wherem(t) is a curve inM withm′(0)= vm. Since exp (−t · va)= exp (t · va)
−1

,

m ≡ exp (t · va) ·m(t).
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Note that m(t) = σ0(z(t)) for some curve z(t) in G′
0 with z′(0) = vz. Since σ is

an equivalence map and (a(t),m(t)) ∈ G×M is an arrow from σ0(z(t)) to σ0(z)
for each t, there is unique k(t) ∈ G′

1 which maps to σ1(k(t)) = (a(t),m(t))
with s(k(t)) = z(t) and t(k(t)) ≡ z. We define vk := k′(0) ∈ TkG

′
1, then

(σ1)∗(vk) = (va, vm) ∈ TG× TM and s∗(vk) = vz.
Let γ be a curve in the R∗

φ̃
such that γ′(0) = v. Consider a component of

γ, g(t) ∈ G1 such that g′(0) = vg. We claim that this curve g(t) is a constant
curve.

Note that ψ0 ◦ t ◦ k(t) ≡ ψ0(z). Since ψ is an equivalence map and G is
étale, ψ0 ◦ s ◦ k(t) ≡ ψ0(z) (ψ1 maps “infinitesimal action” on G′ whose image
of target is fixed to a “constant action” on G). Note that t ◦ g(t) = ψ0 ◦ z(t) =
ψ0 ◦ s ◦ k(t) = ψ0(z). Since G is étale and target points of g(t) is fixed, g(t) is a
constant arrow in G1. Since φ0 ◦x(t) = s◦g(t) = φ0(x) and φ0 is an immersion
map, x(t) ≡ x.

We conclude that, if ι̃∗(v) = 0, then there exist vk such that

(8.9) v = [(σ1)∗(vk), s∗(0) = 0, vg = 0, s∗(vk)],

it proves that ι : N →M is an immersion. �

Lastly, the equivariant immersion ι is strong by basically the same argument
as in Lemma 7.6.
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