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Abstract. We estimate probability densities of orbital elements, periods and eccentricities, for the population
of extrasolar planetary candidates (EPC) and, separately, for the population of spectroscopic binaries (SB) with
solar-type primaries. We construct empirical cumulative distribution functions (CDFs) in order to infer probability
distribution functions (PDFs) for orbital periods and eccentricities. We also derive a joint probability density for
period-eccentricity pairs in each population. Comparison of respective distributions reveals that in all cases EPC
and SB populations are, in the context of orbital elements, indistinguishable from each other to a high degree of
statistical significance. Probability densities of orbital periods in both populations have ∼P−1 functional form,
whereas the PDFs of eccentricities can be best characterized as a Gaussian with a mean of about 0.35 and standard
deviation of about 0.2 turning into a flat distribution at small values of eccentricity. These remarkable similarities
between EPC and SB must be taken into account by theories aimed at explaining the origin of extrasolar planetary
candidates, and constitute an important clue as to their ultimate nature.
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1. Introduction

Surveys of nearby solar-type stars using high accuracy
spectroscopy have revealed so far (as of October 2000) 49
objects showing periodic residual radial motion of very low
amplitude. Quantities directly provided by spectroscopy
are period, P , and semi-amplitude, K. The radial velocity
data form a time series that, in general, departs from a
purely sinusoidal form. A measure of this departure is the
third quantity supplied by spectroscopy.

The most straightforward interpretation of periodic
variations in stellar motion is that the perturbation is due
to the presence of an unresolved companion. Within such
an interpretation, the departure of the motion from a si-
nusoidal form is parametrized by the orbital eccentricity,
e. The mass function, f(M?,M), can be related to K, P
and e,

f(M?,M) =
(M sin i)3

(M? +M)2

= 1.0877 10−13 K3P (1− e2)
3/2

(1)

where M? is the mass of the primary, M the mass of the
companion, and the inclination angle i is that between an
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observer’s line-of-sight to a star and the normal to the or-
bital plane of the companion/star system. In the above
formula P is in days, K in m s−1, and mass function is in
units of Jupiter mass, MJ. For the 49 objects mentioned
above the values of f(M?,M) are 10−3–10−6 MJ. If we
further assume that the companions are much less mas-
sive than the ∼103 MJ solar-type primary, projected mass
estimates of M sin i of the order of 1 MJ result.

The true mass of any particular companion remains
unknown, subject to determination of its orbital inclina-
tion. Statistically, 〈M〉 = 4/π 〈M sin i〉 (Chandrasekhar &
Münch 1950) assuming that inclination angles in a sam-
ple are distributed isotropically. Classification of the afore-
mentioned companions as extrasolar planetary candidates
(EPC) is based primarily on an expectation that the dis-
tribution of i in the stellar samples chosen to monitor for
the presence of low-mass companions is not biased and fol-
lows the isotropic distribution. However, Han et al. (2001),
who used Hipparcos astrometric data to estimate i for 30
out of 49 EPC, have found the distribution of i to be far
from isotropic and highly skewed toward small values of i.
Although their estimation has to be treated as preliminary
due to the noisy data, it nevertheless underscores the fact
that the true masses of these companions are unknown
and that values of M sin i are not unambiguous indicators
of their true nature.
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Within the unresolved companion interpretation of
spectroscopic data, orbital periods and eccentricities are
directly provided by the data and have no ambiguities as-
sociated with their values. The orbital elements of EPC
have received much less attention than their projected
masses because they cannot attest to the low-masses of
these companions. Interestingly, even a cursory survey of
EPC orbital elements reveals what must be considered as
peculiar properties for objects presumed to be giant plan-
ets. Over half of the 49 EPC are in orbits with a period
shorter than that of Mercury (88 days), and almost a quar-
ter are in orbits with a period shorter than 10 days. Half of
the EPC are in orbits with eccentricities larger then the
eccentricity of Pluto (e > 0.25). Furthermore, the EPC
located far enough from their primaries to avoid tidal cir-
cularized are found in significantly eccentric orbits.

It is clear that the orbital elements of EPC carry sig-
nificant information that, together with information con-
tained in their projected masses and future astrometric
data, can help to reveal the true nature of these compan-
ions. Toward that end, we have carried out calculations
aimed at estimating distributions of orbital elemets in a
population of EPC. Our objective is twofold. First, us-
ing data from an available sample of EPC, we estimate
univariate probability distribution functions (PDFs) for
orbital periods and orbital eccentricities in the EPC
population. We also estimate a bivariate PDF for period-
eccentricity pairs in the EPC population. Second, we
compare the estimated distributions to analogous distri-
butions estimated for the population of spectroscopic bi-
naries (SB). Such a comparison is called for and desirable
inasmuch as EPC are technically single-line spectroscopic
binaries, notable for their ultra-low f(M?,M) values.

