
1

For AIAA/AAS Astrodynamics Specialist Conference, Denve,, August 2000

AIAA-2000-4244

ON-ORBIT CALIBRATION OF SATELLITE GYROSCOPES*t

Joseph A. Hashmall, Mark Radomski, and Joseph Sedlak

Computer Sciences Corporation, 7700 Hubble Drive, Lanham/Seabrook, MD 20706
Phone: (301)-794-2175, e-mail: jhashmal@csc.com

ABSTRACT

In order to maneuver satellites accurately from one

attitude to another, onboard rate sensing gyroscopes

usually must be calibrated after launch. Several
algorithms have been used to determine gyro biases,

misalignments, and scale factors. This paper de-
scribes algorithms that have been used in the past,
discusses their advantages and limitations, and de-

scribes a new algorithm and the gyro calibration
results obtained using this new algorithm. The new

algorithm has significant operational advantages in
addition to being at least as accurate as other algo-
rithms.

INTRODUCTION

Knowledge of spacecraft angular rates is essential in
any attitude determination method that uses data from
different times, as well as in controlling attitude ma-
neuvers. On most three-axis stabilized spacecraft

these rates are measured using gyroscopes--also

known as Inertial Reference Units (IRU).

In order to use gyro measurements they must be con-
verted from raw measurements in the sensor frame to

angular measurements in the body frame. Consider-
ing three independent axes of gyro data at a time, this
can be accomplished by:

_) = G(5) o - I) ) (1)

where _o is the observed rate vector, /7, is a bias

vector in the sensor frame and G a matrix that scales

the rates and rotates them into the body frame. Be-
cause the measurements may be made by physically

distinct instruments, G is not required to be either

orthogonal or normal. G, therefore, contains 9 inde-
pendent parameters. Together with the 3 independent

biases, the complete calibration requires the determi-

nation of 12 parameters.

The on-orbit gyro calibration methods described in

this paper intend to determine the 3 elements of L, and

the 9 independent elements of G based on on-orbit
measurements.

During normal mission activities spacecraft angular
rates are usually maintained approximately constant

by the control system. Under these conditions of
nearly constant rates, and if gyro biases as well as
attitudes are included in an attitude determination

method, the attitude accuracy depends only weakly on

the accuracy of G. This is a consequence of the fact
that at constant rates the off diagonal elements of G

and errors in the diagonal elements produce constant
contributions to co which can be modeled as biases.

The existence of a bias vector that can compensate for
errors in the G-matrix is shown as follows.

A condition that a batch least-square or Kalman filter

attitude solution be accurate over a significant time

span is that the effective estimated rates be consistent
with sensor observations. Thus, if an erroneous G-

matrix is used to compute rates from gyro observa-
tions, a necessary condition for an accurate solution

(and small sensor residuals) is that the overall gyro
rates must be approximately equal to the true gyro
rates. If the true G-matrix and bias vector are repre-

sented by G and /_, and an initial estimate of the G-

matrix is represented by/-;, then for any period with

observed rates, _o, the necessary condition for an

accurate attitude solution is that there exist some

solved-for bias, /_, such that:
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G(E) ° - b) : F(N o - 1_) (2)

Solving for ]_ as a function of O)o gives:

--|

]_((-°o) : _o - F G(o) o -/_) (3)
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SinceF, G, and 6 are constant, fl can only be con-

stant if (_o is also constant. Conversely, if the rates

are constant, a bias vector can be found that will fit

the data by compensating for errors in the assumed G-
matrix.

Even though attitude accuracy during constant-rate

periods is not affected by gyro calibration, there are
three reasons that calibration is desirable:

• Gyro calibration improves targeting accuracy in
maneuvers

• Gyro calibration improves attitude accuracy
when the rates are not constant

• Gyro calibration reduces drift during contingen-
cies if the spacecraft attitude is determined from

gyro propagation without sensor update.

In practice accurate gyro calibration can only be per-
formed using data from periods with different distinct

rate profiles. Since at constant rates errors in G and

are not separable, data from either periods with
different but constant rates or from several maneuvers

must be used to unambiguously determine the pa-

rameters. A minimum of 4 distinct rate profiles must

be used to provide observability of the 12 independent

gyro parameters.