Our available EPC sample consist of 49 objects se-
lected by applying an arbitrary limit of M sin i ≤ 13 MJ.
We have collected the orbital elements data from original
discovery papers, too numerous to reference here. All the
data with pointers to the original source can be find on the
internet at cfa-www.harvard.edu/planets/. We expect
that this sample is complete enough (in sampling orbital
elements but perhaps not the projected masses) to be rep-
resentative, because the entire range of values of periods
(up to P ≈ 2500 days) and eccentricities is accessible to all
surveys. Our sample of SB consist of 330 objects (single-
lined as well as double-lined spectroscopic binaries) found
in a survey for spectroscopic binaries in a large (3347 stars)
sample of G dwarfs (Udry et al. 1998). Only a subset of
this sample defined by P ≤ Pmax and e ≤ emax, where
Pmax = 2500 days and emax = 0.72 are maximum values
of period and eccentricity in the EPCs sample, are used
in our calculations. According to Udry et al., within these
limits the sample is fairly complete and should be repre-
sentative of the corresponding SB sub-population.

The previous work on distribution of orbital elements
in EPC is limited. Heacox (1999) compared statisti-
cally low-mass companions to stellar-mass secondaries.
Heacox’s 28 low-mass companions consisted of all then
known companions with M sin i ≤ 70 MJ. Ten of these

companions with 17 MJ ≤ M sin i ≤ 70 MJ have
been classified as brown dwarfs companions rather then
EPC. Steller-mass companions had been chosen from
Duquennoy & Mayor (1991) sample to have primary spec-
tral types and orbital scales similar to low-mass com-
panions objects. There are 15 such companions in the
Duquennoy & Mayor sample. Heacox constructed the em-
pirical cumulative distribution function (CDF) for vari-
ous orbital properties and postulated that the actual CDF
for any given property is the best-fit power-law function.
He assessed the significance of the postulated distribu-
tion by means of Kolmogorov-Smirnov statistics. Stepinski
& Black (2000a) performed a similar study, using the
same data, but focusing on the issue of whether EPC and
brown dwarfs companions came from the same popula-
tion. Finally, Mazeh & Zucker (2000) compared, by means
of empirical CDFs, orbital elements of EPC and stellar
secondaries based on the sample of 32 EPC and 59 single-
lined spectroscopic binaries.

Our current work differs from the previous efforts in
a number of aspects. First, in addition to constructing
empirical CDFs we actually calculate the nonparametric
estimates of underlying PDFs for orbital periods and
eccentricities. Second, we calculate bivariate PDFs for
period-eccentricity pairs and devise a method to assess
the significance of similarity between bivariate PDFs cal-
culated for EPC and SB. Third, samples used for our es-
timations are much larger than those used in the previous
studies. Preliminary results of our study, based on 32 EPC
and 15 SB taken from the Duquennoy & Mayor sample,
has been published in Stepinski & Black (2000b).

Section 2 contains a description of our method to es-
timate the underlying PDF. In Sects. 3 and 4 we present
results pertaining to orbital periods and eccentricities,
respectively. Section 5 is devoted to bivariate PDFs for
period-eccentricity pairs. Finally, in Sect. 6 we present
conclusions and discussion.

2. Estimating univariate PDFs

The major goal of this paper is to estimate the under-
lying PDFs of orbital periods and eccentricities for EPC
and SB populations. Traditionally, histograms are used
to estimate the PDF underlying a given sample of data.
However, constructing a histogram involves binning the
data and results in a loss of information. In addition, there
is a considerable arbitrariness as to how the bins should
be chosen.

A more reliable result is obtained by first construct-
ing the empirical CDF, F(X), of quantity X , being, in
our case, either an orbital period or an eccentricity. The
second step is to use F(X) in order to obtain a smooth
approximation, F (X), of an actual CDF. The smoothness
is a desired property of a CDF inasmuch as one expects
orbital elements to be distributed in a continuous fashion.
The major technical issue here is to use an algorithm that
would achieve an appropriate trade-off between matching
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the data and achieving smoothness. The final step is to ob-
tain an estimate of PDF for quantity X , f(X) = ∂F/∂X .

To find F (X) we used the method described by
Gershenfeld (1999). Let {xi}Ni=1 be a set of N observed
values of quantity X , normalized to interval [0, 1] and
sorted in increasing order. We construct a set of triplets
{(xi, yi, σi)}Ni=1 where yi denotes the value of F(xi) and
σi denotes an estimate of the error of yi. F(x) is defined
to be the fraction of periods below x.

F(x) =
{

0, x < x1
i

N+1 , xi ≤ x < xi+1.
(2)

The denominator is taken to be N+1 instead ofN because
the normalization constraint, F(1) = 1, is effectively an
extra point. To estimate the error, σi, consider the zero-
one discrete distribution, with F(xi) the probability to
draw a quantity x below its xi value and [1 − F(xi)] the
probability to draw a quantity x at or above its xi value.
The variance of such distribution is F(xi)[1 − F(xi)], so
the standard deviation of variable yi = i/(N + 1) is,

σi =
1

N + 1
(NF(xi)[1−F(xi)])

1/2
. (3)

The smooth estimate of an underlying CDF, F (x), is
expressed by the following, convenient form,

F (x) = x+
N∑
i=1

ai sin(iπx). (4)

Coefficients a = {ai}Ni=1 are determined by fitting (4) to
the data set {(xi, yi, σi)}Ni=1 and f(x) is simply equal to
∂F/∂x. Note that, from the formal point of view, we per-
form a parametric estimate, because the functional form of
F (x) is fixed by Eq. (4), however, the estimate is de facto
nonparametric because parametrization (4) can represent
all feasible CDFs. The only constraint, of no consequence
to our analysis, imposed on f(x) by representation (4) is
that ∂f/∂x = 0 at x = 0 and x = 1, the PDF is locally
flat at the limits of its aplicability.

To obtain a fit we minimize the following “cost” func-
tion, C(a),

C(a) =
∫ 1

0

(
d2F

dx2

)2

dx+ λ
1
N

N∑
i=1

[
F (xi,a)− yi

σi

]2

· (5)

The second term is the χ2 expression which, by itself, is
minimized (to χ2 = 0) when F (x) passes through all data
points, and the first term, the regularizer, reflects our ex-
pectations about smoothness of F (x). Specifically, we pos-
tulate that F (x) should be locally linear; this is measured
by the integral of the square of the curvature of F (x). The
parameter λ (Lagrange multiplier) controls a trade-off be-
tween matching the data and enforcing our prior belief
about smoothness. Large values of λ overemphasize the
data and would result in overfitting whereas small values
of λ give extra smoothing and would result in underfit-
ting. Minimizing C(a) by solving ∂C/∂a for a particular
value of λ gives a set of equations to be solved to find the

corresponding a. The best value for λ can then be found
by noting that the expected value of χ2 (the second term
in Eq. (5)) is 1. An estimate of f(x) obtained using this
method is continuous and smooth and offers an excellent
fit to the data.

We calculate a significance of our estimated CDF (and
thus PDF) using the Kolmogorov-Smirnov (thereafter ref-
ered to as K-S) statistic. The K-S statistic, D, is defined
by the maximum value of the absolute difference between
F(x), and F (x),

D = max|F(x)− F (x)|. (6)

The value of D is a measure of “distance” between empir-
ical and estimated CDFs. A desirable feature of D is that
it is invariant under any continuous transformation to or
from x, as distorting the horizontal axis cannot change the
value of vertical distance. Of particular relevance to our
work is that using F (log x) instead of F (x) yields exactly
the same value of D. In addition, there is no need to trans-
form x, a normalized quantity, to X , an actual quantity,
for the purpose of calculating D.

The distribution of random variable D is used to as-
sess the significance level, s, the probability that given an
observed value of D = Dobs, an estimated CDF is falsely
rejected. We use the following approximate formula (Press
et al. 1992) for s,

s = P (D > Dobs) = QKS

([√
N + 0.12 +

0.11√
N

]
Dobs

)
(7)

where

QKS(z) = 2
∞∑
j=1

(−1)j−1 exp(−2j2/z2). (8)

Small values of s indicate that F (x) is unlikely to be the
true CDF underlying a given sample. Values of s calcu-
lated for F (x) obtained by the method described in this
section are guarantee to be high. Note that because F (x)
depends on parameters estimated from the sample, the
distribution of D may depart slightly from that given by
the right hand side of Eq. (7), therefore calculated values
of s should be treated as estimations.

We also calculate values of D and corresponding val-
ues of s for some a priori given distributions, for exam-
ple, power-law or Gaussian distributions. In addition, the
variant of the K-S statistic is used to assess whether two
empirical CDFs reflect the same underlying distribution
(see Press et al. 1992, for details).