The need for different rate environments makes it

difficult to calibrate gyros using normal mission data.

Usually, special maneuvers must be planned to insure
complete observability. Since these maneuvers are

often quite different from normal mission activities, it
is often difficult to design them while maintaining

mission health and safety constraints. Because repe-

tition of gyro calibration maneuvers presents an un-
usual burden on operations, it is important that the

calibration algorithm be accurate and robust. In an

operations environment, methods that are easy to use,
that require less user intervention, and that can make
use of normal-operations maneuvers, are also desir-
able.

In more than 10 years of calibrating gyros for the

NASA's Goddard Space Flight Center (GSFC), we
have experience with four algorithms for calibrating

gyros. The major portion of this paper contains de-

scriptions of these four algorithms: The Davenport
algorithm, the Delta-bias algorithm, the Filter-
smoother algorithm, and a Batch Least-squares IRU
Calibration (BICal) algorithm. BICal is a new algo-

rithm and this paper includes a description and

evaluation of its performance during testing.

BICal has the advantages of being no less accurate

than the other methods (and potentially more accu-

rate), of making complete, optimum use of all of the
data, of significantly reducing the restrictions on cali-

bration maneuver design and scheduling, and of

greatly reducing the operator intervention needed for
calibration.

We describe each algorithm and our experience using

it, concentrating on its accuracy, robustness, and ease
of use.

The underlying assumption made in all of the gyro
calibration algorithms described below is that over a

significant period, the G-matrix and biases remain

constant. Experience has shown the G-matrix is sta-
ble over a period of years t. The bias is known to

drift, but, depending on the stability of the gyros, can
be considered stable over a period of weeks or
months 2.

For all of the algorithms described with the exception
of BICal, the data used for calibration is assumed to

be obtained from periods separated by no more than a

few days (or at most weeks) in order to insure that the
solved-for biases can be considered constant over the

data range. BICal, since it has the capability of solv-

ing for separate biases for each interval of data used,
can employ data spans separated by longer times.

ALGORITHMS

Davenport Algorithm

Description

The Davenport algorithm takes advantage of the fact
that accurate attitudes can be obtained for periods of

constant rates, even if the G-matrix and bias are not
well known. These attitudes are based on observa-
tions from the most accurate sensors available, as well

as rate data. As described above, accurate attitudes

may be attained by absorbing any errors in the G-
matrix into an effective bias. The Davenport algo-
rithm minimizes differences between these accurate

attitudes and attitudes propagated from other accurate
attitudes. In order to obtain complete observability
the rates in the propagation intervals must be linearly

independent and span the rotation space. In order to

span the space a complete solution requires at least 4
such intervals.

Let a series of accurate attitudes obtained before and

after each interval be denoted qlb'qzb'"q,,b and

qla'q2a ""qna " Separate estimates of the attitudes
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canbeobtainedby propagatingthegyromeasure-
mentsthroughtheinterval:

,s, = P,,a_-bqib (4)qia

where P is, of course, a function of the gyro parame-

ters and the observed rates, and propagates the atti-
tude before the interval, i, into an estimated attitude
after the interval. The effective loss function for the

Davenport algorithm is constructed from quaternion
products of the accurate and the estimated attitudes

summed over the independent intervals.

The solution for G and /_ is obtained by minimizing

the loss function. Details are given elsewhere 3.

A useful variation on the Davenport algorithm is par-
ticularly applicable to on-board systems 4. This

method relies on the on-board computer to determine
the quaternion after a maneuver. If the maneuver

control uses gyros only, the control system stops the
maneuver at an attitude found by propagation of the

pre-maneuver attitude using the gyros. When accu-
rate attitude sensor data is reintroduced into the con-

trol system, the attitude settles to the true target atti-
tude. The magnitude of the settling is equivalent to

the quaternion products used to construct the Daven-

port algorithm loss function.

Experience

The Davenport algorithm has been used as the normal

operational algorithm for GSFC ground calibration. It
has proved accurate and robust in the calibration of

the Upper Atmosphere Research Satellite (UARS),
the Extreme Ultraviolet Explorer (EUVE), the Total

Ozone Mapping Spectrometer-Earth Probe (TOMS-
EP), the Rossi X-ray Timing Experiment (RXTE), the

Submillimeter Wave Astronomy Satellite (SWAS),
the Tropical Rainfall Measurement Mission (TRMM),

and the Earth Observing System-AMI (Terra).