3. Distributions of orbital periods

Periods in the EPC sample are in the range of 2.99 to
2518 days, whereas periods in the SB sample are in the
range of 0.27 to 30348 days. It is clear that SB are much
more extensively covered than EPC, therefore, in order for
our comparison to be meaningful, we need to consider only
binaries whose periods are commensurable with periods
of extrasolar planets. Specifically, we only keep SB with
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Fig. 1. Estimations of orbital period distribution in populations of EPC (dotted lines) and SB (solid lines). The left panel shows
empirical CDFs of log(P ) and the right panel shows estimated PDFs of log(P ). Vertical bars indicate data

2 days < P < 2500 days. There are 292 such binaries.
Thus, our estimated PDFs pertain only to sub-populations
of SB and EPC limited to the aforementioned range of
periods.

Values of periods in the samples under consideration
span 3 orders of magnitude, therefore it is more convenient
to estimate a PDF of a variable logP , flog(logP ), instead
of a PDF of a variable P , f(P ). We use logarithms to base
10 throughout the paper. The f(P ) can be easily recovered
from flog(logP ) by the following transformation

f(P ) = flog(logP )
∣∣∣∣∂ logP
∂P

∣∣∣∣ = log e
flog(logP )

P
· (9)

Figure 1 (left panel) shows empirical CDFs of variable
logP constructed from EPC and SB periods, respectively.
The K-S distance, D, between these CDFs is D = 0.1,
and the corresponding significance is s = 76%. Thus it
is quite likely that two lists of logP values, the one from
the EPC sample, and the other from the SB sample, are
drawn from the same population.

Next, we calculate the smooth estimates of Flog(logP ),
as described in Sect. 2, based on EPC and SB data respec-
tively. We choose the fits with such values of λ as to yield
χ2 between 1 and 1/3; slightly overemphasizing the data
with respect to the formally best balance given by χ2 = 1.
These fits have significance of 96% and 95% for EPC data
and SB data, respectively. Figure 1 (right panel) shows
the estimated flog(logP ) for both populations. The most
interesting feature of these PDFs is that, to the first ap-
proximation, they both represent a flat (uniform) distri-
bution.

Using transformation (9) we can obtain f(P ) for pop-
ulations of EPC and SB. The f(P ) can be viewed as

the P−1 distribution modulated by flog(logP ) in the nu-
merator. Because, for both EPC and SB populations,
flog(logP ) is a very slowly varying function of P , f(P ) for
these populations is well approximated by the P−1 distri-
bution. In fact, a direct parametric fit of a power-law to
the period data, gives f(P ) ∼ P−1.02 with significance of
97% for EPC, and f(P ) ∼ P−0.99 with significance of 53%
for SB.

4. Distributions of orbital eccentricities

Orbital eccentricities in the EPC sample are in the range
of 0 to 0.71, whereas eccentricities in the SB sample are
in the range of 0 to 0.97. The presence of 12 SB with
0.71 < e < 1 and the absence of any EPC in that range
may indicate a genuine difference between the two popu-
lations, but it also may be due to a particular realization
of the much smaller EPC sample. Because of this latter
possibility and due to the lack of completeness of the SB
sample at high values of eccentricity, we base our main
calculation on SB whose eccentricities are within the same
range as those of EPC. Additional calculations, based on
the entire range of eccentricities, are reported at the end
of this section. Further, we are only interested in compan-
ions in uncircularized orbits, those located not too close to
a primary. Thus, we only use EPC and SB with e < 0.72
and Pcirc < P < 2500 days. The value of Pcirc = 10 days
is assumed based on theoretical estimations (Zahn 1977).
There are 38 EPC and 217 SB satisfying these conditions.
The estimated PDFs pertain only to sub-populations of
SB and EPC bounded by the above conditions.

Unlike the case of orbital periods, where we find it con-
venient to estimate a PDF of logP and obtain a PDF of
P by means of transformation (9), a PDF of eccentricities
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Fig. 2. Estimations of orbital eccentricity distribution in populations of EPC (dotted lines) and SB (solid lines). The left panel
shows empirical CDFs of e and the right panel shows estimated PDFs of e. Vertical bars indicate data

is estimated straightforwardly. Figure 2 (left panel) shows
empirical CDFs of e constructed from eccentricities of el-
igible EPC and SB, respectively. The K-S distance, D,
between these CDFs is D = 0.1, and the corresponding
significance is s = 89%. Note that even though the value
of D happens to be the same as for empirical CDFs con-
structed for periods (see previous section), the significance
is larger due to smaller number of data points. Thus, it is
very likely that two lists of e values, the one from the EPC
sample, and the other from the SB sample, are drawn from
the same population.

The process of obtaining F (e) and f(e) is analogous
to that described in the previous section; again values of
λ are chosen to yield χ2 between 1 and 1/3. The ob-
tained smooth estimations of CDFs have significance of
85% for both EPC and SB data. Figure 2 (right panel)
shows the estimated f(e) for both populations. These
PDFs have a similar form, that can be characterized
as a combination of a Gaussian and a flat distribution.
Approximately, 20% of the population, those companions
with eccentricities smaller than about 0.15, have a flat dis-
tribution, whereas the rest are distributed according to a
Gaussian with a mean, µ ≈ 0.2−0.3 and, standard de-
viation, h ≈ 0.25−0.3. Note that our method of finding
PDFs tends to slightly overestimate variance because of
the presence of a regularizer (see Eq. (5)) which reduces
the curvature of f(x).

We hypothesize that the fundamental distribution of
orbital eccentricities in populations of EPC and SB is
Gaussian, but that companions that are relatively close to
their primaries have had their orbits evolved to have a flat
distribution of e. We tested this hypothesis by estimating
PDFs of e for sub-populations of companions located

progresively farther from their primaries. Figure 3 (top
panel) shows estimated f(e) for the sub-populations of
EPC and SB limited by 20 days < P < 2500 days. There
are 32 EPC and 190 SB satisfying this limit. The K-S dis-
tance, D, between empirical CDFs constructed from eli-
gible EPC and SB companions (not shown) is D = 0.12,
and the corresponding significance is s = 77%. Both PDFs
appear now to be Gaussian-like. In fact, a direct paramet-
ric fit of a Gaussian to the EPC eccentricity data gives
µ = 0.34 and h = 0.18 with significance s = 98%. A direct
parametric fit of a Gaussian to the SB eccentricity data
gives µ = 0.35 and h = 0.20 with significance s = 25%.

Figure 3 (bottom panel) shows estimated f(e) for the
sub-populations of EPC and SB limited by 50 days <
P < 2500 days. There are 28 EPC and 156 SB satisfying
this limit. The K-S distance, D, between empirical CDFs
constructed from eligible EPC and SB companions (not
shown) is D = 0.14, and the corresponding significance
is s = 74%. Again, both PDFs appear to be Gaussian-
like. A direct parametric fit of a Gaussian to the EPC and
SB eccentricity data gives µ = 0.36 and h = 0.19 with
significance s = 96% and µ = 0.35 and h = 0.19 with
significance s = 51%.

It is apparent that f(e) approaches a Gaussian for a
sub-population of companions located far enough from a
primary. Given the samples used in our calculations, this
convergence occurs faster for the EPC than for the SB.

We have also estimated PDFs of e for EPC and SB
on the entire possible domain of eccentricities, 0 < e < 1.
The K-S distance between respective empirical CDFs is
D = 0.13, and the corresponding significance is s = 57%.
Thus, consideration of the entire range of eccentricities
decreases the similarity between two estimated PDFs,
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Fig. 3. Estimations of probability densities of orbital eccen-
tricity in populations of EPC (dotted lines) and SB (solid
lines). The upper panel pertain to sub-populations limited by
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populations limited by 50 days < P < 2500 days. Vertical bars
indicate data

but there is still a 57% chance that both samples are
drawn from the same population and that the absence of
0.71 < e < 1 orbits in the EPC sample does not indicate
that there are no such orbits in the EPC population. To
make this point clear we performed the following numer-
ical experiment. The EPC eccentricity data was enriched
by 2 additional entries randomly drawn from the range
0.72 < e < 1. The enriched sample has about the same
fraction of objects in this high eccentricity range as the SB
sample. The K-S distance between empirical CDF based
on the enriched EPC sample and the empirical CDF based
on the SB sample is D = 0.08, and the corresponding
significance is s = 97%.

5. Joint distributions of orbital periods
and eccentricities

So far we have considered univariate distributions of
companions’ orbital elements, periods and eccentricities.
However, we can also study joint (bivariate) distributions
f(logP, e). A joint distribution contains more information
than two univariate distributions unless the two variables
constituting a dual variable are independent. Black (1997)
and Stepinski & Black (2000a) studied scatter plots of the
logP and e data for low-mass companions and found pos-
itive correlation between periods and eccentricities. The
existence of such a correlation can be noted by visually in-
specting the scatter plot for the EPC data (the left panel
of Fig. 4). Thus, at least for the population of EPC, there
is a reason to believe that values of periods and eccentrici-
ties are not independent, and estimating joint distribution
is called for.

Visual inspection of the SB data (the right panel of
Fig. 4) reveals no obvious relations between logP and e
data, except for the high concentration of companions in
short periods, low eccentricity orbits. Thus, despite great
similarity between distributions of periods and, separately,
eccentricities in populations of EPC and SB (see Sects. 3
and 4), the similarity between respective joint distribu-
tions is not assured and cannot be anticipated from ca-
sual inspection of the respective scatter plots. However, it
is often the case that a distribution estimate will detect or
highlight features that are impossible to spot on a scatter
plot.