In all of these missions the calibration results were

evaluated by measuring the decrease in maneuver
targeting errors when on-orbit calibration parameters
were used in place of prelaunch values.

For UARS there was a limitation on the accuracy of
the results due to mission restrictions on calibration

maneuver design and due to software limitations on
the processing of gyro telemetry. Several recalibra-

tions have been performed on the UARS gyros giving
more accurate, and generally consistent results.
These recalibrations have shown that the gyro align-

ments and scale factors are stable over periods of

years (after initial postlaunch changes).

For RXTE, gyro data dropout during the acceleration

period of the calibration maneuvers caused errors.
These errors would have been reduced had the gyro
data been telemetered as accumulated angles rather
than rates.

Delta-Bias Algorithm

Description

If attitudes and effective gyro biases are determined

during several periods with constant but different
rates, the complete set of gyro parameters can be de-

termined from the effective gyro biases.

Data from several periods of nearly constant observed

rate of (_1,_2...(_, are adjusted using an assumed

bias, /_, and G-matrix, F to give adjusted rates,

wl,_'"_n" This /_ is not the solution of Eq. (3)

that gives the exact rate so an attitude determination
method can compensate by solving for an additional

bias for each period, /_t,/_2""/_,, ' An estimate of the

true bias /_ and true G-matrix, G, can be determined

as follows. The true rates in the body frame can be

expressed as:

= r( i- B)- Bi= - B, (5)

Defining the true parameters in term of changes from

the assumed parameters:

(6)
c =(I+A )r

and rearranging yieIds:

= (I +AG)r( , - B- A¢) (7)

r : (I+r-'AG (8)

Assuming the corrections are small and using the

definition of _i, this can be rearranged to:

F-1]_, = A/_ - F-1AG)_ (9)

or

--rA¢- AG , (10)

For 4 independent sets of rates, Eq. (10) can be solved

for AG and A/_ and therefore G and i>. If more than
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4setsareavailable,a least-squaresestimateofG and

can be obtained.

The effective loss function for the Delta-bias algo-
rithm is:

i

(ii)

Experience

The Delta-bias algorithm has been used on UARS,

RXTE, and Terra as a comparison and check on the

Davenport algorithm. In each of these cases it pro-
vided results consistent with those from the Daven-

port algorithm. For UARS and RXTE 5 it avoided the

periods of unusable or unavailable data during ma-
neuvers and since it uses data during nearly constant

rate periods was less sensitive to data dropout.

It has also been recently used on data from Terra for a
direct comparison with other gyro calibration algo-
rithms. The results of its use on Terra data, and the

comparison with the other methods are given below.

Filter-Smoother Algorithm

Description

The Filter-smoother algorithm was developed to re-

duce the effort needed for calibration using the Dav-
enport algorithm. Common Extended Kalman Filters

(EKFs) used in attitude determination and control
solve for attitude and gyro bias. The EKF equations
can be derived from the minimization of the trace of

the state error covariance matrix.

The gyro-calibration Filter-smoother has an aug-
mented state function including the G-matrix ele-
ments and also includes a smoother step. The

smoother step follows the filter by rerunning the filter
backwards and combining the results of the forward
and backwards filters. For each time, the two results

are averaged, weighted by the inverses of their co-
variances.

Experience

The Filter-smoother algorithm was developed for

RXTE and run using data from calibration maneuvers.

The results were unsatisfactory. After the start of the
first maneuver the filter quickly diverged and pro-
duced physically unreasonable values (biases and

scale factors that would have corresponded to multi-

ple 27z radian rotations of the spacecraft between ad-

jacent gyro observations).

Numerous attempts were made to diagnose this prob-
lem, but none were successful.

• If the filter was initialized with parameters very

near the true solution (found using the Davenport

algorithm) the filter converged, but any signifi-
cant deviation of initial parameters from ideal re-

sulted in divergence.

• Many attempts at tuning the filter by adjusting
the sensor uncertainty, the initial parameter un-

certainty, and the gyro noise estimates proved
unsuccessful in promoting convergence.

• The input data was closely examined and manu-
ally "repaired" without improving success.

• The software code was closely examined but no
errors were found.

The final conclusion was that although, in principal,

the Filter-smoother Algorithm should give accurate
results, either it has an unacceptably small radius of

convergence, or this implementation of the algorithm

was faulty in some undetected way.

BICal Algorithm

Description

The BICal algorithm was developed as an extension
of a Batch Least-squares (BLS) attitude determination

algorithm that has been used at GSFC for many years.
In the BLS algorithm the attitude at an epoch and

gyro bias are determined that minimize sensor residu-
als over the entire batch of data.

In the familiar Wahba loss function 6

ZWahb a = ZWj(ARj -_)j) z (12)

the sum is over all observations by all sensors. A, the
attitude to be estimated, is a rotation matrix that ro-

tates inertial frame vectors to the body frame. Oj is
the/h observation vector in body coordinates, Rj is

the corresponding reference vector in inertial coordi-

nates and Wj is a weight for the observation chosen so
that the loss function minimum corresponds to the
minimum state covariance.

If the observations occur at different times, the atti-

tude, A, must be replaced by the attitude at the time of

the measurement, At. The attitude at any time can be
estimated as an epoch attitude, Ao, propagated to the
time:

A, = e,,,_oAo (13)
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where the propagation uses the gyro data and, in the
BLS method, is treated as an explicit function of the

gyro bias (assumed to be constant over the batch).
The BLS method thus finds the epoch attitude and

bias vector that minimize the loss function:

LBcs = _Wj(P,,_o(gO, b)AoR j --6j) 2 (14)

J

BICal extends the BLS method in three ways:

• BICal allows data from multiple independent

time periods to be used together

• It assumes each time period to have a separate
epoch attitude, allows different time periods to
have different biases, and assumes a common

G-Matrix for all time periods.

• It explicitly solves for the various epoch attitudes
and biases as well as for the elements of the G-

matrix to minimize the loss function:

i j
(15)

where the index i indicates the time period containing

the data and ki indicates the bias to be applied during
the [h time interval. Because the same bias may be

solved for over more than one time period, the range

of k; must be less than or equal to that of i.

Experience

The BICal algorithm is a newly developed algorithm
and has been tested using data from only two mis-
sions. The results of its use on the Terra mission are

given below. It has also been used with data from the
Wide-Field Infrared Explorer (WIRE).

The WIRE data used consisted of normal mission data

taken over a period of 9 hours in 4 discontinuous in-
tervals. WIRE underwent numerous maneuvers in

this time as shown by the reported gyro rates, pre-
sented in Figure I.

The maneuvers in the first and fourth interval were

each sufficiently varied to provide complete observ-

ability of all gyro calibration parameters. Because the
WIRE gyros had a large bias drift, the bias in the
fourth interval differed substantially from that in the
first or of the first three taken together.

The gyro and sensor data were used in BICal to solve
for attitudes, gyro biases, and G-matrixes. If data
from the fourth interval were included in the solution

a separate bias had to (and was) accurately deter-
mined for this interval.
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Fig. 1 WIRE Gyro Rates During Test Period

Once the biases and G-matrix were determined, the

gyro data were readjusted using these parameters.
The gyro data were then corrupted by introduction of
known additional biases and G-matrix. To test BICal,

it was executed many times using randomly corrupted

gyro data to determine if it converged on the known
additional biases and G-matrix.

BICal returned virtually identical correct epoch atti-

tudes, gyro biases, and G-matrix under even extreme
conditions. Convergence was attained with initial
attitude errors of tens of degrees, initial G-matrix
elements in error by several tenths, and initial bias

errors of tenths of degrees per hour.

Additional investigations were made of the effect of

noise on the accuracy of the results. In Monte Carlo
calculations of the effect of gyro noise on results, 80
BICal runs were performed with additional gyro

noise, generated with a normal distribution, a zero
mean and a standard deviation of 106 rad/sec _ (about

an order of magnitude larger than the specified values
for good gyros). Statistics on the determined biases,
G-matrix elements, and star tracker residuals after

propagation are shown in Table 1.

A similar Monte Carlo calculation was performed

using 114 samples with the star tracker noise in-
creased randomly in each with a normal distribution
and standard deviation of 60 arcsec. These results are
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also shown in Table 1. These results show that BICal

is insensitive to sensor and gyro noise as well as ro-

bust with respect to starting conditions.