Based on the available data, we estimate PDFs of
(logP, e) for populations of EPC and SB. These estima-
tions are based an all 49 EPC objects and 279 SB objects
with e < 0.72 and 2 days < P < 2500 days selected for
commensurability with the EPC data and thus pertain
only to sub-populations of EPC and SB bounded by the
above limits.

The regularization method for estimating an univari-
ate PDF (see Sect. 2) does not generalize to the bivariate
case. We use an adoptive kernel estimation method with
Gaussian kernel (Silverman 1986) to infer f(logP, e). In
this method f(r), where r denotes a vector (logP, e), is
approximated by an estimate, fk(r) given by a sum of
Gaussians kernels centered on the data points,

fk(r) =
1
N

N∑
i=1

1
2πw2

i

exp

(
−|ri − r|

2

2w2
i

)
(10)

where {ri}Ni=1 are data points and {wi}Ni=1 are the ker-
nel widths. Finding fk(r) is tantamount to finding opti-
mal values of {wi}Ni=1, for details see Silverman (1986) or
Pisani (1993, 1996).

Figure 4 shows results of our calculations. The left
panel shows a surface plot depicting fEPC

k (logP, e), an
estimate of the joint distribution for the population of
EPC. The right panel shows a surface plot depicting
fSB

k (logP, e), an estimate of the joint distribution for the
SB population. There is a remarkable similarity, not antic-
ipated from a visual inspection of respective scatter plots,
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in the form of fEPC
k (r) and fSB

k (r). One possible char-
acterization of these joint distributions is that they are a
superposition of two Gaussians restricted to e > 0 domain.

To quantify the visually evident similarity between
fEPC

k (r) and fSB
k (r) we calculate the value D1 defined as,

D2
1 =

∫ [
fSB

k (r)− fk(r)
]2

dr (11)

where the integral extends over the entire domain of logP
and e. The quantity D1 (a subscript 1 is to set it apart
from a quantity D given by Eq. (6)) is a measure of “dis-
tance” between fSB

k (r) and any given joint distribution
fk(r). Calculating distance between fSB

k (r) and fEPC
k (r)

yields DEPC
1 = 0.11.

If the populations of EPC and SB have indeed the
same joint distribution of (logP, e), an estimate of such
a distribution based on a particular sample consisting of
49 objects is expected nevertheless to differ from an esti-
mate based on another sample consisting of 279 objects.
Thus, D1 is a random variable. We estimate the distribu-
tion of D1 from the following Monte Carlo simulation. We
randomly draw 49 objects from among the 279 SBs and
estimate the fk(r) on the basis of this smaller data set.
Next we calculate the distance, D1, between such an esti-
mation and fSB

k (r). We repeat this experiment 300 times
to gather a sufficient number of D1 realizations and use
methods described in Sect. 2 to infer the PDF of D1.

Figure 5 shows the distribution of D1 obtained from
our Monte Carlo simulations. There is a 76% chance that
the distance between fSB

k (r) and a joint distribution es-
timated on the basis of only 49 objects is larger than
DEPC

1 = 0.11. Thus the significance that fSB
k (r) and

fEPC
k (r) are estimates of the same distribution is s = 76%.

In order to show that the similarity between fSB
k (r)

and fEPC
k (r) is not caused just by the fact that short

period orbits in both samples are circularized, we esti-
mated fSB

1,k(r) and fEPC
1,k (r), joint distributions estimated

on the basis of uncircularized objects alone, those with
20 days < P < 2500 days and e < 0.72. Those PDFs (not
shown here) have forms basically identical to fSB

k (r) and
fEPC

k (r) restricted to the smaller (logP, e) domain. The
significance associated with these new PDFs is s = 75%.
Thus, the significance of similarity between estimated
PDFs for populations of EPC and SB does not diminish
when circularized orbits are removed from consideration.

Neither fEPC
1,k (r) nor fSB

1,k(r) are similar to hypotheti-
cal joint distributions obtained by simply multiplying re-
spective univariate distributions of logP (given in Sect. 3)
and e (given in Sect. 4). That means that indeed periods
and eccentricities are not independent in either the EPC
or the SB populations. However, note that mariginalizing
estimated joint distributions with respect to either logP
or e yields respective univariate distributions (not shown
here) that are consistent with those estimated in Sects. 3
and 4.