Table 1. Monte Carlo Results: Errors in BICal

Parameters With Increased Input Noise

0
._,

©

'5 "_
Z_
o_O

0 0

:_'_

__o

_rs

(_bias 3.02X10 s deg/hr 3.87 xl0Sdeg/hr

(YAG 3.24x10s 3'27x105

(YResidual 11.1 arcsec 40.1 arcsec

The values in Table 1 represent mean standard devia-
tions. For the bias, the standard deviation over the

ensemble of cases was computed for each axis and the
mean of these three values is shown. For the G-
matrix the standard deviations over the ensemble of

cases was computed of the differences between the
G-matrix and the identity matrix and the mean over

the 9 elements is presented. For star tracker residuals
the standard deviation of the residuals in each run is

averaged over the ensemble, and the averages of these
values over the three axes is presented.

COMPARISON OF ALGORITHMS

Error Analysis

It is useful to compare the expected accuracies of the
four calibration algorithms discussed in this paper.

The full problem of determining the covariance ma-
trix for all 12 calibration parameters is too unwieldy

to solve explicitly. However one can still gain insight

by studying a simplified system. In a universe with
only two space dimensions, the attitude reduces to a

single rotation angle, and gyro calibration consists of
estimating only a bias and a scale factor correction.
This 3-parameter state vector is a good model for

studying the errors on a single IRU axis; it only ne-
glects the misalignments of the sensitive axes, and

experience has shown that the effect of misalignment
error is usually smaller than that of scale factor error.

The approach used in the Davenport method is to es-
timate the attitude at selected epoch times. The dif-
ferences between these attitudes are compared with

the attitude changes obtained by integrating the gyro

rates. The discrepancies in these attitudes are used to
solve for the bias and scale factor correction. In the

error analysis presented here, the uncertainties in the

epoch attitudes are the source of error in the estimated
bias and scale factor. Similarly, in the Delta-bias

method, the uncertainties in the epoch biases lead to
the errors in the bias and scale factor.

A single attitude maneuver is adequate to separate the
effects of bias and scale factor; however, for symme-

try, this analysis assumes a positive and a negative
slew with the covariance matrix calculated at the

midpoint during the zero-rate period between slews.
This eliminates the correlation between bias and scale

factor and makes the comparisons simpler.

The scenario for the analysis is that the measured ro-
tation rate is zero for a time, T, during which N sensor

observations are made. Then there is a slew through

an angle O taking a time Tsuw. This is followed by
another zero-rate period with duration T containing N

sensor observations, a slew of -O back to the initial

attitude, again taking time Tu, w, and a final zero-rate
period with duration T and containing N sensor ob-
servations. An epoch attitude and bias are estimated

for each of the three zero-rate periods. Process noise

is neglected in the analysis.

Since the rates are constant and an effective bias is

solved for, the errors in the three epoch attitudes are

due only to random sensor noise and are independent
of any systematic gyro calibration error. Each epoch
is taken at the midpoint of the corresponding time

span T which makes the uncertainties smallest and
makes the correlation between attitude and bias zero.

Also, the attitude errors are uncorrelated since the

three observation periods do not overlap. Since proc-

ess noise is neglected in this model (no random gyro

error), each attitude uncertainty is simply O'obs/N 1/2

where Crobs is the standard deviation of the sensor

error. Similarly, the bias uncertainty for each epoch

can be shown to be 2,f3Crob s/(T N 1/2) to order llN 2.

6
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Table 2. Parameter Uncertainties

O

o
>

O'bias

O'ob s

24-Ud(r +r,,,w)

[ "-,1/2

•.., 20robs( 1 2 I

O'ob s

O'scal e

Carrying out the analysis for the Davenport algorithm,
the first and second epoch attitudes are propagated to

the times of the second and third using the measured

rates. The discrepancies in these attitudes are alge-

braically related to the required bias and scale factor
corrections. The covariance of the bias and scale

factor is a congruent transformation of the covariance
of the two attitude discrepancies. Note that the two

attitude discrepancies have one epoch attitude in
common, so there is a correlation between them that
must be included in their covariance matrix. The re-

sulting Davenport calibration uncertainties are given
in Table 2. It may be possible to improve the bias

accuracy slightly by choosing epoch times away from
the midpoints or by subdividing the zero-rate periods.