6. Discussion and conclusions

We have conducted a statistical analysis of orbital ele-
ments, periods and eccentricities, based on the most exten-
sive available samples of extrasolar planetary candidates
and spectroscopic binaries. The purpose of this work was
to estimate, on the basis of this data, probability densi-
ties for periods, eccentricities, and the joint probability
density of period-eccentricity pairs in populations of ex-
trasolar planetary candidates and spectroscopic binaries.
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k (r) and the bivariate PDF estimated on the basis of 49 SBs
draw randomly from the entire SB sample. The arrow indicates
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1 = 0.11, the distance between fSB
k (r) and fEPC
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We also compare respective PDFs between the two popu-
lations. Our findings can be summarize as follows:

PDFs of orbital periods in both populations are very
well approximated by the power-law, f(P ) ∼ P−1. Note
that the estimates are valid only for sub-populations re-
stricted by the condition 2 days < P < 2500 days.

It may appear that our estimation of f(P ) for stel-
lar companions is at odds with that of Duquennoy &
Mayor (1991) who concluded that orbital periods of stel-
lar companions to G-dwarfs stars in the solar neightbour-
hood are distributed according to the log-normal distri-
bution (normal distribution of variable logP ). However
the Duquennoy & Mayor analysis pertains to the com-
plete sample of binaries and is not restricted to relatively
short period spectroscopic binaries. Estimation of f(P )
(using methods of Sect. 2) on the basis of the Duquennoy
& Mayor data set truncated to conform to condition
P < 2500 days yields f(P ) ∼ P−0.9 with significance
s = 95%, in excellent agreement with our estimation based
on the much larger data set. Interestingly, the log-normal
distribution estimated by Duquennoy & Mayor on the ba-
sis of the the complete sample is itself not markedly dif-
ferent from P−1 distribution as was first noted by Heacox
(1996). Our finding that orbital periods of EPC are also
distributed according to f(P ) ∼ P−1 is consistent with
earlier results of Heacox (1999) and Stepinski & Black
(2000a) obtained on the basis of much smaller data sets.

PDFs of orbital eccentricities in both populations can
be, in general, approximated by the Gaussian with µ ≈
0.35 and h ≈ 0.2, providing that only companions on

orbits with periods longer than the circularization period,
Pcirc ≈ 10 days, are used in the estimation process.

This is consistent with the eccentricity distribution re-
ported by Duquennoy & Mayor for stellar binaries with
periods Pcirc < P < 1000 days. However, in contrast to
Duquennoy & Mayor findings, our calculations show that
companions, both EPC and SB, in orbits with Pcirc < P <
20 days tend to have predominantly small but nonzero ec-
centricities. Thus, although the PDFs estimated on the
basis of samples that exclude Pcirc < P < 20 days or-
bits have a purely Gaussian form, the PDFs estimated on
the basis of samples that include Pcirc < P < 20 orbits
have a Gaussian form turning into a flatter distribution
at small values of eccentricity. This suggests that the or-
bits of companions located just beyond the circularization
orbit are nevertheless somehow altered by the proximity
of the primary.

Earlier efforts (Heacox 1999; Stepinski & Black 2000a)
to estimate PDFs of orbital eccentricity in populations of
low-mass companions and control population of stellar bi-
naries were based on the samples not truncated to exclude
circularized orbits. This was dictated by the small size
of samples then available their further reduction would
leave too few objects to reliably estimate a PDF. In those
studies, the authors reported f(e) ∼ e−0.5 (Heacox) or
f(e) ∼ e−0.63 (Stepinski & Black) for both populations.
Our current point of view is that circularized orbits should
be excluded from consideration as they are not perti-
nent to the primordial distribution of orbital eccentrici-
ties. Nevertheless, for the sake of comparison with these
earlier calculations, we have estimated PDFs of orbital
eccentricity on the basis of EPC and SB samples that
include all circularized orbits. Estimated PDFs are very
similar to each other, evidence that EPC and SB samples
came from the same population is s = 97%. The global
character of estimated PDFs is roughly consistent with
a power-law form, but both PDFs have local maxima at
around e = 0.3. Direct parametric fit of a power-law gives
f(e) ∼ e−0.48 with s = 67% for EPC and f(e) ∼ e−0.44

with s = 15% for SB.

Joint distributions of period-eccentricity pairs in a
population of companions have previously not been esti-
mated. Duquennoy & Mayor (1991) constructed a scatter
plot of (logP, e) data for their complete sample of bina-
ries. Similar scatter plots have been published by Black
(1997), Heacox (1999) and Stepinski & Black (2000a)
in the context of low-mass companions. Our estimations
of f(logP, e) for EPC and SB populations yield very
similar outcomes. The form of the estimated PDF can
be perhaps characterized as a superposition of two bi-
variate Gausssians. The narrower Gaussian, cut by the
e > 0 requirement, accounts for a high number of cir-
cularized companions and can be easily anticipated from
the scatter plot. The broader Gaussian roughly centered
at logP = 2.5 and e = 0.3 cannot be anticipated from
the scatter plot. It is only through a density estimation
technique that this feature becomes apparent. The joint
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distributions differ from what would be obtained by a sim-
ple product of independently estimated univariate distri-
butions of logP and e. This shows that periods and ec-
centricities are not independent variables, but are indeed
somewhat related. This relation is most likely not causual,
but rather a statistical trend, perhaps a reflection of what
appears to be a stochastic mechanism responsible for
formation of those companions.

Our calculations demonstrate a remarkable similarity
between orbital parameters of extrasolar planetary candi-
dates and stellar companions in spectroscopic binaries. All
our tests designed to compare the two populations repeat-
edly yield the same result – the available samples of EPC
and SB orbits come from the same distribution with a high
degree of significance. Based on this result we claim that,
in the context of orbital elements, the two populations are
indistinguishable from each other.

One possible corollary to the above claim is that ma-
jority of EPC are indeed stellar companions viewed at
very small inclination angles (Kubát et al. 1998; Imbert &
Prévot 1998). Although such a corollary readily explains
our findings, it also seems at odds with expected isotropy
of orbits’ inclination angles. However, the isotropic dis-
tribution of i in the available sample of EPC is not yet
a foregone conclusion (see comments in Sect. 1), and the
aforementioned corollary cannnot be flatly rejected.

If values of i in the sample of EPC are distributed
isotropically, the majority of EPC are indeed objects with
masses of the order of 1 MJ. We know with certainty the
existence of one such object, HD 209458, for which a pho-
tometric transit has been observed (Charbonneau et al.
2000) yielding i = 87◦ and M = 0.63 MJ. We caution
however that the current masses of EPC in short-period
orbits are likely to be substantially less than their masses
at formation due to Roche lobe overflow (Trilling et al.
1998).

Companions with masses ∼MJ are commonly thought
to form via a process analogous to that postulated for
the formation of Jupiter in the Solar System – buildup
by aggregation from a protoplanetary disk. This forma-
tion mechanism builds planets in circular orbits with P of
about 10 years, thus subsequent “post-processing” must
be invoked to modify orbits to shapes indicated by spec-
troscopic observations. Two types of mechanisms have
been proposed, gravitational interactions between a disk
and a planet that leads to inward planet migration (for
example see Trilling et al. 1998) and possibly eccentricity
change (Artymowicz et al. 1998), and multiplanet interac-
tions (Weidenschilling & Marzari 1996; Lin & Ida 1997).
Our present findings show a potential means for validat-
ing these various hypothesis. Inasmuch as the statistical
properties of EPC orbits are now well determined, any
proposed mechanism of orbit alteration, when applied to
an ensemble of stars with just-formed planets, should re-
produce probability densities of orbital elements as given
in this paper.

If the EPC are indeed planets (in the sense described
in the previous paragraph) then the most interesting

questions stemming from our findings is why their orbital
elements are distributed like those of the stellar compan-
ions. The orbital elements of stellar binaries are acquired
during their initial birth as small fragments of collaps-
ing molecular cloud core, but are subject to the post-
formation evolution due to accretion from an infalling
gaseous envelope (Bate 2000), as well as further evolution
due to possible presence of circumstellar and/or circumbi-
nary disks (for review see Artymowicz & Lubow 2000).
Thus, post-formation evolution plays a role in determin-
ing the statistics of orbital elements in both stellar bina-
ries and planets. Future research may show that this is
indeed a sufficient “common factor” to account for statis-
tically identical orbits in otherwise very different popula-
tions. However, in our opinion, it is more likely that similar
distribution of orbits arose from essentially the same for-
mation/evolution context. Following this reasoning, some
consideration should be given to a possibility that EPC
formed in a way somewhat analogous to that responsible
for the formation of stellar companions. Thus, EPC could
be “planets” in the sense of having masses in the same
range as the masses of giant planets in the Solar System,
but not in the sense of originating by aggregation from a
protoplanetary disk, and therefore their relevance to plan-
ets in the Solar System is unclear.

In summary, we have established distributions of or-
bital elements in the population of EPC and demonstrated
that they are identical to corresponding distributions in
the population of stellar companions. This offers a new
insight into the issue of the ultimate nature of EPC. Our
findings generate some doubt about the prevelent inter-
pretation of EPC as simple analogues of giant planets in
the Solar System. In this context it is crucial to get a
better hold on the values of the true masses of EPC.
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