In practice, it is difficult to choose the best epoch

times given sensor data of varying accuracy and ir-
regular spacing. The arbitrariness in choosing the

epoch times is one of the weaknesses of the Daven-
port method as implemented.

The Delta-bias method uses the effective biases from

constant rate intervals to solve for the calibration pa-
rameters; the method does not make use of the atti-

tude discrepancies obtained by integrating the gyro

rates as in the Davenport method, so the Delta-bias
method is expected to be less accurate. The algorithm

requires bias estimates during at least two periods
with different constant rates so a slightly modified
scenario was used. The modified scenario starts with

a constant rate maneuver by an angle @ of duration

Taew containing N sensor observations. This is fol-
lowed by a zero-rate period of duration T containing
N sensor observations and finally another constant

rate slew of -O with duration Taew and containing N
sensor observations. This scenario maintains the

same total number of observations as the original sce-

nario, however the total time span is less.

The true bias and scale factor are written as a function

of the effective biases for the three constant rate peri-

ods. Since there are three equations for the two un-
knowns, the bias and scale factor are obtained using a

pseudo-inverse of the coefficient matrix. The effec-
tive biases have uncorrelated uncertainties as given
above. The covariance matrix for the bias and scale
factor is a transformation of the covariance of the

effective biases. The resulting Delta-bias calibration
uncertainties are given in Table 2.

As long as process noise is not included, the error
covariance matrix will be the same for BICal as for
the Filter-smoother method since both methods make

optimal use of the information input in the context of
the model. (Process noise here means random gyro

errors, as opposed to the systematic bias and scale
factor errors being solved for.) The uncertainties
were determined for a Filter-smoother but apply

equally to BICal.

For the Filter-smoother method, we use the same sce-

nario as for the Davenport method. The covariance

matrix can be propagated and updated using the stan-
dard Kalman filter algorithm. The covariance was

initialized with large values on the diagonal to repre-
sent a lack of initial knowledge about the state. It was

propagated and updated to the midpoint. A backward
Kalman filter was initialized at the last point and

propagated and updated back to the midpoint. The
covariances from the forward and backwards filters

are combined to obtain the smoothed covariance.

After a certain amount of algebra, the uncertainties
shown in Table 2 for the Filter-smoother (or BICal)
were obtained.

If process noise is included, the Filter-smoother will
yield somewhat larger estimated uncertainties, and
these will be a more accurate reflection of reality.

This would make the filter more correctly "optimal"

than a batch algorithm without process noise.

Table 2 shows that the uncertainties of the bias and

scale factors computed using all of the methods share

similar dependencies on sensor noise, number of ob-
servations, time span, and slew angle. The BICal (or

Filter-smoother) method has the lowest uncertainties,
but the difference with the Davenport method is small

and normally negligible. The Delta-bias method has
somewhat larger uncertainties than the other methods.
This has been borne out by our experience with flight

7
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data as discussed below. We have found it to be a

useful back-up procedure that provides quick corrobo-
ration of the more accurate methods. In the real

world, all of these methods are complicated by the

effects of misalignments of the gyro axes especially
for Earth-oriented spacecraft where the projection of a

large pitch rate onto the other axes can be significant.
Also, as discussed previously, the Filter-smoother did

not perform well with RXTE data, but this analysis
shows that at least in theory it should be the most ac-
curate method.

In practice, BICal or Filter-smoother will often do
better than Davenport by using observations during
slews; the Davenport method cannot use this data

since it must avoid acceleration periods in order to
have accurate epoch attitudes. However, the most

important advantages of BICal are not concerned with
accuracies, but involve ease of use and applicability

to widely separated data spans, as discussed in the
Conclusions section.

gave reassuringly similar results. Differences in cor-
responding G-matrix elements derived by different
methods were no larger than about 10 .4 (correspond-

ing to about 20 arcsec in alignment difference), and
differences in the biases, no larger than about

0.01 deg/hr.

When each of the three sets of gyro parameters were

used to readjust the data and a batch least-squares
attitude solution was computed over the calibration

span, small differences in the quality of the calibra-

tion parameters became evident. The epoch of the
attitude determination was chosen at the start of the

data, so that once the attitude was found, it could be

propagated through all of the maneuvers using the

gyro parameters (including the solved-for bias as an
additional adjustment). The epoch attitudes were very
similar with the difference between the BICal and

Davenport solutions less than an arcsec and between
these solutions and the Delta-bias solution about 5

arcsec.

Analysis of Flight Data

A direct comparison of the Davenport Algorithm, the
Delta-bias Algorithm, and BICal was accomplished

using data from Terra. Terra calibration gyro maneu-
vers were performed in a period of about 6 hours on

April 13, 2000. Between maneuvers, sufficient time
at constant rates was allowed to permit accurate atti-
tudes to be determined using data from Terra's 2 Ball

CT-601 star trackers and the gyros.

The gyro data used in the calibration were in the form
of accumulated angles, sampled every eight seconds.

Every eight seconds each star tracker reports the po-
sition of up to 5 stars. A total of 11566 star observa-
tions in tracker 1 and of 11413 star observations in

tracker 2 were identified by ground software in the
calibration data.

The eight calibration maneuvers started with a posi-
tive 10 degree roll followed by a roll back to nominal.

This sequence was repeated in the negative roll direc-
tion. There were similar 30 deg positive and negative

yaw offset maneuvers. Terra is an Earth-oriented
spacecraft and at all times, it maintained its 1 rotation

per orbit attitude motion about orbit normal. Because
of this constant rotation, the offset attitudes resulted

in changes of the pitch rates by the cosine of the off-
set angle and therefore provided pitch observability.

The gyro rates during the entire period used for cali-
bration are shown in Figure 2.

The Davenport algorithm, the Delta-bias algorithm

and BICal were all used to calibrate the gyros and
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Fig. 2 Terra Gyro Rates During Calibration Period

Table 3 shows the standard deviation of the star
tracker residuals as well as the additional bias needed

to minimize the residuals. For comparison, the case

with prelaunch gyro parameters (labeled "no calibra-
tion" in Figure 3) is also included. Note that outlier
sensor observations differing by more than 3 standard
deviations from the means have been discarded.

All three of the calibrations improve the residuals

markedly. Among the calibrations, the BICal and
Davenport algorithms are essentially identical and
both have very small residuals. Since the loss func-

tion of the attitude batch least-squares runs that pro-
duced these results is identical to that used in BICal
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(although the state vector in BICal includes the G-
matrix), it is hardly surprising that the biases are es-

sentially zero. Figure 3 shows the residuals of these
attitude determinations as a function of time. It is

clear that the BICal and Davenport algorithms give
somewhat improved results compared to the Delta-

bias algorithm and that all results are much superior

to precalibration values.

Table 3. Comparison of Terra Gyro Calibration
Results

Oxl(arcsec) 50.48

_yl(arcsec) 52.91

ozl(arcsec) 53.29

crx2(arcsec) 50.89

ay2(arcsec) 52. i4

t_z2(arcsec) 52.55

AI3x(deg/hr) 0.0933

Al3y(deg/hr) 0.4463

Al3z(deg/hr) -0.2977

z,.=°

5.61 3.36 3.28

5.21 3.21 3.02

5.91 3.64 3.38

5.46 3.16 3.06

6.77 4.10 3.92

6.98 4.78 4.37

-0.000162 0.00169 0.00004

-0.000094 -0.00011 0.00011

-0.000047 -0.00058 -0.00007

Differences in the parameter sets obtained can also be

seen in Figures 3 and 4. Figure 3 shows star tracker
residuals obtained using different calibration pa-

rameters during the +30 deg yaw maneuver and the
corresponding -30 deg yaw maneuver in the same
data used for Table 3. For each parameter set, batch

least-squares attitudes were computed using gyro data

previously adjusted with the selected parameters.
Attitudes at different times are the epoch attitude,

propagated using the gyro data to each time. For each
sensor observation the root-sum-square (RSS) of the
three axes is taken and the residual value represented

in the figure is the mean of the RSSs of all star tracker
observations at a time. The residuals found using BI-

Cal parameters (indicated by stars in the figure) are
virtually identical to those found using the Davenport

parameters (indicated by squares). The residuals
found using the Delta-bias parameters are also similar
before the first maneuver but increase somewhat with

each maneuver. The residuals found using the pre-

launch parameter values (labeled "No calibration" and
indicated by x) are uniformly high. Because BLS

methods compute an epoch attitude and then propa-

gate it, and the epoch chosen here was before the ma-
neuvers, the fact that the sensor residuals for the BI-
Cal and Davenport cases are as small after maneuvers

as near epoch, demonstrates that the error in gyro

propagation is negligible.

During maneuvers the residuals obtained using any of

the parameter sets were noticeably larger, especially
during the acceleration portion of the maneuver. The

errors in the acceleration portion arise from modeling

the spacecraft rates as constant during the eight sec-
ond period between gyro measurements. Additional
errors due to inaccurate time tags, for example, may
also contribute to these errors. Figure 4 shows the

differences between some of the attitudes computed

for Figure 3. The attitude differences are shown
through all 8 maneuvers. Attitudes computed using
the BICal and Davenport parameters are virtually
identical and their differences are not shown. The

differences shown use the BICal parameter base atti-
tude as a reference and, in addition to attitudes de-

rived using the Delta-bias and prelaunch parameters,
attitudes computed by the onboard computer (OBC)
Kalman filter are included.

The Delta-bias parameters result in propagation errors
that increase with each maneuver but the increase is

no more than about 10 arcsec for any maneuver. The

corresponding propagation errors using prelaunch
parameters reach as much as 50 arcsec. In addition,

errors in the gyro biases cause an attitude drift of as
much as 120 arcsec during the periods in which the

spacecraft is flying in an offset attitude.

The OBC attitudes differ only slightly from those

found with BICal parameters at the start of the data.
After each maneuver, however, the OBC attitude er-

ror increases, and during the offset attitude periods
drifts because star tracker observations are not used to

update the on-board filter. After the use of star
tracker observations is resumed (at nominal attitude)
the attitude errors return to small values. The error
due to this drift was as much a 250 arcsec over the 8

minute yaw offset period. This implies that Terra,

without the more accurate gyro calibration parameters
would drift by about 0.5 deg/hr if controlled by gyros
alone.

9
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Fig. 3 Star Tracker Residuals With Different Calibration Parameters
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Fig. 4 Attitude Differences Between BLS Attitudes Based on BICal Parameters and Others
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CONCLUSIONS

When it is necessary to calibrate satellite gyros after
launch there are several reliable algorithms that can
be used. The Delta-bias algorithm gives slightly less

accurate results than do the Davenport and BICal al-

gorithms but this accuracy difference is small enough
not to make any practical difference.

Because the inherent accuracy of the algorithms is so
similar, the major factors influencing choice of algo-
rithm are differences in ease of use and impact on

mission operations.

The Delta-bias algorithm requires at least 4 periods

during which rates are different, linearly independent,
and nearly constant. This condition seldom arises

during normal mission operations so in order to use
this algorithm, periods must be set aside from normal

operations during which the rates must differ from
nominal. Design of such periods, which must be long

enough to provide sufficient sensor observations for
determination of accurate attitudes and effective bi-

ases, is often difficult.

The Davenport and BICal algorithms can, in princi-

pal, often use normal mission maneuvers for at least

part of the data needed for calibration. For several
reasons, BICal is expected to be the more useful and

used of these algorithms. The advantages of BICal
over the Davenport algorithm include:

• The BICa[ algorithm uses sensor data during ma-

neuvers, providing greater observability.

• BICal can be used with normal mission data for

missions (such as SWAS and TOPEX/Poseidon)

in which constant rate periods are not normal.

• BICal is less demanding on calibration maneuver

design because constant rate periods do not have
to be scheduled at the ends of maneuvers.

• BICal can be used in cases where maneuvers are

separated by such long times that the gyro biases
during the different maneuvers are different.
Therefore,

• BICal requires less operator intervention and is
less labor intensive to use. In the Davenport al-

gorithm, adjusted data must be examined to find
the intervals with constant rate at the start and

end time of calibration intervals. Separate atti-

tudes must be computed for each of these termini,
after which the algorithm processing can be per-

formed. The BICal algorithm is used directly on
adjusted data with no additional processing
needed.
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